Discourse Parsing

Given a specified discourse model (e.g., RST), how do we automatically assign discourse relations to text?

- **Discourse structure parsing:** Given a sequence of text, automatically determine the coherence relations between spans within it
- Discourse structure parsing can be performed similarly to constituency parsing
 - Break text into meaningful subunits
 - Organize those subunits into a set of directed (and, depending on model type, hierarchical) relations

• • • • • • • • • • • • • •

What does this look like for RST parsing?

Step #1: EDU Segmentation

• Extract the start and end of each elementary discourse unit

Natalie said there were no office hours on Thursday because it was Thanksgiving.

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

EDU Segmentation

•

•

•

•

•

- EDUs roughly correspond to clauses
- Early EDU segmentation approaches:
 - Run a syntactic parser
 - Post-process the output
- More modern EDU segmentation approaches:
 - Usually, apply supervised neural sequence models

• • • • • • • • • • • • • •

What does this look like for RST parsing?

Step #1: EDU Segmentation

• Extract the start and end of each elementary discourse unit

Step #2: Parsing Algorithm

 Build representations for each EDU, and apply some method to connect them using RST relations

RST Parsing

•

•

•

- Generally based on syntactic parsing algorithms
- Common syntactic parsing approach: Shiftreduce parser
 - Shift: Push an EDU from the queue onto the stack, creating a single-node subtree
 - Reduce: Merge the top two subtrees (either single-node or more complex) on the stack, assigning a coherence relation label and a nuclearity direction
 - **Pop:** Remove the final tree from the stack

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

[Natalie said]_{e1} [there were no office hours on Thursday]_{e2} [because it was Thanksgiving.]_{e3}

Modern RST parsers generally select actions using neural networks.

How does PDTB discourse parsing differ from this?

• Shallow discourse parsing: Identifying relationships between text spans only, rather than full hierarchical discourse trees