N-Gram Smoothing Techniques

Natalie Parde

UIC CS 421

Handling Words in Unseen Contexts

- Smoothing: Taking a bit of the probability mass from more frequent events and giving it to unseen events.
- Sometimes also called "discounting"
- Many different smoothing techniques:
- Laplace (add-one)
- Add-k
- Stupid backoff
- Kneser-Ney

Bigram	Frequency		Bigram	Frequency
CS 421	8		CS 421	7
CS 590	5		CS 590	5
CS 594	2		CS 594	2
CS 521	0	CS 521	1	

- Add one to all n-gram counts before they are normalized into probabilities
- Not the highest-performing technique for language modeling, but a useful baseline
- Practical method for other text classification tasks
- $P\left(w_{i}\right)=\frac{c_{i}}{N} \rightarrow P_{\text {Laplace }}\left(w_{i}\right)=\frac{c_{i}+1}{N+V}$

Example: Laplace Smoothing

$\left.\begin{array}{|l|l|}\hline \text { Bigram } & \text { Frequency } \\ \hline \text { Chicago is } & 2 \\ \hline \text { is cold } & 4 \\ \hline \text { is hot } & 0 \\ \hline \ldots & 0 \\ \hline\end{array}\right\}$

Example: Laplace Smoothing

Add-K Smoothing

- Moves a bit less of the probability mass from seen to unseen events
- Rather than adding one to each count, add a fractional count
- 0.5
- 0.05
- 0.01
- The value k can be optimized on a validation set
- $P\left(w_{i}\right)=\frac{c_{i}}{N} \rightarrow P_{\text {Add-K }}\left(w_{i}\right)=\frac{c_{i}+k}{N+k V}$
- $P\left(w_{n} \mid w_{n-1}\right)=\frac{c\left(w_{n-1} w_{n}\right)}{c\left(w_{n-1}\right)} \rightarrow P_{\text {Add-K }}\left(w_{n} \mid w_{n-1}\right)=\frac{c\left(w_{n-1} w_{n}\right)+k}{c\left(w_{n-1}\right)+k V}$

Add-K smoothing is useful for some tasks, but still tends to be suboptimal for language modeling.

- Other smoothing techniques?
- Backoff: Use the specified n-gram size to estimate probability if its count is greater than 0; otherwise, backoff to a lower-order n-gram
- Interpolation: Mix the probability estimates from multiple n-gram sizes, weighing and combining the n-gram counts

Interpolation

- Linear interpolation

N	Weight	N-Gram	Probability	Value
3	0.5	I 421	$\mathrm{P}(421\|\mid O)$	0.7
2	0.4	421	$\mathrm{P}(421 \mid \nabla)$	0.5
1	0.1	421	$\mathrm{P}(421)$	0.2

- $P^{\prime}\left(w_{n} \mid w_{n-2} w_{n-1}\right)=\lambda_{1} P\left(w_{n} \mid w_{n-2} w_{n-1}\right)+\lambda_{2} P\left(w_{n} \mid w_{n-1}\right)+\lambda_{3} P\left(w_{n}\right)$
- Where $\sum_{i} \lambda_{i}=1$
- Conditional interpolation

N-Gram	Probability	Value	Weight
I-421	$\mathrm{P}(421 \mid I \bigcirc)$	0.7	0.5
1 氨 421	$\mathrm{P}\left(421\right.$ \| \% \% $_{\text {- }}$)	0.7	0.1

Backoff

- If the n-gram we need has zero counts, approximate it by backing off to the ($\mathrm{n}-1$)-gram
- Continue backing off until we reach a size that has non-zero counts
- Just like with smoothing, some probability mass from higherorder n-grams needs to be redistributed to lower-order ngrams

Katz Backoff

- Incorporate a function α to distribute probability mass to lower-order ngrams
- Rely on a discounted probability P^{*} if the n-gram has non-zero counts
- Otherwise, recursively back off to the Katz probability for the ($n-1$)-gram
- $P_{B O}\left(w_{n} \mid w_{n-N+1}^{n-1}\right)= \begin{cases}P^{*}\left(w_{n} \mid w_{n-N+1}^{n-1}\right), \quad \text { if } c\left(w_{n-N+1}^{n}\right)>0 \\ \alpha\left(w_{n-N+1}^{n-1}\right) P_{B O}\left(w_{n} \mid w_{n-N+2}^{n-1}\right), & \text { otherwise }\end{cases}$

Kneser-Ney Smoothing

- One of the most commonly used and best-performing n-gram smoothing methods
- Incorporates absolute discounting
- $P_{\text {AbsoluteDiscounting }}\left(w_{i} \mid w_{i-1}\right)=\frac{C\left(w_{i-1} w_{i}\right)-d}{\sum_{v} C\left(w_{i-1} v\right)}+\lambda\left(w_{i-1}\right) P\left(w_{i}\right)$

Kneser-Ney Smoothing

- Objective: Capture the intuition that although some lower-order n-grams are frequent, they are mainly only frequent in specific contexts
- tall nonfat decaf peppermint \qquad
- "york" is a more frequent unigram than "mocha" (7.4 billion results vs. 135 million results on Google), but it's mainly frequent when it follows the word "new"
- Creates a unigram model that estimates the probability of seeing the word w as a novel continuation, in a new unseen context
- Based on the number of different contexts in which w has already appeared
- $P_{\text {Continuation }}(w)=\frac{|\{v: C(v w)>0\}|}{\left|\left\{\left(u^{\prime}, w^{\prime}\right): C\left(u^{\prime} w^{\prime}\right)>0\right\}\right|}$

Kneser-Ney Smoothing

$$
P_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c_{K N}\left(w_{i-n+1}^{i}\right)-d, 0\right)}{\sum_{v} c_{K N}\left(w_{i-n+1}^{i-1} v\right)}+\lambda\left(w_{i-n+1}^{i-1}\right) P_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)
$$

Kneser-Ney Smoothing

$$
P_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c_{K N}\left(w_{i-n+1}^{i}\right)-d, 0\right)}{\sum_{v} c_{K N}\left(w_{i-n+1}^{i-1} v\right)}+\lambda\left(w_{i-n+1}^{i-1}\right) P_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)
$$

Normalizing constant to distribute the probability mass that's been discounted

$$
\lambda\left(w_{i-1}\right)=\frac{d}{\sum_{v} C\left(w_{i-1} v\right)}\left|\left\{w: c\left(w_{i-1} w\right)>0\right\}\right|
$$

Kneser-Ney Smoothing

$$
P_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c_{K N}\left(w_{i-n+1}^{i}\right)-d, 0\right)}{\sum_{v} c_{K N}\left(w_{i-n+1}^{i-1} v\right)}+\lambda\left(w_{i-n+1}^{i-1}\right) p_{\mathrm{KN}}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)
$$

Normalizing constant to distribute the probability mass that's been discounted

Kneser-Ney Smoothing

Normalizing constant to distribute the probability mass that's been discounted

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

Kneser-Ney Smoothing

Discounted n-gram probability ...when the recursion terminates, unigrams are interpolated with the uniform distribution ($\varepsilon=$ empty string)

$$
P_{K N}(w)=\frac{\max \left(c_{K N}(w)-d, 0\right)}{\sum_{w^{\prime}} c_{K N}\left(w^{\prime}\right)}+\lambda(\varepsilon) \frac{1}{V}
$$

Stupid Backoff

- Gives up the idea of trying to make the language model a true probability distribution (e)
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n -gram, weighted by a fixed weight
- $S\left(w_{i} \mid w_{i-k+1}^{i-1}\right)=\left\{\begin{array}{l}\frac{c\left(w_{i-k+1}^{i}\right)}{c\left(w_{i-k+1}^{i-1}\right)} \text { if } c\left(w_{i-k+1}^{i}\right)>0 \\ \lambda S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) \text { otherwise }\end{array}\right.$
- Terminates in the unigram, which has the probability:
- $S(w)=\frac{c(w)}{N}$

Stupid Backoff

- Gives up the idea of trying to make the language model a true probability distribution ©e
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n-gram, weighted by a fixed weight
- $S\left(w_{i} \mid w_{i-k+1}^{i-1}\right)= \begin{cases}\frac{c\left(w_{i-k+1}^{i}\right)}{c\left(w_{i-k+1}^{i-1}\right)} & \text { if } c\left(w_{i-k+1}^{i}\right)>0 \\ \lambda S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) & \text { otherwise }\end{cases}$
- Terminates in the unigram, which has the probability:
- $S(w)=\frac{c(w)}{N}$

