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What is text preprocessing?
• Automated organization, normalization, and manipulation of text 

such that it can more easily be handled by downstream 
language processing tasks.

“Have some wine,” the March Hare 
said in an encouraging tone.

Alice looked all round the table, but 
there was nothing on it but tea. “I 
don't see any wine," she remarked.

“There isn't any,” said the March 
Hare.

- Lewis Carroll, Alice’s Adventures 
in Wonderland

have some wine [PERSON 1] said in 
an encouraging tone

[PERSON 2] looked all round the table 
but there was nothing on it but tea 

i don't see any wine she remarked

there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in 
Wonderland
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Text preprocessing steps can (and 
should!) vary depending on your needs.

Important

Not Important

capitalization

punctuation

proper nouns

British vs. American spellings (for English text)

written numbers vs. digits
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One way to preprocess text is 
by using regular expressions.

• Regular expressions: A formal language for specifying 
text strings.

• How can we search for any of these?
• Donut
• donut
• Doughnut
• doughnut
• Donuts
• doughnuts
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Regular 
Expression 
Terminology

Regex: Common abbreviation for regular 
expression
Disjunction: Logical OR

Range: All characters in a sequence from 
c1-c2

Negation: Logical NOT

Scope: Indicates to which characters the 
regex applies
Anchor: Matches the beginning or end of a 
string
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Regular Expressions: 
Disjunctions (and 
Ranges)

• Disjunction: Letters inside 
square brackets [az]

• Range: Hyphen between the 
first and last characters in the 
range [a-z]

Pattern Matches Example
[dD]onut donut, Donut This morning would be 

better with a donut.
[0123456789] Any digit This morning would be 

better with 5 donuts.
[A-Z] An uppercase 

letter
Donuts are an excellent 
way to start the day.

[a-z] A lowercase 
letter

What is your favorite kind 
of donut?

[0-9] Any digit I just ate 5 donuts.
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Regular Expressions: 
Negation in 
Disjunction

• Negation: A caret (^) at 
the beginning of a 
disjunction [^az]

• The caret must be at 
the beginning of the 
disjunction to negate 
it

Pattern Matches Example
[^dD]onut Any letter except 

“d” or “D” before 
the sequence 
“onut”

This morning would be 
better with a coconut.

[^A-Z] Not an uppercase 
letter

Donuts are an excellent 
way to start the day.

[^^] Not a caret What is your favorite kind 
of donut?

D^o The pattern “D^o” Is D^onut a good name 
for my donut shop?
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Regular 
Expressions: More 

Disjunction

• The pipe | indicates the 
union (logical OR) of two 
smaller regular 
expressions

• a|b|c is equivalent to [abc]

Pattern Matches Example

d|D “d” or “D” This morning would 
be better with a 
donut.
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Regular 
Expressions: 

Special 
Characters

• *: Means that there must be 0 or more 
occurrences of the preceding expression

• .: A wildcard that can mean any character
• +: Means that there must be 1 or more 

occurrences of the preceding expression
• ?: Means that there must be 0 or 1 

occurrences of the preceding expression
• {m}: Means that there must be m instances 

of the preceding expression
• {m,n}: Means that there must be between 

m and n instances of the preceding 
expression
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Regular Expressions: Special 
Characters

Pattern Matches Example

donuts* “donut” or “donuts” or “donutss” or 
“donutsss”….

This morning I had many donuts.

.onut Any character followed by “onut” Can I have a coconut donut?

donuts+ “donuts” or “donutss” or “donutsss”…. Do you want one donut or two 
donuts?

donuts? “donut” or “donuts” Do you want one donut or two 
donuts?

donuts{1} “donuts” Do you want one donut or two 
donuts?

donuts{0,1} “donut” or “donuts” Do you want one donut or two 
donuts?
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Regular Expressions: Anchors
• Indicate that a pattern should be matched only at the beginning 

or end of a word

Pattern Matches Example
^Donuts “Donuts” only when it is at the beginning of a string Donuts are an excellent way to 

start the day.
$donuts\. “donuts.” only when it is at the end of the string I just ate 5 donuts.
$donuts. “donuts” + one additional character, only when it is 

at the end of the string
I just ate 12 donuts!
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Simple(?) Task: 
Create a regular 

expression to 
match the word 

“the”

Pattern Matches

[dD]onut donut, Donut

[0123456789] Any digit

[A-Z] An uppercase letter

[a-z] A lowercase letter

[0-9] Any digit

[^dD]onut Any letter except “d” or “D” before the sequence “onut”

[^A-Z] Not an uppercase letter

donut|doughnut “donut” or “doughnut”

[dD]onut|[dD]oughnut “donut” or “Donut” or “doughnut” or “Doughnut”

donuts* “donut” or “donuts” or “donutss” or “donutsss”….

.onut Any character followed by “onut”

donuts+ “donuts” or “donutss” or “donutsss”….

donuts? “donut” or “donuts”

donuts{1} “donuts”

https://www.google.com/search?q=timer
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Possible 
Solutions

the
• Fails on test case: The

[tT]he
• Fails on test case: other

[^a-zA-Z][tT]he[^a-zA-Z]
• :-) ?
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Errors

• In iterating through possible 
solutions to avoid the first two 
failures, we were trying to fix two 
types of errors:

• Matching strings that we should 
not have matched (there, then, 
other)

• False positives (Type I)
• Not matching things that we 

should have matched (The)
• False negatives (Type II)
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Errors

• This is a recurring theme in NLP!
• Reducing the error rate for an application 

often involves two antagonistic efforts: 
• Increasing accuracy or precision

(minimizing false positives)
• Increasing coverage or recall

(minimizing false negatives)
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Regular 
Expressions: 
Takeaway 
Points

Regular expressions are a surprisingly 
powerful tool!

They are critical to text tokenization and 
normalization.

They may also be used to extract 
features for machine learning 
classifiers.
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Text Tokenization and Normalization
• Text tokenization and normalization are critical to most (all?) NLP tasks
• A typical NLP pipeline begins by:

• Separating words in running text
• Normalizing word formats (e.g., favourite = favorite)
• Segmenting sentences in running text

Alice looked all round the table, but there was nothing on it but tea. “I don't see any wine," she remarked.
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How many words?
• I do uh main- mainly business data processing

• Fragments, filled pauses
• Seuss’s cat in the hat is different from other cats! 

• Lemma: same stem, part of speech, rough word 
sense

• cat and cats = same lemma
• Wordform: the full inflected surface form

• cat and cats = different wordforms
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How many words?
Alice looked all round the table, but there was nothing on it but 
tea.

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?
• 14 tokens (or 15?)
• 13 types (or 14?)
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How many words?

N = number of tokens
V = vocabulary = set of types

|V| is the size of the vocabulary

Dataset Tokens = N Types = |V|
Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand
Google N-grams 1 trillion 13 million
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Simple Tokenization in Python
• Given a string of text, output the word tokens (assuming all 

words are delimited by whitespace) and their frequencies

sentence = “Alice looked all round the table, but there was nothing on it but tea.”
tokens = sentence.split()

['Alice', 'looked', 'all', 'round', 'the', 'table,', 'but', 'there', 'was', 'nothing', 'on', 'it', 'but', 'tea.']
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Simple Tokenization in Python
• Given a string of text, output the word tokens (assuming all 

words are delimited by whitespace) and their frequencies

types = set(tokens)
for t in types:

freq = tokens.count(t)
print(“Word: {0}\tFreq: {1}”.format(t, freq))

Word: was Freq: 1
Word: Alice Freq: 1
Word: table, Freq: 1
Word: looked Freq: 1
Word: it Freq: 1
Word: but Freq: 2
Word: tea. Freq: 1
Word: there Freq: 1
Word: round Freq: 1
Word: all Freq: 1
Word: nothing Freq: 1
Word: on Freq: 1
Word: the Freq: 1
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Issues in Tokenization
• Finland’s capital ® Finland Finlands Finland’s ?
• what’re, I’m, isn’t ® What are, I am, is not ?
• Hewlett-Packard ® Hewlett Packard ?
• state-of-the-art ® state of the art ?
• Lowercase ® lower-case lowercase lower case ?
• San Francisco ® one token or two?
• m.p.h., PhD. ® ??

8/29/19 Natalie Parde - UIC CS 421 23



Tokenization: Language Issues

• L'ensemble ® one token or two?
• L ? L’ ? Le ?
• Want l’ensemble to match with un ensemble

French

• Lebensversicherungsgesellschaftsangestellter
• ‘life insurance company employee’
• German information retrieval needs a compound splitter

German noun compounds are not segmented
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Tokenization: Language Issues
• Chinese and Japanese no spaces between words:

• 莎拉波娃现在居住在美国东南部的佛罗里达。
• 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
• Sharapova now     lives in       US       southeastern     Florida

• Further complicated in Japanese, with multiple alphabets 
intermingled

• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji
End-users can express queries entirely in hiragana!
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Word 
Tokenization 

in Chinese

• Also called word segmentation
• Chinese words are composed of characters

• Generally one syllable each
• Average word is 2.4 characters long

• Standard baseline segmentation algorithm: 
• Maximum Matching
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Maximum Matching
Word Segmentation Algorithm
Given a wordlist of Chinese and a string:
1) Start a pointer at the beginning of the string
2) Find the longest word in dictionary that matches the string starting at 

pointer
3) Move the pointer over the word in string
4) Go to 2

莎拉波娃现在居住在美国东南部的佛罗里达。

莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
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Doesn’t generally transfer to English….
Thecatinthehat

the table down there

the cat in the hat

theta bled own there

• Nice Python tokenizers:
• NLTK: http://www.nltk.org/api/nltk.tokenize.html
• spaCy: https://spacy.io/api/tokenizer
• StanfordNLP: https://stanfordnlp.github.io/stanfordnlp/

Thetabledownthere
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Text 
Normalization

• Normalization: Manipulating text such that all forms
of the same word match (e.g., U.S.A. = USA, flavour
= flavor, etc.)

• To normalize text, you must define equivalence 
classes

• Example: Periods in a term → not important
• Words with the same characters but different 

capitalization are often considered equivalent to one 
another (referred to as case folding)

• Example: Hello = hello
• Not a perfect strategy!

• US != us
• Useful equivalence classes vary depending on task

• Capitalization can be very important in sentiment 
analysis
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Lemmatization

• Reduce inflections or variant forms 
to base form

• am, are, is ® be

• car, cars, car's, cars' ® car

• the boy's cars are different colors ®
the boy car be differ color

• Tricky because you need to find the 
correct dictionary headword form

• Very useful for machine translation
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Morphology

• Morphemes:
• Small meaningful units that make up 

words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to 

stems and add additional information
• -ed
• -ing
• -s
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Stemming

• Automatically reduces words to their 
stems using simple rules

• language dependent
• Example: {automate(s), automatic, 

automation} → automat
• Pros: Very quick, simple to implement
• Cons: Groups together some words that 

don’t really mean the same thing, and 
doesn’t group together some words that 
do mean the same thing

• {meanness, meaning} → mean
• {goose} → goos, {geese} → gees
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Porter Stemming

• Step 1a
• sses ® ss caresses ® caress
• ies ® i ponies   ® poni
• ss   ® ss caress   ® caress
• s    ® ø cats      ® cat

• Step 1b
• (*v*)ing ® ø walking   ® walk
• sing      ® sing
• (*v*)ed  ® ø plastered ® plaster
• …

• Step 2 (for long stems)
• ational® ate  relational® relate
• izer® ize digitizer ® digitize
• ator® ate operator  ® operate
• …

• Step 3 (for longer stems)
• al    ® ø revival    ® reviv
• able  ® ø adjustable ® adjust
• ate   ® ø activate   ® activ
• …
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Much like tokenization, stemming methods 
are difficult to transfer across languages….

• Some languages requires complex morpheme segmentation
• Example from Turkish:

• Uygarlastiramadiklarimizdanmissinizcasina
• (behaving) as if you are among those whom we could not civilize
• Uygar `civilized’ + las `become’ 

+ tir `cause’ + ama `not able’ 
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’ 
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 

8/29/19 Natalie Parde - UIC CS 421 34



Sentence 
Segmentation

• !, ? are relatively unambiguous
• . is more ambiguous

• Sentence boundary
• Abbreviations like Inc. or Dr.
• Numbers like .02% or 4.3

• Simple sentence segmentation:
• Build a binary classifier that checks for “.”

• Classifier: A statistical or rule-based 
model that predicts labels for unseen 
test input

• At each token, decides 
EndOfSentence/NotEndOfSentence
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More Complex 
Sentence 

Segmentation: 
Decision Tree
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More 
Sophisticated 
Decision Tree 

Features

• Case of word before “.”: Upper, Lower, Number
• Case of word after “.”: Upper, Lower, Number

• Numeric features:
• Length of word before “.”
• Probability(word before “.” occurs at end-of-s)
• Probability(word after “.” occurs at beginning-of-s)
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Implementing 
Decision Trees

• Decision trees are fancy if-then-else 
statements

• The interesting part: Choosing the 
features!

• Unless there are very few features, it 
is too complex to choose the tree’s 
structure (e.g., which features are 
closer to the top) by hand

• Instead, that structure is usually 
learned via machine learning 
from a training corpus
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We’ll learn more about text 
classification later in the semester!
• The same features that decision trees 

use can also be used to train logistic 
regression models, support vector 
machines, neural networks, etc.
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Edit Distance
• Simple way to answer the question: How similar are two strings?
• Useful for spelling correction

graffe

graph

graft

grail

giraffe
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Minimum Edit 
Distance

• Minimum number of editing 
operations needed to transform one 
string into another

• Possible editing operations:
• Insertion
• Deletion
• Substitution
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Minimum Edit Distance
• Two strings and their alignment:

I N T E * N T I O N

* E X E C U T I O N
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Minimum Edit 
Distance

• If each operation has a 
cost of 1 (Levenshtein
distance)

• Distance between these is 
5

• If substitutions cost 2 
(alternative also proposed 
by Levenshtein)

• Distance between them is 
8

I N T E * N T I O N

* E X E C U T I O N
d s s   i s
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Other Uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition
Spokesman confirms    senior government adviser was shot

Spokesman said    the senior            adviser was shot dead

S      I              D                        I

• Named Entity Extraction and Entity Coreference
• IBM Inc. announced today
• IBM profits
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How to find the 
minimum edit 

distance?

• Search for a path (sequence 
of edits) from the start string to 
the final string:

• Initial state: the word 
we’re transforming

• Operators: insert, delete, 
substitute

• Goal state: the word 
we’re trying to get to

• Path cost: what we want 
to minimize (the number 
of edits)
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However, the search space of all edit 
sequences is huge! 

• We can’t afford to navigate naïvely
• Lots of distinct paths wind up at the same state

• We don’t have to keep track of all of them (just the shortest paths)
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Formal 
Definition: 
Minimum 

Edit Distance

• For two strings
• X of length n
• Y of length m

• We define D(i,j) as the edit distance 
between X[1..i] and Y[1..j] 

• X[1..i] = the first i characters of X
• The edit distance between X and Y is 

thus D(n,m)
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Intuition: Dynamic Programming
• Minimum edit distance can be solved using dynamic programming

• Stores intermediate outputs in a table
• Intuition: If some string B is in the optimal path from string A to string C, then 

that path must also include the optimal path from A to B
• D(n,m) is computed tabularly, combining solutions to subproblems
• Bottom-up

• We compute D(i,j) for small i,j
• And compute larger D(i,j) based on previously computed smaller values
• i.e., compute D(i,j) for all i (0 < i < n)  and j (0 < j < m)

8/29/19 Natalie Parde - UIC CS 421 48



Formal Definition: Minimum Edit Distance
• Initialization

D(i,0) = i
D(0,j) = j

• Recurrence Relation:
For each  i = 1…M

For each  j = 1…N
D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
• Termination:

D(N,M) is distance
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N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7 6
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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Backtrace for Computing Alignments
• We know the minimum edit distance now …but what is the alignment 

between the two strings?
• We can figure this out by maintaining a backtrace

• For each new cell, remember where we came from!
• D(i-1,j) ?
• D(i,j-1) ?
• D(i-1,j-1) ?

• Once we reach the end of the table (upper right corner), we can trace 
backward using these pointers to figure out the alignment
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N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10
T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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Formal Definition: Minimum Edit Distance 
with Backtrace
• Base conditions:                                                        Termination:

D(i,0) = i D(0,j) = j         D(N,M) is distance 

• Recurrence Relation:
For each  i = 1…M

For each  j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
LEFT

ptr(i,j)= DOWN
DIAG

insertion

deletion

substitution

insertion
deletion

substitution
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The Final Product

I N T E * N T I O N

* E X E C U T I O N
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Summary

• Text Preprocessing: Preparing text for downstream 
language processing tasks

• Tokenization
• Normalization
• Lemmatization
• Stemming

• Regular expressions are a powerful tool for text 
preprocessing!

• Edit Distance: Determining the similarity between 
two strings based on the number of insertions, 
deletions, and substitutions needed to transform one 
to another

• Minimum edit distance, computed using dynamic 
programming, allows you to find the smallest number 
of edits needed to do so.
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