N-Gram Smoothing Techniques

Handling Words in Unseen Contexts

- Smoothing: Taking a bit of the probability mass from more frequent events and giving it to unseen events.
 - Sometimes also called "discounting"
- Many different smoothing techniques:
 - Laplace (add-one)
 - Add-k
 - Stupid backoff
 - Kneser-Ney

Bigram	Frequency
CS 421	8
CS 590	5
CS 594	2
CS 521	0 😢

Vatalie	Parde	-	UIC	CS	421	
---------	-------	---	-----	----	-----	--

Bigram	Frequency
CS 421	7
CS 590	5
CS 594	2
CS 521	1 🖌 😂

Laplace Smoothing

- Add one to all n-gram counts before they are normalized into probabilities
- Not the highest-performing technique for language modeling, but a useful baseline
 - Practical method for other text classification tasks

•
$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+V}$$

С

	(•				7
		Unigram	Frequency	Bigram	Frequency	
		Chicago	4	Chicago is	2	
orpus Statistics:	\prec	is	8	is cold	4	
		cold	6	is hot	0	
		hot	0		0	

cold

hot

		-				
			Unigram	Frequency	Bigram	Frequency
			Chicago	4	Chicago is	2+1
Corpu	is Statistics:	\prec	is	8	is cold	4+1
Bigram	Frequency		cold	6	is hot	0+1
Chicago Chicago	0+1		hot	0		0+1
Chicago is	2+1		-			
Chicago cold	0+1		Unigram	Probability	Bigram	Probability
Chicago hot	0+1		Chicago	$\frac{5}{22} = 0.23$	Chicago is	$\frac{3}{4+4} = \frac{3}{8} = 0.1$
$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Lapla}}$	$u_{ce}(w_i) = \frac{c_i + 1}{N + V}$	\prec	is	$\frac{9}{22} = 0.41$	is cold	$\frac{5}{8+4} = \frac{5}{12} = 0.$

$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Laplace}}(w_i) = \frac{c_i+1}{N+V}$$

Natalie Parde - UIC CS 421

 $\frac{7}{22} = 0.32$

 $\frac{1}{22} = 0.05$

= 0.38 $\frac{5}{8+4} = \frac{5}{12} = 0.42$ is cold $\frac{1}{8+4} = \frac{1}{12} = 0.08$ is hot

Probabilities: Before and After

Bigram	Probability
Chicago is	$\frac{2}{4} = 0.50$
is cold	$\frac{4}{8} = 0.50$
is hot	$\frac{0}{8} = 0.00$
Bigram	Probability
Bigram Chicago is	Probability $\frac{3}{8} = 0.38$
Bigram Chicago is is cold	Probability $\frac{3}{8} = 0.38$ $\frac{5}{12} = 0.42$

Add-K Smoothing

- Moves a bit less of the probability mass from seen to unseen events
- Rather than adding one to each count, add a fractional count
 - 0.5
 - 0.05
 - 0.01
- The value *k* can be optimized on a validation set

•
$$P(w_i) = \frac{c_i}{N} \rightarrow P_{\text{Add}-K}(w_i) = \frac{c_i + k}{N + kV}$$

•
$$P(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)}{c(w_{n-1})} \to P_{Add-K}(w_n|w_{n-1}) = \frac{c(w_{n-1}w_n)+k}{c(w_{n-1})+kV}$$

Add-K smoothing is useful for some tasks, but still tends to be suboptimal for language modeling.

- Other smoothing techniques?
 - Backoff: Use the specified n-gram size to estimate probability if its count is greater than 0; otherwise, *backoff* to a lower-order n-gram
 - Interpolation: Mix the probability estimates from multiple n-gram sizes, weighing and combining the n-gram counts

Interpolation

- Linear interpolation
 - $P'(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$ • Where $\sum_i \lambda_i = 1$
- Conditional interpolation • $P'(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})^p(w_n|w_{n-2}w_{n-1}) + \lambda_2(w_{n-2}^{n-1})^p(w_n|w_{n-1}) + \lambda_3(w_{n-2}^{n-1})^p(w_n)$ N-Gram Probability Value Weight I ♥ 421 P(421 | I ♥) 0.7 0.5 I ♣ 421 P(421 | I ♣) 0.7 0.1

Backoff

- If the n-gram we need has zero counts, approximate it by backing off to the (n-1)-gram
- Continue backing off until we reach a size that has non-zero counts
- Just like with smoothing, some probability mass from higherorder n-grams needs to be redistributed to lower-order ngrams

Katz Backoff

- Incorporate a function α to distribute probability mass to lower-order n-grams
- Rely on a discounted probability P* if the n-gram has non-zero counts
- Otherwise, recursively back off to the Katz probability for the (n-1)-gram

•
$$P_{BO}(w_n | w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n | w_{n-N+1}^{n-1}), & \text{if } c(w_{n-N+1}^n) > 0\\ \alpha(w_{n-N+1}^{n-1}) P_{BO}(w_n | w_{n-N+2}^{n-1}), & \text{otherwise} \end{cases}$$

- One of the most commonly used and best-performing n-gram smoothing methods
- Incorporates absolute discounting

$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i)-d}{\sum_{v}C(w_{i-1}v)} + \lambda(w_{i-1})P(w_i)$$

Discounted Bigram Unigram with interpolation weight

- tall nonfat decaf peppermint _
 - "york" is a more frequent unigram than "mocha" (7.4 billion results vs. 135 million results on Google), but it's mainly frequent when it follows the word "new"
- Creates a unigram model that estimates the probability of seeing the word w as a novel continuation, in a new unseen context
 - Based on the number of different contexts in which *w* has already appeared

•
$$P_{\text{Continuation}}(w) = \frac{|\{v:C(vw)>0\}|}{|\{(u',w'):C(u'w')>0\}|}$$

$$P_{\rm KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max(c_{\rm KN}(w_{i-n+1}^i) - d, 0)}{\sum_{\nu} c_{\rm KN}(w_{i-n+1}^{i-1}\nu)} + \lambda(w_{i-n+1}^{i-1})P_{\rm KN}(w_i|w_{i-n+2}^{i-1})$$

$$P_{\mathrm{KN}}(w_{i}|w_{i-n+1}^{i-1}) = \frac{\max(c_{\mathrm{KN}}(w_{i-n+1}^{i}) - d, 0)}{\sum_{v} c_{\mathrm{KN}}(w_{i-n+1}^{i-1}v)} + \lambda(w_{i-n+1}^{i-1})P_{\mathrm{KN}}(w_{i}|w_{i-n+2}^{i-1})$$
Normalizing constant to distribute the probability mass that's been discounted
$$\lambda(w_{i-1}) = \frac{d}{\sum_{v} c(w_{i-1}v)} |\{w : c(w_{i-1}w) > 0\}|$$

 $P_{\rm KN}(w_i|w_{i-n+1}^{i-1}$

Normalizing constant to distribute the probability mass that's been discounted

 $\max(c_{KN}(w_{i-n+1}^{\iota})-d, 0)$

 $\sum_{i=n+1}^{i-1} v$

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

Natalie Parde - UIC CS 421

+ $\lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1})$

 $P_{_{\rm KN}}(w_i|w_{i-n+1}^{i-1})$

Normalizing constant to distribute the probability mass that's been discounted

 $\max(c_{KN}(w_{i-n+1}^{\iota})-d, 0)$

Regular count for the highest-order n-gram, or the number of unique single word contexts for lower-order n-grams

Discounted n-gram probability ... when the recursion terminates, unigrams are interpolated with the uniform distribution (ε = empty string)

$$P_{KN}(w) = \frac{\max(c_{KN}(w) - d, 0)}{\sum_{w'} c_{KN}(w')} + \lambda(\varepsilon) \frac{1}{V}$$

Natalie Parde - UIC CS 421

 $+ \lambda(w_{i-n+1}^{l-1}) \mathcal{P}_{KN}(w_i | w_i^l)$

Stupid Backoff

- Gives up the idea of trying to make the language model a true probability distribution ^(C)
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n-gram, weighted by a fixed weight

•
$$S(w_i|w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0\\ \lambda S(w_i|w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

• Terminates in the unigram, which has the probability:

•
$$S(w) = \frac{c(w)}{N}$$

Stupid Backoff

• $S(w) = \frac{c(w)}{w}$

- Gives up the idea of trying to make the language model a true probability distribution ^(C)
- No discounting of higher-order probabilities
- If a higher-order n-gram has a zero count, simply backoff to a lowerorder n-gram, weighted by a fixed weight

•
$$S(w_i | w_{i-k+1}^{i-1}) = \begin{cases} \frac{c(w_{i-k+1}^i)}{c(w_{i-k+1}^{i-1})} & \text{if } c(w_{i-k+1}^i) > 0 \\ \lambda S(w_i | w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

• Terminates in the unigram, which has the probability:

Generally, 0.4 works well (Brants et al., 2007)