
N-Gram
Smoothing
Techniques
Natalie Parde
UIC CS 421

Handling
Words in
Unseen
Contexts

• Smoothing: Taking a bit of the probability
mass from more frequent events and giving it
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1 🥰

Natalie Parde - UIC CS 421

Laplace
Smoothing

• Add one to all n-gram counts before they
are normalized into probabilities

• Not the highest-performing technique for
language modeling, but a useful baseline

• Practical method for other text
classification tasks

• 𝑃 𝑤! = "!
#

→ 𝑃Laplace 𝑤! = "!$%
#$&

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤! =
𝑐!
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤! =
𝑐!
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤! = "!
#

→ 𝑃Laplace 𝑤! = "!$%
#$&

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤! = "!
#

→ 𝑃Laplace 𝑤! = "!$%
#$&

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤! = "!
#

→ 𝑃Laplace 𝑤! = "!$%
#$&

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤! = "!
#

→ 𝑃Laplace 𝑤! = "!$%
#$&

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1

Probabilities:
Before and

After

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8 = 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12 = 0.08

Natalie Parde - UIC CS 421

Add-K
Smoothing

• Moves a bit less of the probability mass from
seen to unseen events

• Rather than adding one to each count, add a
fractional count

• 0.5
• 0.05
• 0.01

• The value k can be optimized on a validation
set

• 𝑃 𝑤! = "!
#

→ 𝑃Add−K 𝑤! = "!$,
#$,&

• 𝑃 𝑤0|𝑤01% = "(3"#$3")
"(3"#$)

→ 𝑃Add−K 𝑤0|𝑤01% = " 3"#$3" $5
" 3"#$ $5&

Natalie Parde - UIC CS 421

Add-K smoothing is useful for
some tasks, but still tends to be
suboptimal for language modeling.

• Other smoothing techniques?
• Backoff: Use the specified n-gram size to

estimate probability if its count is greater
than 0; otherwise, backoff to a lower-order
n-gram

• Interpolation: Mix the probability
estimates from multiple n-gram sizes,
weighing and combining the n-gram
counts

Natalie Parde - UIC CS 421

Interpolation
• Linear interpolation

• 𝑃. 𝑤/ 𝑤/01𝑤/0% = 𝜆%𝑃 𝑤/ 𝑤/01𝑤/0% + 𝜆1𝑃 𝑤/ 𝑤/0% + 𝜆2𝑃(𝑤/)
• Where ∑! 𝜆! = 1

• Conditional interpolation
• 𝑃6 𝑤0 𝑤017𝑤01% = 𝜆%(𝑤01701%)𝑃 𝑤0 𝑤017𝑤01% + 𝜆7(𝑤01701%)𝑃 𝑤0 𝑤01% + 𝜆8(𝑤01701%)𝑃(𝑤0)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1

Backoff
• If the n-gram we need has zero

counts, approximate it by backing
off to the (n-1)-gram

• Continue backing off until we
reach a size that has non-zero
counts

• Just like with smoothing, some
probability mass from higher-
order n-grams needs to be
redistributed to lower-order n-
grams

Natalie Parde - UIC CS 421

Katz Backoff
• Incorporate a function 𝛼 to distribute probability mass to lower-order n-

grams
• Rely on a discounted probability P* if the n-gram has non-zero counts
• Otherwise, recursively back off to the Katz probability for the (n-1)-gram

• 𝑃?@ 𝑤/ 𝑤/0#$%/0% =)
𝑃∗ 𝑤/ 𝑤/0#$%/0% , if 𝑐 𝑤/0#$%/ > 0
𝛼 𝑤/0#$%/0% 𝑃?@ 𝑤/ 𝑤/0#$1/0% , otherwise

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• 𝑃AbsoluteDiscounting 𝑤+ 𝑤+,- = . /9:;/9 ,0
∑< .(/9:;3)

+ 𝜆 𝑤+,- 𝑃(𝑤+)

Natalie Parde - UIC CS 421

Discounted Bigram Unigram with interpolation weight

Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135

million results on Google), but it’s mainly frequent when it follows the word
“new”

• Creates a unigram model that estimates the probability of seeing the word w as a
novel continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = /∶1 /2 34

5+,27 :1 5+27 34

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤!|𝑤!0/$%
!0%) =

max 𝑐A# 𝑤!0/$%! − 𝑑, 0
∑B 𝑐A# 𝑤!0/$%!0% 𝑣

+ 𝜆(𝑤!0/$%!0%)𝑃KN(𝑤!|𝑤!0/$1
!0%)

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤!|𝑤!0/$%
!0%) =

max 𝑐A# 𝑤!0/$%! − 𝑑, 0
∑B 𝑐A# 𝑤!0/$%!0% 𝑣

+ 𝜆(𝑤!0/$%!0%)𝑃KN(𝑤!|𝑤!0/$1
!0%)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤!1% =
𝑑

∑D 𝐶(𝑤!1%𝑣)
𝑤 ∶ 𝑐 𝑤!1%𝑤 > 0

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤!|𝑤!0/$%
!0%) =

max 𝑐A# 𝑤!0/$%! − 𝑑, 0
∑B 𝑐A# 𝑤!0/$%!0% 𝑣

+ 𝜆(𝑤!0/$%!0%)𝑃KN(𝑤!|𝑤!0/$1
!0%)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤!1% =
𝑑

∑D 𝐶(𝑤!1%𝑣)
𝑤 ∶ 𝑐 𝑤!1%𝑤 > 0

Normalized discount Number of word types that can follow 𝑤!1%

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤!|𝑤!0/$%
!0%) =

max 𝑐A# 𝑤!0/$%! − 𝑑, 0
∑B 𝑐A# 𝑤!0/$%!0% 𝑣

+ 𝜆(𝑤!0/$%!0%)𝑃KN(𝑤!|𝑤!0/$1
!0%)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤!|𝑤!0/$%
!0%) =

max 𝑐A# 𝑤!0/$%! − 𝑑, 0
∑B 𝑐A# 𝑤!0/$%!0% 𝑣

+ 𝜆(𝑤!0/$%!0%)𝑃KN(𝑤!|𝑤!0/$1
!0%)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the
uniform distribution (𝜀 = empty string)

𝑃E# 𝑤 =
max(𝑐E# 𝑤 − 𝑑, 0)

∑36 𝑐E#(𝑤6) + 𝜆(𝜀)
1
𝑉

Natalie Parde - UIC CS 421

Stupid Backoff
• Gives up the idea of trying to make the language model a true

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤(𝑤()*+,(), = $
-(/6789:

6)
-(/6789:

67:)
if 𝑐 𝑤()*+,(> 0

𝜆𝑆 𝑤(𝑤()*+1(), otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = /(1)
3

Natalie Parde - UIC CS 421

Stupid Backoff
• Gives up the idea of trying to make the language model a true

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤(𝑤()*+,(), = $
-(/6789:

6)
-(/6789:

67:)
if 𝑐 𝑤()*+,(> 0

𝜆𝑆 𝑤(𝑤()*+1(), otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = /(1)
3

Generally, 0.4 works well (Brants et al., 2007)

Natalie Parde - UIC CS 421

