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We’ve learned 
about a variety 

of text 
classification 
techniques….
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• Hidden Markov Models
• Naïve Bayes
• Logistic Regression



Types of 
Classification 
Techniques
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• Individual Labels
• Naïve Bayes
• Logistic Regression

• Sequences of Labels
• Hidden Markov Models
• Conditional Random Fields

Label Type

• Generative
• Naïve Bayes
• Hidden Markov Models

• Discriminative
• Logistic Regression
• Conditional Random Fields

Model Type



Conditional Random Fields (CRFs)

• Generalized multi-class logistic regression
• Increased flexibility for sequence labeling

• HMMs: Joint probability ranging over observations and 
corresponding labels

• Can lead to rigid (and inaccurate) independence 
assumptions

• CRFs: Conditional probability over label sequences given 
specific sequence of observations

• Relaxes independence assumptions (model may more 
easily capture arbitrary or long-range dependencies)



Special Case of Markov Random Fields

• Undirected graphical model
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X

𝑿 = 𝑋!, … , 𝑋"#!, 𝑋"
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels



Special Case of Markov Random Fields

• Undirected graphical model
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X

𝑿 = 𝑋!, … , 𝑋"#!, 𝑋"
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels

Conditionally independent labels 
cannot appear in the same 
potential function



Special Case of Markov Random Fields

• Undirected graphical model
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X

𝑿 = 𝑋!, … , 𝑋"#!, 𝑋"
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels

Instead, require potential functions to 
operate only on random variables forming 
a maximal clique



Conditional Random Fields
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• Probability of label sequence y given observation sequence x is then 
a normalized product of feature functions

• 𝑝 𝒚 𝒙, 𝜽 = &
'(𝒙) 𝑒

∑! ,!-!(𝒚,𝒙)

Normalization factor
Feature function

𝐹$ 𝒚, 𝒙 = 010
if 𝑥!=“COVID” and 𝑦!=NOUN

otherwise



Training CRFs

• Seek to find the model distribution with maximum entropy (distribution is as 
uniform as possible)

• Parameters can be optimized by minimizing cross-entropy loss
• Log likelihood of a CRF:

• ℒ 𝜽 = ∑J log &
'(𝒙(#))

+ ∑K 𝜃K𝐹K(𝒚 J , 𝒙(J))
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Training CRFs

• Derivative of CRF log likelihood:
• Lℒ(,)

L,!
= 𝐸 NO(P,Q) 𝐹K(𝑌, 𝑋) − ∑J𝐸O(P|S # ,,) 𝐹K(𝑌, 𝑥

(J))
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Empirical distribution of training data Expectation with respect to distribution p



How to efficiently compute 
expectation?
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• Too many possible label sequences to compute naively
• Instead, we can turn to an old favorite …dynamic programming!

• 𝐸O(𝒀|𝒙 # ,𝜽) 𝐹K(𝒀, 𝒙
(J)) = ∑V 𝑝(𝒀 = 𝒚|𝒙 J , 𝜽)𝐹K(𝒚, 𝒙 J )

• 𝑝 𝑌WX& = 𝑦Y, 𝑌W = 𝑦 𝒙 J , 𝜽 = Z%&'(V(|𝒙)[%(V(,V|𝒙)\%(V|𝒙)
'(𝒙)

𝑀% 𝑦&, 𝑦 𝒙 = 𝑒∑! (!)!(+
",+,𝒙,%) 𝑍 𝒙 = `

%/!

"0!

𝑀%(𝒙)
Check out Wallach (2004) for more details: 
http://dirichlet.net/pdf/wallach04conditional.pdf

http://dirichlet.net/pdf/wallach04conditional.pdf

