N-Gram
Smoothing
Techniques

Natalie Parde
UIC CS 421

« Smoothing: Taking a bit of the probability
mass from more frequent events and giving it
to unseen events.

« Sometimes also called “discounting”
« Many different smoothing techniques:

Handling

WO rds In * Laplace (add-one)
Unseen Addk
 Stupid backoff
Contexts . Kneser-Ney
CS 421 8 CS 421
CS 590 5 CS 590 5
CS 594 2 CS 594 2

CS 521 0w CS 521 1 S &

Natalie Parde - UIC CS 421

Laplace

Smoothing

« Add one to all n-gram counts before they
are normalized into probabilities

* Not the highest-performing technique for
language modeling, but a useful baseline

* Practical method for other text
classification tasks

(W) Tl
i) =

Laplace N+V

Natalie Parde - UIC CS 421

Example: Laplace Smoothing

|

Corpus Statistics: {

(‘

Unigram __| Frequency _

Chicago
is

cold

hot

4

o O o

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0

0

Example: Laplace Smoothing

(‘
Unigram | Frequency
Chicago 4
Corpus Statistics: { is 8
cold 6
hot 0
f m
Chicago 1g = 022
Ci
P(w;) N < . 75 = 044
cold % =0.33
0

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0
0
J
T T |
Chicago is
is cold

is hot 1

Example: Laplace Smoothing

(‘
Unigram | Frequency
Chicago 4
Corpus Statistics: { is 8
cold 6
hot 0
.
(T
_ 4
. Chicago 1g = 022
l
P(w;) N < . 75 = 044
6
cold 1g = 033
0
\.

Natalie Parde - UIC CS 421

2

\

Chicago is 2
is cold 4
is hot 0

0

J

Chicago is

I
o
0
o

is cold

is hot

| © O] b B
I I
S S
o 0
S <

Example: Laplace Smoothing

Pw) = L —P

|

Corpus Statistics: {

cit+1
N+V

Laplace (Wl) =

(

Unigram __| Frequency _

Chicago 4
is 8
cold 6
hot 0

.
0. e
<

Chicago
is
cold

hot

Natalie Parde - UIC CS 421

Chicago is
is cold 4
is hot 0

0

Chicago is
is cold

is hot

>

Example: Laplace Smoothing

Pw) = L —P

|

Corpus Statistics: {

__ ¢+l <
N+V

Laplace (Wl)

(

Unigram __| Frequency _

Chicago 4+1
is 8+1
cold 6+1
hot 0+1

.

Chicago
is
cold

hot

Natalie Parde - UIC CS 421

Chicago is 2+1
is cold 4+1
is hot 0+1
0+1
J
T T |
Chicago is
is cold
is hot

>

Example: Laplace Smoothing

Ci
P(Wl) = ﬁ = PLaplace (Wl) =

Corpus Statistics: {

cit+1
N+V

(’

f
<

Unigram | Frequency
Chicago 4+1
IS 8+1
cold 6+1
hot 0+1
Chicago 57 = = 0.23
is i =041
i — U.
7
I —=0.
cold > 0.32
1
h —=0.
ot 72 0.05

Natalie Parde - UIC CS 421

Chicago is
is cold 4+1
is hot 0+1
0+1
J
T T |
Chicago is
is cold

is hot 1

Example: Laplace Smoothing

—
Chicago

Corpgus Statistics: { is
cold
Chicago Chicago 0+1 hot
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1 Chicago

Ci __ ¢+l :

P(Wl) = E - PLaplace(Wi) N4V < >

cold

hot

Unigram __| Frequency _

4

8
6
0

= 0.23

Natalie Parde - UIC CS 421

Chicago is 2+1
is cold 4+1
is hot 0+1
0+1
Chicago is _3_
4+4° 8
is cold 5 5 _
5va =17 =042 {
is hot 1 1
gra_ 1z 008

Probabilities:
Before and

After

Bigram Probability
. . >
Chicago is £ 050
4
i 4
Is cold * 050
8
is hot 0
—=0.00
8
Bigram Probability
: : 3
Chicago is ° _ 038
8
Is cold 5 _
7= 0.42
is hot 1
7= 0.08

Natalie Parde - UIC CS 421

* Moves a bit less of the probability mass from
seen to unseen events

« Rather than adding one to each count, add a
fractional count

* 0.5

Add-K . 0.05

- * 0.01
SmOOth I ng * The value k can be optimized on a validation
set
Ci __ Citk
s P(w) = == P (W) =~
* P(wnlwn_q) = C(::;l];l_‘f;l) PAdd—K(Wnlwn—l) — A

c(Wp—1)+kV

Natalie Parde - UIC CS 421

Add-K smoothing is useful for
some tasks, but still tends to be
suboptimal for language modeling.

« Other smoothing techniques?

« Backoff: Use the specified n-gram size to
estimate probability if its count is greater
than O; otherwise, backoff to a lower-order
n-gram

* Interpolation: Mix the probability
estimates from multiple n-gram sizes,
weighing and combining the n-gram
counts

Natalie Parde - UIC CS 421

'N_| Weight I N-Gram | Probability | Value _
: 3 05 19421 P@421119) 07
InterPOIatlon 2 04 V421 P421|9) 0.5)
0.2

1 0.1 421 P(421)

 Linear interpolation 0.5 % 0.7 + 0.4 % 0.5+ 0.1%0.2 = 0.57

* P(wplwpowpn_q) = 2 P(Wy|wp_owpn_q) + ,P(Wy|wy_q) + 43P (Wy)
« Where },;1; =1

 Conditional interpolation

@ (Wnlwp_owp_1) + A(Wnlwn—l) + A

* P'(wplwp_owpn_q) = A4

m Probability m Context-conditioned weights

19421 P@421]19) 07 0.5
421 P@421]14) 0.7 0.1

Natalie Parde - UIC CS 421

Backoff

* If the n-gram we need has zero
counts, approximate it by backing
off to the (n-1)-gram

» Continue backing off until we
reach a size that has non-zero
counts

 Just like with smoothing, some
probability mass from higher-
order n-grams needs to be
redistributed to lower-order n-
grams

Katz Backoff

 [ncorporate a function a to distribute probability mass to lower-order n-
grams

* Rely on a discounted probability P* if the n-gram has non-zero counts
« Otherwise, recursively back off to the Katz probability for the (n-1)-gram

P*(Wnlw;z_l%Hl) if c(Wp_n41) >0

* Ppo(Wn|WiThsr) = -
\a(w “N+1)Ppo(Wn|WiTni2), otherwise

Kneser-Ney Smoothing

* One of the most commonly used and best-performing n-gram smoothing methods
* |Incorporates absolute discounting

. Tinr, _ C(wi—qwy)—d . _
PAbsoluteDiscounting(WllWl_l) Y, C(Wi_iv) + C(Wl—l)P (Wl)l
Discounted Bigram Unigram with interpolation weight

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

* Obijective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

« tall nonfat decaf peppermint

« “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135
million results on Google), but it's mainly frequent when it follows the word

(13 th

new

» Creates a unigram model that estimates the probability of seeing the word w as a
novel continuation, in a new unseen context
« Based on the number of different contexts in which w has already appeared
. P (W) _ [{v:C(vw)>0}|

Continuation {(u' ,wr):C(u'wr)>0}|

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

maX(CKN (Wz. n+1) 0)

Y crn (WiZ n+1v)

P (Wllwl n+1) — +/1(WL n+1)P (Wllwl n+2

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

. maX(CKN(Wii n+1) —d, 0) @ i—1
(Wllwl n+1) Zv CKN(WL n+1v) KN(Wllwl n+2

_—

Normalizing constant to distribute the probability mass that’s been discounted
Alwi_q) =

S CwiaD) [{tw : c(w;—1w) > 0}

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

. maX(CKN(Wii n+1) —d, 0) @ i—1
(Wllwl n+1) Zv CKN(WL n+1v) KN(Wllwl n+2

Normalizing constant to distribute at’'s been discounted

A(w;_1)

Normalized discount Number of word types that can follow w;_;

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

'.—n+1) —d, 0) 1
(Wllwl n+1/) — 2 @ Wi_l v) @ KN(Wllwll n+2
I—n+1

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

1)—d, 0)
(W1|WL n+1/) — l nl+_1 @ (WL|WLL®
2 @ Wi—n+1v)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

—
Discounted n-gram probability ...when the recursion terminates, unigrams are interpolated with the
uniform distribution (¢ = empty string)

P (W) = max(cxky(w) — d, 0)

1

+ A(e) =

Yowr ckn (W) 4
Natalie Parde - UIC CS 421

Stupid Backoff

* Gives up the idea of trylng to make the language model a true
probability distribution &

* No discounting of higher-order probabilities

* If a higher-order n-gram has a zero count, simply backoff to a lower-
order n-gram, weighted by a fixed weight

C(Wl. k+1)
* S(Wi|wiie1) = { cWikrn)
\/15 (Wi ‘Wl-__ ,%+2) otherwise

« Terminates in the unigram, which has the probability:

. Sw) = L2

if c(W_g41) > 0

Stupid Backoff

* Gives up the idea of trylng to make the language model a true
probability distribution &

* No discounting of higher-order probabilities
* If a higher-order n-gram has a zero count, simply backoff to a lower-
order n-gram, weighted by a fixed weight

CWi_s1) i
» S(Wi|w/Tiyq) = { COiTkr) if ¢(Wi_gs1) > 0

(Wi |Wl-__ ,%+2) otherwise

Cerminates In the unigram, which has the probability:
. S(w) = <

N

Generally, 0.4 works well (Brants et al., 2007)

