
Dependency
Parsing and
Logical
Representations
of Sentence
Meaning
Natalie Parde
UIC CS 421

What is
dependency
parsing?

• Automatically determining directed
grammatical and semantic
relationships between words

• Syntactic: Focused on sentence structure
• Semantic: Focused on meaning

Natalie Parde - UIC CS 421 2

How are
dependency
grammars
different
from CFGs?

• CFGs are used to automatically
generate constituent-based
representations

• Noun phrases, verb phrases, etc.
• Dependency grammars ignore phrase-

structure rules, and instead define
sentence structure in terms of the
relationships between individual words

• Nominal subject, direct object, etc.
• For both, labels are still drawn from a

fixed inventory of grammatical relations

Natalie Parde - UIC CS 421 3

Dependency
grammars can
deal with
languages that
are
morphologically
rich and have a
relatively free
word order.

Natalie Parde - UIC CS 421 4

Morphologically rich: More
inflections (changes to words that
influence meaning or grammatical
relation)

Free word order: Words can be
moved around in a sentence but
the overall meaning will remain the
same (syntax is less important)

Typically, there is a trade-off
between morphological richness
and importance of syntax

Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

Natalie Parde - UIC CS 421 5

Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

DallasNatalie Parde - UIC CS 421 6

Why is
dependency
parsing
useful?

Natalie Parde - UIC CS 421 7

• Dependency parsing provides an
approximation of the semantic
relationships between different words in
a sentence and their arguments

• This information is useful for many NLP
applications, including:

• Coreference resolution
• Question answering
• Information extraction

Dependency Relations

• Two components:
• Head
• Dependent

• Heads are linked to the words that are immediately dependent on them
• Relation types describe the dependent’s role with respect to its head

• Subject
• Direct object
• Indirect object

Natalie Parde - UIC CS 421 8

Dependency Relations

• Relation types tend to correlate with sentence position and constituent type in
English, but there is not an explicit connection between these elements

• In more flexible languages (e.g., those with relatively free word order), the
information encoded in these relation types often cannot be estimated from
constituency trees

Natalie Parde - UIC CS 421
9

Just like with
CFGs, there
are a variety
of taxonomies
that can be
used to label
dependencies
between
words.

10

Recently, most researchers have
moved toward using universal
dependencies.

• Universal dependencies can be broken into two sets
• Clausal Relations: Describe syntactic roles with respect to predicates (the

part(s) of the sentence that say something about the subject)
• Modifier Relations: Describe the ways that words can modify their heads

Natalie Parde - UIC CS 421
11

Clausal Relations

I prefer the purple plant

nsubj

root
dobj

det

amod

Natalie Parde - UIC CS 421 12

Modifier Relations

Natalie Parde - UIC CS 421

I prefer the purple plant

nsubj

root
dobj

det

amod

13

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

Natalie Parde - UIC CS 421 14

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote UIC a dissertation.
iobj(wrote, UIC)

Natalie Parde - UIC CS 421 15

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

Natalie wrote a dissertation for UIC.
obl(wrote, UIC)

UIC, read my dissertation!
vocative(read, UIC)

There is nothing but praise for the dissertation.
expl(nothing, there)

You must not eat it, the dissertation.
dislocated(eat, dissertation)

Natalie Parde - UIC CS 421 16

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

The purpose of this dissertation is to determine the best
homework strategy.
nmod(purpose, dissertation)

My school, UIC, is in Chicago.
appos(school, UIC)

UIC has 34,000 students.
nummod(students, 34,000)

Natalie Parde - UIC CS 421 17

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

What she said about starting the project
makes sense.
csubj(makes, said)

She said you should start it now.
ccomp(said, start)

I consider it already done.
xcomp(consider, done)

Natalie Parde - UIC CS 421 18

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

He was upset when she read her
dissertation to him.
advcl(upset, read)

Natalie Parde - UIC CS 421 19

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

There is a document discussing the
assignment.
acl(document, discussing)

Natalie Parde - UIC CS 421 20

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

UIC quickly emailed the students about the
day off.
advmod(emailed, quickly)

She said, “Well, let’s schedule a meeting.”
discourse(schedule, well)

Natalie Parde - UIC CS 421 21

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

He read the extensive syllabus.
amod(syllabus, extensive)

Natalie Parde - UIC CS 421 22

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

UIC had closed the campus for the break.
aux(closed, had)

It was good to have some time off.
cop(good, was)

They knew that this would refresh everyone for the spring.
mark(refresh, that)

Natalie Parde - UIC CS 421 23

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod det

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w.
r.t

.h
ea

d

Structural categories of dependent

That was the goal.
det(goal, the)

Everyone went on vacation after that.
case(that, after)

Natalie Parde - UIC CS 421 24

https://universaldependencies.org/u/dep/index.html

Dependency
Formalisms

Natalie Parde - UIC CS 421 25

• G = (V, A)
• V is a set of vertices
• A is a set of ordered pairs of vertices, or arcs

• V corresponds to the words in a sentence
• May also include punctuation
• In morphologically complex languages, may

include stems and affixes
• Arcs capture the grammatical relationships

between those words

Dependency structures are directed
graphs

• Must be connected
• Must have a designated root node
• Must be acyclic

According to most grammatical
theories, dependency structures:

Dependency Trees

• Directed graphs (such as those we’ve seen already) that satisfy the following
constraints:

• Single designated root node
• No incoming arcs to the root!

• All vertices except the root node have exactly one incoming arc
• There is a unique path from the root node to each vertex

Natalie Parde - UIC CS 421 26

How to
translate
from
constituent
to
dependency
structures?

27 Natalie Parde - UIC CS 421

Two steps:
• Identify all head-dependent relations

in the constituent tree
• Identify the correct dependency

relations for those relations

One algorithm for doing this:
• Mark the head child of each node in

a phrase structure, based on a set of
predetermined rules

• In the dependency structure, make
the head of each non-head child
depend on the head of the head child

However,
doing this
can produce
results that
are far from
perfect!

• Most noun phrases do not have much
(or any) internal structure

• Morphological information has little to
no presence in phrase structure trees

• For low resource languages in
particular, most dependency treebanks
are developed manually by human
annotators rather than attempting to
automatically translate from constituent
to dependency parse

Natalie Parde - UIC CS 421 28

Types of Dependency Parsers

Transition-based
• Build a single tree in a left-to-right (assuming a left-to-right language)

sweep over the input sentence
Transition

Graph-based
• Search through the space of possible trees for a given sentence, and try

to find the tree that maximizes some score
Graph

Natalie Parde - UIC CS 421 29

Transition-based Dependency
Parsing

• Earliest transition-based approach: shift-
reduce parsing

• Input tokens are successively shifted
onto a stack

• The two top elements of the stack are
matched against a set of possible
relations provided by some
knowledge source

• When a match is found, a head-
dependent relation between the
matched elements is asserted

• Goal is to find a final parse that accounts
for all words

Oracle

Stack Input BufferDependency Relations

Natalie Parde - UIC CS 421
30

Transition-
based
Parsing

• We can build upon shift-reduce parsing
by defining a set of transition
operators to guide the parser’s
decisions

• Transition operators work by producing
new configurations:

• Stack
• Input buffer of words
• Set of relations representing a

dependency tree

Natalie Parde - UIC CS 421
31

Transition-
based
Parsing

Natalie Parde - UIC CS 421

• Stack contains the ROOT node
• Word list is initialized with all

words in the sentence, in order
• Empty set of relations represents

the parse

Initial configuration:

• Stack should be empty
• Word list should be empty
• Set of relations represents the

parse

Final configuration:

32

Operators

• The operators used in transition-based
parsing then perform the following tasks:

• Assign the current word as the head of
some other word that has already been seen

• Assign some other word that has already
been seen as the head of the current word

• Do nothing with the current word

Natalie Parde - UIC CS 421 33

Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation between the

word at the top of the stack and the word directly beneath
it (the second word), and removes the second word from
the stack

• Cannot be applied when ROOT is the second element
in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation between the

second word and the word at the top of the stack, and
removes the word at the top of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the input buffer

and pushes it onto the stack

• These operators implement the arc standard approach to
transition-based parsing

Natalie Parde - UIC CS 421 34

Arc
Standard
Approach
to
Transition-
based
Parsing

• Notable characteristics:
• Transition operators only assert

relations between elements at the top
of the stack

• Once an element has been assigned
its head, it is removed from the stack

• Not available for further
processing!

• Benefits:
• Reasonably effective
• Simple to implement

Natalie Parde - UIC CS 421 35

Formal Algorithm: Arc Standard
Approach
state ← {[root], [words], []}

while state not final:

Choose which transition operator to apply

transition ← oracle(state)

Apply the operator and create a new state

state ← apply(transition, state)

Natalie Parde - UIC CS 421 36

When
does the
process
end?

• When all words in the sentence
have been consumed

• When the ROOT node is the only
element remaining on the stack

Natalie Parde - UIC CS 421
37

Is this another
example of
dynamic
programming?

• No! 😮
• The arc standard approach is a greedy

algorithm
• Oracle provides a single choice at each

step
• Parser proceeds with that choice

• No other options explored
• No backtracking

• Single parse returned at the end

Natalie Parde - UIC CS 421 38

Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations

Natalie Parde - UIC CS 421 39

Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input
buffer to the stack

Natalie Parde - UIC CS 421 40

Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input
buffer to the stack

Natalie Parde - UIC CS 421 41

Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to
the set of relations

Natalie Parde - UIC CS 421 42

Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input
buffer to the stack

Natalie Parde - UIC CS 421 43

Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input
buffer to the stack

Natalie Parde - UIC CS 421 44

Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input
buffer to the stack

Natalie Parde - UIC CS 421 45

Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove morning from the
stack

Add relation (flight →
morning) to the set of
relations

Natalie Parde - UIC CS 421 46

Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to
the set of relations

Natalie Parde - UIC CS 421 47

Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc,
LeftArc

Oracle selects RightArc

Remove flight from the
stack

Add relation (book → flight)
to the set of relations

Natalie Parde - UIC CS 421 48

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the
stack

Add relation (root → book)
to the set of relations

Natalie Parde - UIC CS 421 49

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight

Natalie Parde - UIC CS 421 50

A few
things
worth
noting….

• We assumed in the previous example
that our oracle was always correct
…this is not necessarily (or perhaps
not even likely) the case!

• Incorrect choices lead to incorrect
parses since the algorithm cannot
perform any backtracking

• Alternate sequences may also lead to
equally valid parses

Natalie Parde - UIC CS 421 51

How do we get actual
dependency labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job
more difficult (much larger set of
operators from which to choose!)

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)

Natalie Parde - UIC CS 421 52

How does the oracle
know what to choose?

• State of the art systems use supervised
machine learning for this task

• This requires a training set of configurations
labeled with correct transition operators

• The person designing the system needs to
decide what types of features should be
extracted from these configurations to best
train the oracle (a machine learning model)

• The oracle will then learn which transitions
to predict for previously-unseen
configurations based on the extracted
features and associated labels for
configurations in the training set

Natalie Parde - UIC CS 421 53

What types
of machine
learning
models are
used as
oracles?

• Commonly:
• Logistic regression
• Support vector machines

• Recently:
• Neural networks

Natalie Parde - UIC CS 421 54

Graph-
based
Dependency
Parsing

• Search through the space of possible
trees for a given sentence, attempting
to maximize some score

• This score is generally a function of the
scores of individual subtrees within the
overall tree

• Edge-factored approaches determine
scores based on the scores of the
edges that comprise the tree

• overall_score(t) = ∑!∈# 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given

sentence, and e be its edges

Natalie Parde - UIC CS 421 55

Why use
graph-based
methods for
dependency
parsing?

• Transition-based methods tend to have
high accuracy on shorter dependency
relations, but that accuracy declines as
the distance between the two words
increases

• This is largely due to the fact that
transition-based methods are greedy
…they can be fooled by seemingly-
optimal local solutions

• Graph-based methods score entire
trees, thereby avoiding that issue

Natalie Parde - UIC CS 421
56

Maximum Spanning Tree

• Given an input sentence, construct a fully-connected, weighted,
directed graph

• Vertices are input words
• Directed edges represent all possible head-dependent

assignments
• Weights reflect the scores for each possible head-dependent

assignment, predicted by a supervised machine learning model
• A maximum spanning tree represents the preferred dependency

parse for the sentence, as determined by the weights

Natalie Parde - UIC CS 421 57

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 58

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 59

Two
things to
keep in
mind….

• Every vertex in a spanning tree has exactly one incoming
edge

• Absolute values of the edge scores are not critical
• Relative weights of the edges entering a vertex are

what matter!

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 60

How do we
know that
we have a
spanning
tree?

• Given a fully-connected graph G = (V,
E), a subgraph T = (V, F) is a spanning
tree if:

• It has no cycles
• Each vertex (except the root) has

exactly one edge entering it

Natalie Parde - UIC CS 421 61

How do
we know
that we
have a
maximum
spanning
tree?

• If the greedy selection process produces a
spanning tree, then that tree is the maximum
spanning tree

• However, the greedy selection process may
select edges that result in cycles

• If this happens, an alternate graph can be
created that collapses cycles into new nodes,
with edges that previously entered or exited the
cycle now entering or exiting the new node

• The greedy selection process is then recursively
applied to the new graph until a (maximum)
spanning tree is found

Natalie Parde - UIC CS 421 62

Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

bestInEdge ← argmax
!"($,&)∈)

𝑠𝑐𝑜𝑟𝑒[𝑒]

F ← F ∪ bestInEdge

for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

score’[e] ← score[e] - score[bestInEdge]

if T=(V,F) is a spanning tree:

return T

else:

C ← a cycle in F

G’ ← collapse(G, C)

T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

T ← expand(T’, C)

return T

Natalie Parde - UIC CS 421 63

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 64

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 65

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 66

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

?

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 67

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

-1

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 68

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 69

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 70

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 71

How do we train our model to
predict edge weights?

• Similar approach to training the oracle in a transition-based parser
• Common features can include:

• Words, lemmas, parts of speech
• Corresponding features from contexts before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

Natalie Parde - UIC CS 421 72

Summary:
Dependency
Parsing

73

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Dependency parsing is the process of
automatically determining directed
relationships between words in a
source sentence

• Many dependency taxonomies exist, but
the most common taxonomy for English
text is the set of universal
dependencies

• Dependency parsers can be transition-
based or graph-based

• A popular transition-based method is the
arc standard approach

• A popular graph-based method is the
maximum spanning tree approach

• Both make use of supervised machine
learning to aid the decision-making
process

Why do we need
meaning
representations?

• Somehow, we need to bridge the gap
between linguistic input and non-
linguistic world knowledge to perform
semantic processing tasks

• Everyday examples of (human)
semantic processing:

• Answering essay questions on
exams

• Deciding what to order at a
restaurant

• Detecting sarcasm
• Following recipes
• Learning how to convert sentences

to first-order logic

Natalie Parde - UIC CS 421 74

Meaning Representations

• Goal: Represent commonsense world knowledge in logical form
• These representations are created and assigned to linguistic inputs

via semantic analysis

Natalie Parde - UIC CS 421 75

There are
many ways
to represent
meaning.

• First-Order Logic
• Semantic networks
• Conceptual dependencies
• Frame-based representations
• All of these approaches assume that

meaning representations consist of
structures composed from a set of
symbols

• Symbols: Representational
vocabulary

Natalie Parde - UIC CS 421 76

Sample Meaning Representations
I have a rubber band ball.

∃𝑥, 𝑦 Having 𝑥 ∧ Haver 𝑥, 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∧ HadThing 𝑥, 𝑦 ∧ RubberBandBall 𝑦 Having

Haver Had-Thing

Speaker RubberBandBall

Having
Haver: Speaker
HadThing: RubberBandBall

Natalie Parde - UIC CS 421 77

Symbols

• Correspond to objects, properties of
objects, and relations among objects

• Symbols link linguistic input (words) to
meaning (world knowledge)

Natalie Parde - UIC CS 421 78

Having
Haver: Speaker
HadThing: RubberBandBall

Basic
Characteristics
of Meaning
Representations

Natalie Parde - UIC CS 421

Verifiability

Unambiguous Representations

Canonical Form

Inference and Variables

Expressiveness

79

Verifiability

• Meaning representations determine the
relationship between (a) the meaning of a
sentence and (b) the world as we know it

• Computational systems can verify the truth
of a meaning representation for a sentence
by matching it with knowledge base
representations

• Knowledge Base: A source of information
about the world

Natalie Parde - UIC CS 421 80

Verifiability

• Example proposition: Giordano’s serves deep
dish pizza.

• We can represent this as: Serves(Giordano’s,
DeepDishPizza)

• To verify the truth of this proposition, we would
search a knowledge base containing facts about
restaurants

• If we found a fact matching this, we have verified
the proposition

• If not, we must assume that the fact is incorrect or,
at best, our knowledge base is incomplete

Serves(Giordano’s, DeepDishPizza)

Serves(Coffee Alley, Coffee)

Serves(City Winery, Wine)

Verified!

Natalie Parde - UIC CS 421 81

Unambiguous
Representations

• Ambiguity does not stop at syntax!
• Semantic ambiguities are everywhere:

• Sarcasm
• Idiom
• Metaphor
• Hyperbole

• Specifically, individual expressions can
have different meaning representations
depending upon the circumstances in
which they occur

Natalie Parde - UIC CS 421 82

Unambiguous
Representations
• We’ll ignore ambiguities arising from figurative

language in this course, and focus on the semantic
ambiguities that can still arise from literal expressions

• To resolve semantic ambiguities, computational
methods must be employed to select which from a
set of possible interpretations is most correct, given
the circumstances surrounding the linguistic input

Let’s eat somewhere near SEO.

Let’s eat somewhere near SEO.

Let’s devour some building near SEO!

Let’s eat at a restaurant near SEO!
Natalie Parde - UIC CS 421 83

Vagueness
• Closely related to ambiguity

• However, vagueness does not give rise to multiple
representations

• In fact, it is advantageous for meaning representations to
maintain a certain level of vagueness

• Otherwise, you may be “overfitting” to your set of
example sentences

I want to eat dessert.

Cake?

Cookies?

Ice cream?
Pie?

Natalie Parde - UIC CS 421 84

Canonical Form

• Ambiguity means that a given sentence could be assigned multiple
meaning representations

• However, multiple sentences could also be assigned the same
meaning representation

• Giordano’s serves deep dish pizza.
• They have deep dish pizza at Giordano’s.
• Deep dish pizza is served at Giordano’s.
• You can eat deep dish pizza at Giordano’s.

Natalie Parde - UIC CS 421 85

Inference and Variables

• It’s impossible for a knowledge base to comprehensively cover all
facts about the world, so computational systems also need to be
able to draw commonsense inferences based on meaning
representations

• Will people who like deep dish pizza want to eat at Giordano’s?
• We don’t have a fact explicitly specifying that they do, but we

can infer that if they like deep dish pizza, they will probably like
a restaurant that serves it

Natalie Parde - UIC CS 421 86

Inference

• Inference: A system’s ability to draw valid
conclusions based on the meaning
representations of inputs and its store of
background knowledge

• Systems must be able to draw conclusions
about the truth of propositions that are not
explicitly represented in the knowledge base
but that are logically derivable from the
propositions that are present

Natalie Parde - UIC CS 421 87

Variables

• Variables allow you to build propositions without
requiring a specific instance of something

• Serves(x, DeepDishPizza)
• These propositions can only be successfully

matched by known instances from a knowledge
base that would resolve in a truthful entire
proposition

• Serves(x, DeepDishPizza)
• Serves(Giordano’s, DeepDishPizza) 🙂
• Serves(Coffee Alley, DeepDishPizza) 🤨

Natalie Parde - UIC CS 421 88

Expressiveness
• Expressive power: The breadth of

ideas that can be represented in a
language

• Meaning representations must be
expressive enough to handle a wide
range of subject matter

Natalie Parde - UIC CS 421 89

Model-Theoretic Semantics

Natalie Parde - UIC CS 421

What do most meaning
representation schemes
share in common?
• An ability to represent objects,

properties of objects, and
relations among objects
(symbols)

A model is a formal
construct that stands for
a particular state of
affairs in the world that
we’re trying to represent

Expressions (words or
phrases) in the meaning
representation language
can be mapped to
elements of the model

90

Relevant Terminology
• Vocabulary

• Non-Logical Vocabulary: Open-ended sets of names for objects, properties,
and relations in the world we’re representing

• Logical Vocabulary: Closed set of symbols, operators, quantifiers, links, etc.
that provide the formal means for composing expressions in the language

• Domain: The set of objects that are part of the state of affairs being represented
in the model

• Each object in the non-logical vocabulary corresponds to a unique element
in the domain; however, each element in the domain does not need to be
mentioned in a meaning representation

Natalie Parde - UIC CS 421 91

Additional
Terminology
• For a given domain, objects are elements

• grapes, violets, plums, CS421, Mina,
Mohammad

• Properties are sets of elements corresponding to a
specific characteristic

• purple = {grapes, violets, plums}
• Relations are sets of tuples, each of which contain

domain elements that take part in a specific relation
• StudentIn = {(CS421, Devika), (CS421,

Guiseppe)}

Natalie Parde - UIC CS 421
92

How do we
create mappings
from non-logical
vocabulary to
formal
denotations?

We create functions
(interpretations)!

Natalie Parde - UIC CS 421 93

Example
Application

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Assume that we have:
• A collection of restaurant patrons

and restaurants
• Various facts regarding the likes

and dislikes of patrons
• Various facts about the

restaurants
• In our current state of affairs (our

model) we’re concerned with four
patrons designated by the non-logical
symbols (elements) Natalie, Usman,
Nikolaos, and Mina

• We’ll use the constants a, b, c, and d
to refer to those respective elements

94

Example
Application • We’re also concerned with three restaurants

designated by the non-logical symbols
Giordano’s, IDOF, and Artopolis

• We’ll use the constants e, f, and g to refer to
those respective elements

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

Natalie Parde - UIC CS 421 95

Example
Application • Finally, we’ll assume that our model deals with

three cuisines in general, designated by the
non-logical symbols Italian, Mediterranean, and
Greek

• We’ll use the constants i, j, and k to refer to
those elements

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

Natalie Parde - UIC CS 421 96

Example
Application

• Now, let’s assume we need to represent a few
properties of restaurants:

• Fast denotes the subset of restaurants that are known
to make food quickly

• TableService denotes the subset of restaurants for
which a waiter will come to your table to take your
order

• We also need to represent a few relations:
• Like denotes the tuples indicating which restaurants

individual patrons like
• Serve denotes the tuples indicating which restaurants

serve specific cuisines

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Natalie Parde - UIC CS 421 97

Example
Application

• This means that we have created the domain
D = {a, b, c, d, e, f, g, i, j, k}

• We can evaluate representations like Natalie
likes IDOF or Giordano’s serves Greek by
mapping the objects in the meaning
representations to their corresponding
domain elements, and any links to the
appropriate relations in the model

• Natalie likes IDOF → a likes f → Like(a, f) 🙂
• Giordano’s serves Greek → e serves k → Serve(e, k) 🤨

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 98

Example
Application

• Thus, we’re just using sets and operations
on sets to ground the expressions in our
meaning representations

• What about more complex sentences?
• Nikolaos likes Giordano’s and Usman likes Artopolis.
• Mina likes fast restaurants.
• Not everybody likes IDOF.

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 99

Example
Application • Plausible meaning representations for the

previous examples will not map directly to
individual entities, properties, or relations!

• They involve:
• Conjunctions
• Equality
• Variables
• Negations

• What we need are truth-conditional
semantics

• This is where first-order logic is useful

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 100

What is
first-
order
logic?

Elements of First-Order
Logic

• Term: First-order logic device for representing objects
• Constants
• Functions
• Variables

• Common across all types of terms:
• Each one can be thought of as a way of pointing to a specific object

Natalie Parde - UIC CS 421
102

Elements of First-Order Logic

103

Basic
Elements
of First-
Order
Logic

104

Variables
and
Quantifiers

• Two basic operators in first-order logic are:
• ∃: The existential quantifier

• Pronounced “there exists”
• ∀: The universal quantifier

• Pronounced “for all”
• These two operators make it possible to

represent many more sentences!
• a restaurant → ∃x Restaurant(x)
• all restaurants → ∀x Restaurant(x)

Natalie Parde - UIC CS 421 105

We can combine
these operators
with other basic
elements of
first-order logic
to build logical
representations
of complex
sentences.

• Nikolaos likes Giordano’s and Usman
likes Artopolis.

• Like(Nikolaos, Giordano’s) ∧
Like(Usman, Artopolis)

• Mina likes fast restaurants.
• ∀x Fast(x) → Like(Mina, x)

• Not everybody likes IDOF.
• ∃x Person(x) ∧ ¬Like(x, IDOF)

Natalie Parde - UIC CS 421 106

Semantics
of First-
Order
Logic

• Symbols for objects, properties, and
relations acquire meaning based on their
correspondences to “real” objects,
properties, and relations in the external
world

• The model-theoretic approach defines
meaning based on truth-conditional
mappings between expressions in a
meaning representation and the state of
affairs being modeled

Natalie Parde - UIC CS 421 107

We can determine truth based on the presence of
specified terms and predicates.

Natalie Parde - UIC CS 421

P Q ¬P P∧Q P∨Q P→Q
False False True False False True
False True True False True True
True False False False True False
True True False True True True

108

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Natalie Parde - UIC CS 421 109

Example: Is the following sentence
valid according to our model?

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Usman, Giordano’s)

Natalie Parde - UIC CS 421

patron = {Natalie, Usman,
Nikolaos, Mina} = {a, b, c, d}

110

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Usman,
Shahla, Yatri} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Usman, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 111

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Usman,
Shahla, Yatri} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Usman, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 112

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Usman,
Shahla, Yatri} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Usman, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 113

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Usman,
Shahla, Yatri} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Usman likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Usman, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

False …not valid!
Natalie Parde - UIC CS 421 114

A few
additional
notes….

• Formulas involving ∃ are true if there is any
substitution of terms for variables that results
in a formula that is true according to the
model

• Formulas involving ∀ are true only if all
substitutions of terms for variables result in
formulas that are true according to the model

Natalie Parde - UIC CS 421 115

How do we
infer facts
not
explicitly
included in
the
knowledge
base?

• Modus ponens: If a conditional
statement is accepted (if p then q), and
the antecedent (p) holds, then the
consequent (q) may be inferred

• More formally:
𝛼
𝑎 ⇒ 𝛽
𝛽

Natalie Parde - UIC CS 421 116

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥 GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

Natalie Parde - UIC CS 421 117

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥 GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

Natalie Parde - UIC CS 421 118

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥 GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

consequent may be inferred 🙂

Natalie Parde - UIC CS 421 119

Representing
States and

Events

States: Conditions, or properties, that
remain unchanged over some period
of time

Events: Indicate changes in some
state of affairs

Natalie Parde - UIC CS 421 120

Events can be particularly challenging to
represent in formal logic!

• You may need to:
• Determine the correct number of roles for the event
• Represent facts about different roles associated with the event
• Ensure that all correct inferences can be derived directly from the event representation
• Ensure that no incorrect inferences can be derived from the event representation

• Some events may theoretically take a variable number of arguments
• Natalie drinks.
• Natalie drinks tea.

• However, predicates in first-order logic have fixed arity (they accept a fixed number of
arguments)

Natalie Parde - UIC CS 421 121

How do we
deal with
this?

• Make as many different predicates as are needed
to handle all of the different ways an event can
behave

• Drink1(Natalie)
• Drink2(Natalie, tea)
• Unfortunately, this can be costly (lots of

different predicates would need to be stored
for many words!)

• Another (also not-so-scalable) solution is to use
meaning postulates

• ∀x,y Drink2(x, y) → Drink1(x)
• Finally, you can allow missing arguments

• ∃x Drink(Natalie, x)
• Drink(Natalie, tea)
• Still not perfect …in the example case, it

implies that one always has to be drinking a
specific thing

Natalie Parde - UIC CS 421 122

Instead of regular variables, we can
add event variables.

• Event variable: An argument to the event representation that allows for additional
assertions to be included if needed

• ∃e Drink(Natalie, e)
• If we determine that the actor must drink something specific: ∃e Drink(Natalie, e) ∧

Beverage(e, tea)
• More generally, we could define the representation:

• ∃e Drink(e) ∧ Drinker(e, Natalie) ∧ Beverage(e, tea)
• With this change:

• No need to specify a fixed number of arguments for a given surface predicate
• Logical connections are satisfied without using meaning postulates

Natalie Parde - UIC CS 421 123

Ideally, meaning representations will also
include information about time and aspect.

• Temporal information:
• Event time
• Reference time
• Time of utterance

• Aspectual information:
• Stative: Event captures an aspect of the world at a single time point

• Natalie knew what she wanted to eat.
• Activity: Event occurs over some span of time

• Natalie is eating.
• Accomplishment: Event has a natural end point and results in a particular

state
• Natalie ate lunch at Artopolis.

• Achievement: Event happens in an instant, but still results in a particular
state

• Natalie finished her meal.

When Shahla leaves, Natalie will eat at Artopolis.

Natalie Parde - UIC CS 421 124

Description
Logics

Natalie Parde - UIC CS 421 125

Description
Logics

• Represent knowledge about:
• Categories
• Individuals who belong to those

categories
• Relationships that can hold among

those individuals
• Terminology: The set of categories

comprising a given application domain
• TBox: The portion of the knowledge

base containing the terminology
• ABox: The portion of the knowledge

base containing facts about individuals
• Ontology: Hierarchical representation

of subset/superset relations among
categories

Natalie Parde - UIC CS 421
126

Representation

Natalie Parde - UIC CS 421

Restaurant(x) = Restaurant Restaurant(Giordano’s) =
Restaurant(Giordano’s)

First-order logic Description logics

127

Hierarchical
Structure

• Can be directly specified
using subsumption relations
between concepts

• Subsumption: All
members of category C
are also members of
category D, or 𝐶 ⊑ 𝐷

Natalie Parde - UIC CS 421

Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial
Establishment

Italian Restaurant
⊑ Restaurant

Med. Restaurant
⊑ Restaurant

Greek Restaurant
⊑ Restaurant

128

Category Membership

• Coverage or disjointness can be further specified using logical operators
• Italian Restaurant ⊑ NOT Greek Restaurant
• Restaurant ⊑
𝐎𝐑 (Italian Restaurant, Greek Restaurant,Mediterranean Restaurant)

Natalie Parde - UIC CS 421 129

Category Membership

• Relations provide further information about category membership
• Italian Cuisine ⊑ Cuisine
• Italian Restaurant ⊑ Restaurant ⊓ ∃hasCuisine.ItalianCuisine
= ∀𝑥ItalianRestaurant(𝑥) ⟶ Restaurant(𝑥) ∧ (∃𝑦Serves(𝑥, 𝑦) ∧
ItalianCuisine(𝑦))

Natalie Parde - UIC CS 421
130

Hierarchical
Structure

• Relations also allow us to explicitly define necessary and
sufficient conditions for categories

• Italian Restaurant ⊑ Restaurant ⊓ ∃hasCuisine.ItalianCuisine
• Greek Restaurant ⊑ Restaurant ⊓ ∃hasCuisine.GreekCuisine

Natalie Parde - UIC CS 421
131

Inference Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant

132

Summary:
First-Order
Logic

• First-order logic is a way to represent
meaning by mapping linguistic input to
world knowledge using logical rules

• Core components of a first-order logic
model are:

• Objects
• Properties
• Relations

• We can apply truth-conditional logic
(and, or, and not operators) to sentences
to determine whether they fit a given model
based on their included terms

• First-order logic makes use of both
existential and universal quantifiers

• Inferences can be drawn from first-order
logic statements using modus ponens

Natalie Parde - UIC CS 421 133

