
Text Preprocessing
and Edit Distance

Natalie Parde, Ph.D.
Department of Computer
Science
University of Illinois at
Chicago

CS 421: Natural Language
Processing
Fall 2019

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/) and
Stanford’s NLP Coursera course
(https://web.stanford.edu/~jurafsky/NLPCourser
aSlides.html).

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html

What is text preprocessing?
• Automated organization, normalization, and manipulation of text

such that it can more easily be handled by downstream
language processing tasks.

“Have some wine,” the March Hare
said in an encouraging tone.

Alice looked all round the table, but
there was nothing on it but tea. “I
don't see any wine," she remarked.

“There isn't any,” said the March
Hare.

- Lewis Carroll, Alice’s Adventures
in Wonderland

have some wine [PERSON 1] said in
an encouraging tone

[PERSON 2] looked all round the table
but there was nothing on it but tea

i don't see any wine she remarked

there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in
Wonderland

8/29/19 Natalie Parde - UIC CS 421 2

Text preprocessing steps can (and
should!) vary depending on your needs.

Important

Not Important

capitalization

punctuation

proper nouns

British vs. American spellings (for English text)

written numbers vs. digits

8/29/19 Natalie Parde - UIC CS 421 3

One way to preprocess text is
by using regular expressions.

• Regular expressions: A formal language for specifying
text strings.

• How can we search for any of these?
• Donut
• donut
• Doughnut
• doughnut
• Donuts
• doughnuts

8/29/19 Natalie Parde - UIC CS 421 4

Regular
Expression
Terminology

Regex: Common abbreviation for regular
expression
Disjunction: Logical OR

Range: All characters in a sequence from
c1-c2

Negation: Logical NOT

Scope: Indicates to which characters the
regex applies
Anchor: Matches the beginning or end of a
string

8/29/19 Natalie Parde - UIC CS 421 5

Regular Expressions:
Disjunctions (and
Ranges)

• Disjunction: Letters inside
square brackets [az]

• Range: Hyphen between the
first and last characters in the
range [a-z]

Pattern Matches Example
[dD]onut donut, Donut This morning would be

better with a donut.
[0123456789] Any digit This morning would be

better with 5 donuts.
[A-Z] An uppercase

letter
Donuts are an excellent
way to start the day.

[a-z] A lowercase
letter

What is your favorite kind
of donut?

[0-9] Any digit I just ate 5 donuts.

8/29/19 Natalie Parde - UIC CS 421 6

Regular Expressions:
Negation in
Disjunction

• Negation: A caret (^) at
the beginning of a
disjunction [^az]

• The caret must be at
the beginning of the
disjunction to negate
it

Pattern Matches Example
[^dD]onut Any letter except

“d” or “D” before
the sequence
“onut”

This morning would be
better with a coconut.

[^A-Z] Not an uppercase
letter

Donuts are an excellent
way to start the day.

[^^] Not a caret What is your favorite kind
of donut?

D^o The pattern “D^o” Is D^onut a good name
for my donut shop?

8/29/19 Natalie Parde - UIC CS 421 7

Regular
Expressions: More

Disjunction

• The pipe | indicates the
union (logical OR) of two
smaller regular
expressions

• a|b|c is equivalent to [abc]

Pattern Matches Example

d|D “d” or “D” This morning would
be better with a
donut.

8/29/19 Natalie Parde - UIC CS 421 8

Regular
Expressions:

Special
Characters

• *: Means that there must be 0 or more
occurrences of the preceding expression

• .: A wildcard that can mean any character
• +: Means that there must be 1 or more

occurrences of the preceding expression
• ?: Means that there must be 0 or 1

occurrences of the preceding expression
• {m}: Means that there must be m instances

of the preceding expression
• {m,n}: Means that there must be between

m and n instances of the preceding
expression

8/29/19 Natalie Parde - UIC CS 421 9

Regular Expressions: Special
Characters

Pattern Matches Example

donuts* “donut” or “donuts” or “donutss” or
“donutsss”….

This morning I had many donuts.

.onut Any character followed by “onut” Can I have a coconut donut?

donuts+ “donuts” or “donutss” or “donutsss”…. Do you want one donut or two
donuts?

donuts? “donut” or “donuts” Do you want one donut or two
donuts?

donuts{1} “donuts” Do you want one donut or two
donuts?

donuts{0,1} “donut” or “donuts” Do you want one donut or two
donuts?

8/29/19 Natalie Parde - UIC CS 421 10

Regular Expressions: Anchors
• Indicate that a pattern should be matched only at the beginning

or end of a word

Pattern Matches Example
^Donuts “Donuts” only when it is at the beginning of a string Donuts are an excellent way to

start the day.
$donuts\. “donuts.” only when it is at the end of the string I just ate 5 donuts.
$donuts. “donuts” + one additional character, only when it is

at the end of the string
I just ate 12 donuts!

8/29/19 Natalie Parde - UIC CS 421 11

Simple(?) Task:
Create a regular

expression to
match the word

“the”

Pattern Matches

[dD]onut donut, Donut

[0123456789] Any digit

[A-Z] An uppercase letter

[a-z] A lowercase letter

[0-9] Any digit

[^dD]onut Any letter except “d” or “D” before the sequence “onut”

[^A-Z] Not an uppercase letter

donut|doughnut “donut” or “doughnut”

[dD]onut|[dD]oughnut “donut” or “Donut” or “doughnut” or “Doughnut”

donuts* “donut” or “donuts” or “donutss” or “donutsss”….

.onut Any character followed by “onut”

donuts+ “donuts” or “donutss” or “donutsss”….

donuts? “donut” or “donuts”

donuts{1} “donuts”

https://www.google.com/search?q=timer

8/29/19 Natalie Parde - UIC CS 421 12

https://www.google.com/search?q=timer

Possible
Solutions

the
• Fails on test case: The

[tT]he
• Fails on test case: other

[^a-zA-Z][tT]he[^a-zA-Z]
• :-) ?

8/29/19 Natalie Parde - UIC CS 421 13

Errors

• In iterating through possible
solutions to avoid the first two
failures, we were trying to fix two
types of errors:

• Matching strings that we should
not have matched (there, then,
other)

• False positives (Type I)
• Not matching things that we

should have matched (The)
• False negatives (Type II)

8/29/19 Natalie Parde - UIC CS 421 14

Errors

• This is a recurring theme in NLP!
• Reducing the error rate for an application

often involves two antagonistic efforts:
• Increasing accuracy or precision

(minimizing false positives)
• Increasing coverage or recall

(minimizing false negatives)

8/29/19 Natalie Parde - UIC CS 421 15

Regular
Expressions:
Takeaway
Points

Regular expressions are a surprisingly
powerful tool!

They are critical to text tokenization and
normalization.

They may also be used to extract
features for machine learning
classifiers.

8/29/19 Natalie Parde - UIC CS 421 16

Text Tokenization and Normalization
• Text tokenization and normalization are critical to most (all?) NLP tasks
• A typical NLP pipeline begins by:

• Separating words in running text
• Normalizing word formats (e.g., favourite = favorite)
• Segmenting sentences in running text

Alice looked all round the table, but there was nothing on it but tea. “I don't see any wine," she remarked.

8/29/19 Natalie Parde - UIC CS 421 17

How many words?
• I do uh main- mainly business data processing

• Fragments, filled pauses
• Seuss’s cat in the hat is different from other cats!

• Lemma: same stem, part of speech, rough word
sense

• cat and cats = same lemma
• Wordform: the full inflected surface form

• cat and cats = different wordforms

8/29/19 Natalie Parde - UIC CS 421 18

How many words?
Alice looked all round the table, but there was nothing on it but
tea.

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?
• 14 tokens (or 15?)
• 13 types (or 14?)

8/29/19 Natalie Parde - UIC CS 421 19

How many words?

N = number of tokens
V = vocabulary = set of types

|V| is the size of the vocabulary

Dataset Tokens = N Types = |V|
Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand
Google N-grams 1 trillion 13 million

8/29/19 Natalie Parde - UIC CS 421 20

Simple Tokenization in Python
• Given a string of text, output the word tokens (assuming all

words are delimited by whitespace) and their frequencies

sentence = “Alice looked all round the table, but there was nothing on it but tea.”
tokens = sentence.split()

['Alice', 'looked', 'all', 'round', 'the', 'table,', 'but', 'there', 'was', 'nothing', 'on', 'it', 'but', 'tea.']

8/29/19 Natalie Parde - UIC CS 421 21

Simple Tokenization in Python
• Given a string of text, output the word tokens (assuming all

words are delimited by whitespace) and their frequencies

types = set(tokens)
for t in types:

freq = tokens.count(t)
print(“Word: {0}\tFreq: {1}”.format(t, freq))

Word: was Freq: 1
Word: Alice Freq: 1
Word: table, Freq: 1
Word: looked Freq: 1
Word: it Freq: 1
Word: but Freq: 2
Word: tea. Freq: 1
Word: there Freq: 1
Word: round Freq: 1
Word: all Freq: 1
Word: nothing Freq: 1
Word: on Freq: 1
Word: the Freq: 1

8/29/19 Natalie Parde - UIC CS 421 22

Issues in Tokenization
• Finland’s capital ® Finland Finlands Finland’s ?
• what’re, I’m, isn’t ® What are, I am, is not ?
• Hewlett-Packard ® Hewlett Packard ?
• state-of-the-art ® state of the art ?
• Lowercase ® lower-case lowercase lower case ?
• San Francisco ® one token or two?
• m.p.h., PhD. ® ??

8/29/19 Natalie Parde - UIC CS 421 23

Tokenization: Language Issues

• L'ensemble ® one token or two?
• L ? L’ ? Le ?
• Want l’ensemble to match with un ensemble

French

• Lebensversicherungsgesellschaftsangestellter
• ‘life insurance company employee’
• German information retrieval needs a compound splitter

German noun compounds are not segmented

8/29/19 Natalie Parde - UIC CS 421 24

Tokenization: Language Issues
• Chinese and Japanese no spaces between words:

• 莎拉波娃现在居住在美国东南部的佛罗里达。
• 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
• Sharapova now lives in US southeastern Florida

• Further complicated in Japanese, with multiple alphabets
intermingled

• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji
End-users can express queries entirely in hiragana!

8/29/19 Natalie Parde - UIC CS 421 25

Word
Tokenization

in Chinese

• Also called word segmentation
• Chinese words are composed of characters

• Generally one syllable each
• Average word is 2.4 characters long

• Standard baseline segmentation algorithm:
• Maximum Matching

8/29/19 Natalie Parde - UIC CS 421 26

Maximum Matching
Word Segmentation Algorithm
Given a wordlist of Chinese and a string:
1) Start a pointer at the beginning of the string
2) Find the longest word in dictionary that matches the string starting at

pointer
3) Move the pointer over the word in string
4) Go to 2

莎拉波娃现在居住在美国东南部的佛罗里达。

莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

8/29/19 Natalie Parde - UIC CS 421 27

Doesn’t generally transfer to English….
Thecatinthehat

the table down there

the cat in the hat

theta bled own there

• Nice Python tokenizers:
• NLTK: http://www.nltk.org/api/nltk.tokenize.html
• spaCy: https://spacy.io/api/tokenizer
• StanfordNLP: https://stanfordnlp.github.io/stanfordnlp/

Thetabledownthere

8/29/19 Natalie Parde - UIC CS 421 28

http://www.nltk.org/api/nltk.tokenize.html
https://spacy.io/api/tokenizer
https://stanfordnlp.github.io/stanfordnlp/

Text
Normalization

• Normalization: Manipulating text such that all forms
of the same word match (e.g., U.S.A. = USA, flavour
= flavor, etc.)

• To normalize text, you must define equivalence
classes

• Example: Periods in a term → not important
• Words with the same characters but different

capitalization are often considered equivalent to one
another (referred to as case folding)

• Example: Hello = hello
• Not a perfect strategy!

• US != us
• Useful equivalence classes vary depending on task

• Capitalization can be very important in sentiment
analysis

8/29/19 Natalie Parde - UIC CS 421 29

Lemmatization

• Reduce inflections or variant forms
to base form

• am, are, is ® be

• car, cars, car's, cars' ® car

• the boy's cars are different colors ®
the boy car be differ color

• Tricky because you need to find the
correct dictionary headword form

• Very useful for machine translation

8/29/19 Natalie Parde - UIC CS 421 30

Morphology

• Morphemes:
• Small meaningful units that make up

words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to

stems and add additional information
• -ed
• -ing
• -s

8/29/19 Natalie Parde - UIC CS 421 31

Stemming

• Automatically reduces words to their
stems using simple rules

• language dependent
• Example: {automate(s), automatic,

automation} → automat
• Pros: Very quick, simple to implement
• Cons: Groups together some words that

don’t really mean the same thing, and
doesn’t group together some words that
do mean the same thing

• {meanness, meaning} → mean
• {goose} → goos, {geese} → gees

8/29/19 Natalie Parde - UIC CS 421 32

Porter Stemming

• Step 1a
• sses ® ss caresses ® caress
• ies ® i ponies ® poni
• ss ® ss caress ® caress
• s ® ø cats ® cat

• Step 1b
• (*v*)ing ® ø walking ® walk
• sing ® sing
• (*v*)ed ® ø plastered ® plaster
• …

• Step 2 (for long stems)
• ational® ate relational® relate
• izer® ize digitizer ® digitize
• ator® ate operator ® operate
• …

• Step 3 (for longer stems)
• al ® ø revival ® reviv
• able ® ø adjustable ® adjust
• ate ® ø activate ® activ
• …

8/29/19 Natalie Parde - UIC CS 421 33

Much like tokenization, stemming methods
are difficult to transfer across languages….

• Some languages requires complex morpheme segmentation
• Example from Turkish:

• Uygarlastiramadiklarimizdanmissinizcasina
• (behaving) as if you are among those whom we could not civilize
• Uygar `civilized’ + las `become’

+ tir `cause’ + ama `not able’
+ dik `past’ + lar ‘plural’
+ imiz ‘p1pl’ + dan ‘abl’
+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

8/29/19 Natalie Parde - UIC CS 421 34

Sentence
Segmentation

• !, ? are relatively unambiguous
• . is more ambiguous

• Sentence boundary
• Abbreviations like Inc. or Dr.
• Numbers like .02% or 4.3

• Simple sentence segmentation:
• Build a binary classifier that checks for “.”

• Classifier: A statistical or rule-based
model that predicts labels for unseen
test input

• At each token, decides
EndOfSentence/NotEndOfSentence

8/29/19 Natalie Parde - UIC CS 421 35

More Complex
Sentence

Segmentation:
Decision Tree

8/29/19 Natalie Parde - UIC CS 421 36

More
Sophisticated
Decision Tree

Features

• Case of word before “.”: Upper, Lower, Number
• Case of word after “.”: Upper, Lower, Number

• Numeric features:
• Length of word before “.”
• Probability(word before “.” occurs at end-of-s)
• Probability(word after “.” occurs at beginning-of-s)

8/29/19 Natalie Parde - UIC CS 421 37

Implementing
Decision Trees

• Decision trees are fancy if-then-else
statements

• The interesting part: Choosing the
features!

• Unless there are very few features, it
is too complex to choose the tree’s
structure (e.g., which features are
closer to the top) by hand

• Instead, that structure is usually
learned via machine learning
from a training corpus

8/29/19 Natalie Parde - UIC CS 421 38

We’ll learn more about text
classification later in the semester!
• The same features that decision trees

use can also be used to train logistic
regression models, support vector
machines, neural networks, etc.

8/29/19 Natalie Parde - UIC CS 421 39

Edit Distance
• Simple way to answer the question: How similar are two strings?
• Useful for spelling correction

graffe

graph

graft

grail

giraffe

8/29/19 Natalie Parde - UIC CS 421 40

Minimum Edit
Distance

• Minimum number of editing
operations needed to transform one
string into another

• Possible editing operations:
• Insertion
• Deletion
• Substitution

8/29/19 Natalie Parde - UIC CS 421 41

Minimum Edit Distance
• Two strings and their alignment:

I N T E * N T I O N

* E X E C U T I O N

8/29/19 Natalie Parde - UIC CS 421 42

Minimum Edit
Distance

• If each operation has a
cost of 1 (Levenshtein
distance)

• Distance between these is
5

• If substitutions cost 2
(alternative also proposed
by Levenshtein)

• Distance between them is
8

I N T E * N T I O N

* E X E C U T I O N
d s s i s

8/29/19 Natalie Parde - UIC CS 421 43

Other Uses of Edit Distance in NLP

• Evaluating Machine Translation and speech recognition
Spokesman confirms senior government adviser was shot

Spokesman said the senior adviser was shot dead

S I D I

• Named Entity Extraction and Entity Coreference
• IBM Inc. announced today
• IBM profits

8/29/19 Natalie Parde - UIC CS 421 44

How to find the
minimum edit

distance?

• Search for a path (sequence
of edits) from the start string to
the final string:

• Initial state: the word
we’re transforming

• Operators: insert, delete,
substitute

• Goal state: the word
we’re trying to get to

• Path cost: what we want
to minimize (the number
of edits)

8/29/19 Natalie Parde - UIC CS 421 45

However, the search space of all edit
sequences is huge!

• We can’t afford to navigate naïvely
• Lots of distinct paths wind up at the same state

• We don’t have to keep track of all of them (just the shortest paths)

8/29/19 Natalie Parde - UIC CS 421 46

Formal
Definition:
Minimum

Edit Distance

• For two strings
• X of length n
• Y of length m

• We define D(i,j) as the edit distance
between X[1..i] and Y[1..j]

• X[1..i] = the first i characters of X
• The edit distance between X and Y is

thus D(n,m)

8/29/19 Natalie Parde - UIC CS 421 47

Intuition: Dynamic Programming
• Minimum edit distance can be solved using dynamic programming

• Stores intermediate outputs in a table
• Intuition: If some string B is in the optimal path from string A to string C, then

that path must also include the optimal path from A to B
• D(n,m) is computed tabularly, combining solutions to subproblems
• Bottom-up

• We compute D(i,j) for small i,j
• And compute larger D(i,j) based on previously computed smaller values
• i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

8/29/19 Natalie Parde - UIC CS 421 48

Formal Definition: Minimum Edit Distance
• Initialization

D(i,0) = i
D(0,j) = j

• Recurrence Relation:
For each i = 1…M

For each j = 1…N
D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
• Termination:

D(N,M) is distance
8/29/19 Natalie Parde - UIC CS 421 49

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 50

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 51

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 52

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 53

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7 6
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 54

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 55

Backtrace for Computing Alignments
• We know the minimum edit distance now …but what is the alignment

between the two strings?
• We can figure this out by maintaining a backtrace

• For each new cell, remember where we came from!
• D(i-1,j) ?
• D(i,j-1) ?
• D(i-1,j-1) ?

• Once we reach the end of the table (upper right corner), we can trace
backward using these pointers to figure out the alignment

8/29/19 Natalie Parde - UIC CS 421 56

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10
T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

8/29/19 Natalie Parde - UIC CS 421 57

Formal Definition: Minimum Edit Distance
with Backtrace
• Base conditions: Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

• Recurrence Relation:
For each i = 1…M

For each j = 1…N

D(i-1,j) + 1

D(i,j)= min D(i,j-1) + 1
D(i-1,j-1) + 2; if X(i) ≠ Y(j)

0; if X(i) = Y(j)
LEFT

ptr(i,j)= DOWN
DIAG

insertion

deletion

substitution

insertion
deletion

substitution

8/29/19 Natalie Parde - UIC CS 421 58

The Final Product

I N T E * N T I O N

* E X E C U T I O N

8/29/19 Natalie Parde - UIC CS 421 59

Summary

• Text Preprocessing: Preparing text for downstream
language processing tasks

• Tokenization
• Normalization
• Lemmatization
• Stemming

• Regular expressions are a powerful tool for text
preprocessing!

• Edit Distance: Determining the similarity between
two strings based on the number of insertions,
deletions, and substitutions needed to transform one
to another

• Minimum edit distance, computed using dynamic
programming, allows you to find the smallest number
of edits needed to do so.

8/29/19 Natalie Parde - UIC CS 421 60

