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What is 
logistic 

regression?

• Fundamental supervised machine 
learning algorithm

• Used for text classification
• Very close relationship with neural 

networks!
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Logistic regression can be used for binary 
classification or multinomial classification.

• Binary
• Class A vs. Class B

• Multinomial
• Class A vs. Class B vs. Class C vs. Class 

D….

vs.

vs. vs. vs.
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How does 
logistic 
regression 
differ from 
naïve 
Bayes?

• Generative classifier

Naïve Bayes

• Discriminative classifier

Logistic Regression
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Generative Classifiers
• Goal: Understand what each class 

looks like
• Should be able to “generate” an 

instance from each class
• To classify an instance, determines 

which class model better fits the 
instance, and chooses that as the 
label

I’m just thrilled that I have five 
final exams on the same day. 🙄

Sarcasm Not Sarcasm
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Discriminative Classifiers
• Goal: Learn to distinguish between 

two classes
• No need to learn that much 

about them individually
• To classify an instance, determines 

whether the distinguishing 
feature(s) between classes is 
present

I’m just thrilled that I have five 
final exams on the same day. 🙄

Contains 
🙄?

Sarcasm
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A generative model like naïve Bayes makes use of the likelihood term
• Likelihood: Expresses how to generate an instance if it knows it is of class c
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
!∈#

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A discriminative model instead tries to compute P(c|d) directly!

𝑐̂ = argmax
!∈#

𝑃(𝑐|𝑑)
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However, 
naïve Bayes 
and logistic 
regression 
also have 
some 
similarities.

Both are probabilistic 
classifiers

Both perform supervised 
machine learning
• Recall: Supervised machine learning = ML 

with labeled training and test data
• Generally formalized as xs (instances) 

and ys (labels), where an individual 
instance is an x(i), y(i) pair
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Which is better …naïve Bayes or 
logistic regression?

• Depends on the task and the dataset
• For larger datasets, logistic regression is usually better
• For smaller datasets, naïve Bayes is sometimes better
• Naïve Bayes is easy to implement and faster to train
• Best to experiment with multiple classification models to determine 

which is best for your needs
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In general, 
supervised 

machine 
learning 

systems for text 
classification 

have four main 
components.

• Feature representation of the input
• Typically, a vector of features [x1(j), x2(j), …, xn(j)] 

for a given instance x(j)

• Classification function that computes the 
estimated class, -𝑦

• Sigmoid
• Softmax
• Etc.

• Objective function or loss function that computes 
error values on training instances

• Cross-entropy loss function
• Optimization function that seeks to minimize the 

loss function
• Stochastic gradient descent
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To build a logistic regression 
classifier….
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• Train weights w and a bias b using stochastic gradient descent
and cross-entropy loss

• Use a sigmoid classification function
• Test performance by computing P(y|x) and returning the highest-

probability label

13



Binary 
Logistic 

Regression

• Goal:
• Train a classifier that can decide whether a 

new input observation belongs to class a or 
class b

• To do this, the classifier learns a vector of 
weights (one associated with each input 
feature) and a bias term

• A given weight indicates how important its 
corresponding feature is to the overall 
classification decision

• Can be positive or negative
• The bias term is a real number that is added 

to the weighted inputs
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Binary 
Logistic 

Regression

• To make a classification decision, the classifier: 
• Multiplies each feature for an input instance x by its 

corresponding weight (learned from the training data)
• Sums the weighted features
• Adds the bias term b

• This results in a weighted sum of evidence for 
the class:

• 𝑧 = 𝑏 + ∑$𝑤$𝑥$

Bias term Weight for feature i Feature i for instance x

Natalie Parde - UIC CS 421 15



Vector Notation
• Letting 𝑤 be the weight vector and 𝑥 be the input feature vector, 

we can also represent the weighted sum 𝑧 using vector 
notation:

• 𝑧 = 𝒘 $ 𝒙 + 𝑏

Bias termVector of all weights

Vector of all features for x
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Multiplying 
feature 

values by 
their weights 
means that z

is a linear 
function of x

• What we really want is a probability
ranging from 0 to 1

• To do this, we pass z through the sigmoid 
function, 𝜎(𝑧)

• Also called the logistic function, hence 
the name logistic regression
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Sigmoid Function

• Sigmoid Function:
• 𝜎 𝑥 = !

!"#!"

• Given its name because 
when plotted, it looks like an s

• Results in a value y ranging 
from 0 to 1

• 𝑦 = 𝜎 𝑧 = !
!"#!#

= !
!"#!$%"&'
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Source: https://web.stanford.edu/~jurafsky/slp3/5.pdf
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There are many useful properties of the 
sigmoid function!

• Maps a real-valued number to a 0 to 1 range
• Just what we need for a probability….

• Squashes outlier values towards 0 or 1
• Differentiable

• Necessary for learning….
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In binary logistic regression, 
to make the probability for 
all classes sum to one….
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• 𝑃(𝑦 = 1) = 𝜎 𝑧
• 𝑃 𝑦 = 0 = 1 − 𝜎 𝑧
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How do we make a 
classification decision?

• Choose a decision boundary
• For binary classification, often 0.5

• For a test instance x, assign a label c if 𝑃(𝑦 = 𝑐|𝑥) is greater than the decision 
boundary

• If performing binary classification, assign the other label if 𝑃(𝑦 = 𝑐|𝑥) is lower 
than or equal to the decision boundary
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature
Contains 🙄
Contains 😊
Contains “I’m”
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5

Positively associated with sarcasm

Negatively associated with sarcasm

Natalie Parde - UIC CS 421 25



Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Bias = 0.1

Natalie Parde - UIC CS 421

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 + 9
$

𝑤$𝑥$

Bias = 0.1

𝑦 = 𝜎 𝑧 = %
%&'!"
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 + 9
$

𝑤$𝑥$

𝑦 = 𝜎 𝑧 = %
%&'!"

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒().% = 0.96
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 + 9
$

𝑤$𝑥$

𝑦 = 𝜎 𝑧 = %
%&'!"

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒().% = 0.96

𝑃 not sarcasm 𝑥 = 1 − 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 1 − 𝜎 0.1 + 3.0 = 1 − 𝜎 3.1 = 1 −
1

1 + 𝑒$%.!
= 1 − 0.96 = 0.04
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

𝑧 = 𝑏 + 9
$

𝑤$𝑥$

𝑦 = 𝜎 𝑧 = %
%&'!"

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒().% = 0.96

𝑃 not sarcasm 𝑥 = 1 − 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 1 − 𝜎 0.1 + 3.0 = 1 − 𝜎 3.1 = 1 −
1

1 + 𝑒$%.!
= 1 − 0.96 = 0.04
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Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains “I’m” 0.5 1
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Any useful (or not useful) property of 
the language sample can be a feature!

• For example….
• Specific words or n-grams
• Information from external lexicons
• Grammatical elements
• Part-of-speech tags

• In neural classification models, the feature vector often includes word embeddings
• More about these soon!
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Learning in Logistic Regression

• How are the parameters of a logistic regression model, w and 
b, learned?

• Loss function
• Optimization function

• Goal: Learn parameters that make !𝑦 for each training 
observation as close as possible to the true 𝑦
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Loss Function

Natalie Parde - UIC CS 421

• We need to determine the distance between the predicted and true output 
value

• How much does )𝑦 differ from 𝑦?
• We do this using a conditional maximum likelihood estimation

• Select w and b such that they maximize the log probability of the true y
values in the training data, given their observations x

• This results in a negative log likelihood loss
• More commonly referred to as cross-entropy loss
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Cross-Entropy Loss
• Most common loss function for many classification tasks

• Measures the distance between the probability distributions of predicted and 
actual values

• 𝑙𝑜𝑠𝑠 𝑦! , &𝑦! = −∑"#$
% 𝑝!," log .𝑝!,"

• C is the set of all possible classes
• 𝑝!," is the actual probability that instance i should be labeled with 

class c
• .𝑝!," is the predicted probability that instance i should be labeled with 

class c

• Observations with a big distance between the predicted and actual values 
have much higher cross-entropy loss than observations with only a small 
distance between the two values
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Example: Cross-Entropy Loss

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −9
!+%

#

𝑝$,! log L𝑝$,! = −𝑝$,-./!.-0$! log M𝑝$,-./!.-0$! − 𝑝$,120 -./!.-0$! log M𝑝$,120 -./!.-0$!

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −9
!+%

#

𝑝$,! log L𝑝$,! = −𝑝$,-./!.-0$! log M𝑝$,-./!.-0$! − 𝑝$,120 -./!.-0$! log M𝑝$,120 -./!.-0$!

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.96 − 0 ∗ log 0.04

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.96 0.04 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −9
!+%

#

𝑝$,! log L𝑝$,! = −𝑝$,-./!.-0$! log M𝑝$,-./!.-0$! − 𝑝$,120 -./!.-0$! log M𝑝$,120 -./!.-0$!

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.96 − 0 ∗ log 0.04 = − log 0.96 = 0.02

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

What if our predicted values were switched?
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.04 0.96 1 0

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −9
!+%

#

𝑝$,! log L𝑝$,! = −𝑝$,-./!.-0$! log M𝑝$,-./!.-0$! − 𝑝$,120 -./!.-0$! log M𝑝$,120 -./!.-0$!

𝑙𝑜𝑠𝑠 𝑦$ , 𝑦$′ = −1 ∗ log 0.04 − 0 ∗ log 0.96 = − log 0.04 = 1.40

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

Greater loss value!
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Finding Optimal Weights

• Goal: Minimize the loss function defined for the model
• *𝜃 = argmin

!

"
#
∑$%"# 𝐿&'(𝑦 $ , 𝑥 $ ; 𝜃)

• For logistic regression, 𝜃 = 𝑤, 𝑏
• One way to do this is by using gradient descent
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope

Move in positive direction
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi+1

Okay!
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Gradient Descent
• How much do we move?

• Value of the slope
• $
$%
𝑓(𝑥;𝑤)

• Weighted by a learning rate 𝜂
• Faster learning rate → move w more 

on each step
• So, the change to a weight at time t

is actually:
• 𝑤OPQ = 𝑤O − 𝜂 R

RS 𝑓(𝑥;𝑤)

weight

loss

wt+1

Natalie Parde - UIC CS 421

Derivative of loss function curve 
with respect to a given weight
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Remember, there are weights for each 
feature.

• The gradient is then a vector of the slopes of each dimension:

• ∇T𝐿 𝑓 𝑥; 𝜃 , 𝑦 =

R
RS<

𝐿(𝑓 𝑥; 𝜃 , 𝑦)
…

R
RS=

𝐿(𝑓 𝑥; 𝜃 , 𝑦)

• This in turn means that the final equation for updating 𝜃 is:
• 𝜃OPQ = 𝜃O − 𝜂∇𝐿(𝑓 𝑥; 𝜃 , 𝑦)
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The Gradient for Logistic 
Regression

• Recall our cross-entropy loss function:
• 𝑙𝑜𝑠𝑠 𝑦$ , ;𝑦$ = −∑(%"

& 𝑦 log )𝑦 = −∑(%"
& 𝑦 log 𝜎(𝒘 A 𝒙 + 𝑏)

• The derivative for this function is:
• )*34(,,.)

),5
= 𝜎 𝒘 A 𝒙 + 𝑏 − 𝑦 𝑥0

Difference between true and estimated y Corresponding input observation
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Stochastic Gradient Descent 
Algorithm
𝜃←0  # initialize weights to 0
repeat until convergence:

For each training instance (𝑥($), 𝑦($)) in random order:
# What is our gradient, given our current parameters?
g ← ∇!𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

𝜃 ← 𝜃 − 𝜂g  # What are our updated parameters?
return 𝜃
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

Natalie Parde - UIC CS 421

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇'𝐿 𝑓 𝑥()); 𝜃 , 𝑦()) =

𝑑𝐿+,(𝑤, 𝑏)
𝑑𝑤!

𝑑𝐿+,(𝑤, 𝑏)
𝑑𝑤-

𝑑𝐿+,(𝑤, 𝑏)
𝑑𝑤%

𝑑𝐿+,(𝑤, 𝑏)
𝑑𝑏

=

(𝜎 𝑤 I 𝑥 + 𝑏 − 𝑦)𝑥!
(𝜎 𝑤 I 𝑥 + 𝑏 − 𝑦)𝑥-
(𝜎 𝑤 I 𝑥 + 𝑏 − 𝑦)𝑥%
𝜎 𝑤 I 𝑥 + 𝑏 − 𝑦

=

(𝜎 0 − 1)𝑥!
(𝜎 0 − 1)𝑥-
(𝜎 0 − 1)𝑥%
𝜎 0 − 1

=

(0.5 − 1)𝑥!
(0.5 − 1)𝑥-
(0.5 − 1)𝑥%
(0.5 − 1)

=
−0.5 ∗ 1
−0.5 ∗ 0
−0.5 ∗ 1
−0.5

=
−0.5
0

−0.5
−0.5
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Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇'𝐿 𝑓 𝑥()); 𝜃 , 𝑦()) =
−0.5
0

−0.5
−0.5

𝜃."! = 𝜃. − 𝜂∇'𝐿 𝑓 𝑥 ) ; 𝜃 , 𝑦 ) =
0
0
0
0

− 𝜂
−0.5
0

−0.5
−0.5

=
0
0
0
0

− 0.1
−0.5
0

−0.5
−0.5

=
0
0
0
0

−
−0.05
0

−0.05
−0.05

=
0.05
0
0.05
0.05
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Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (First Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇'𝐿 𝑓 𝑥()); 𝜃 , 𝑦()) =
−0.5
0

−0.5
−0.5

𝜃."! = 𝜃. − 𝜂∇'𝐿 𝑓 𝑥 ) ; 𝜃 , 𝑦 ) =
0
0
0
0

− 𝜂
−0.5
0

−0.5
−0.5

=
0
0
0
0

− 0.1
−0.5
0

−0.5
−0.5

=
0
0
0
0

−
−0.05
0

−0.05
−0.05

=
0.05
0
0.05
0.05
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Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains “I’m” 0 1
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Example: Gradient Descent (Second Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0.05
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇!𝐿 𝑓 𝑥(#); 𝜃 , 𝑦(#) =

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤'

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤(

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑤)

𝑑𝐿%&(𝑤, 𝑏)
𝑑𝑏

=

(𝜎 𝑤 2 𝑥 + 𝑏 − 𝑦)𝑥'
(𝜎 𝑤 2 𝑥 + 𝑏 − 𝑦)𝑥(
(𝜎 𝑤 2 𝑥 + 𝑏 − 𝑦)𝑥)
𝜎 𝑤 2 𝑥 + 𝑏 − 𝑦

=

(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥'
(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥(
(𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1)𝑥)
𝜎 0.05 ∗ 1 + 0 ∗ 0 + 0.05 ∗ 1 + .05 − 1

=

(𝜎 0.15 − 1)𝑥'
(𝜎 0.15 − 1)𝑥(
(𝜎 0.15 − 1)𝑥)
𝜎 0.15 − 1

=

(0.54 − 1)𝑥'
(0.54 − 1)𝑥(
(0.54 − 1)𝑥)
(0.54 − 1)

=
−0.46 ∗ 1
−0.46 ∗ 0
−0.46 ∗ 1
−0.46

=
−0.46
0

−0.46
−0.46
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Feature Weight Value
Contains 🙄 0.05 1
Contains 😊 0 0
Contains “I’m” 0.05 1
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Example: Gradient Descent (Second Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Bias (b) = 0.05
Learning rate (𝜂) = 0.1

𝜃0&% = 𝜃0 − 𝜂∇6𝐿 𝑓 𝑥($); 𝜃 , 𝑦($)

∇'𝐿 𝑓 𝑥()); 𝜃 , 𝑦()) =
−0.46
0

−0.46
−0.46

𝜃."! = 𝜃. − 𝜂∇'𝐿 𝑓 𝑥 ) ; 𝜃 , 𝑦 ) =
0.05
0
0.05
0.05

− 𝜂
−0.46
0

−0.46
−0.46

=
0.05
0
0.05
0.05

− 0.1
−0.46
0

−0.46
−0.46

=
0.05
0
0.05
0.05

−
−0.046
0

−0.046
−0.046

=
0.096
0

0.096
0.096
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Feature Weight Value
Contains 🙄 0.05 1
Contains 😊 0 0
Contains “I’m” 0.05 1
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Mini-Batch Training

• Stochastic gradient descent chooses a single random example at a time …this can 
result in choppy movements!

• Often, the gradient will be computed over batches of training instances rather than a 
single instance

• Batch training: Gradient is computed over the entire dataset
• Perfect direction, but very computationally expensive

• Mini-batch training: Gradient is computed over a group of m examples
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Mini-Batch Versions of Cross-
Entropy Loss and Gradient

• Cross-Entropy Loss:
• 𝐿GH training samples = −∑IJKL 𝐿GH( !𝑦 I , 𝑦(I))

• Gradient:
• MN
MO[

= K
L
∑IJKL 𝜎 𝑤 7 𝑥 I + 𝑏 − 𝑦(I) 𝑥P

(I)
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Regularization

• To avoid overfitting, regularization terms (𝑅(𝜃)) are usually added to the loss 
function

• These terms are used to penalize large weights (which can hinder a model’s 
ability to generalize)

• Two common regularization terms:
• L2 regularization
• L1 regularization
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L2 Regularization

• Quadratic function of the weight values
• Square of the L2 norm (Euclidean distance of 𝜃 from the origin)

• 𝑅 𝜃 = 𝜃 \
\ = ∑]^Q_ 𝜃]\
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L1 Regularization

• Linear function of the weight values
• Sum of the absolute values of the weights (Manhattan distance from the 

origin)
• 𝑅 𝜃 = 𝜃 Q = ∑`^Q_ 𝜃`
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Which regularization 
term is better?

• L2 regularization is easier to optimize (simpler derivative)
• L2 regularization → weight vectors with many small weights
• L1 regularization → sparse weight vectors with some larger 

weights
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Multinomial Logistic 
Regression

• Other names:
• Softmax regression
• Maxent classification (short for maximum entropy classification)

• Uses a softmax function rather than a sigmoid function
• Softmax takes a vector z of arbitrary values (same as the sigmoid function) and 

maps them to a probability distribution summing to 1
• softmax 𝑧$ = '"<

∑=>?
|z| '"=
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Interpreting 
Models

• What if we want to know more than just the correct classification?
• Why did the classifier make the decision it made?

• In these cases, we can say we want our model to be interpretable
• We can interpret logistic regression models by determining how much weight is 

associated with a given feature
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This is a key advantage of logistic 
regression over neural models.

• Manually-defined features facilitate interpretability
• Implicitly-learned features can be very difficult to interpret!
• Because of this, some researchers may choose to use logistic regression rather than 

neural models if they are particularly interested in which factors are influencing the 
model’s decisions

• Common example: Healthcare applications
• This allows logistic regression to function not only as a simple classification model, but 

as a powerful analytic tool
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Summary: Logistic Regression
• Logistic regression is a discriminative classification model used for supervised machine learning
• It is characterized by four key components:

• Feature representation
• Classification function
• Loss function
• Optimization function

• Classification decisions are made using a sigmoid function for binary logistic regression, or a softmax function for multinomial logistic 
regression

• Loss is typically computed using a cross-entropy function
• Weights are usually optimized using stochastic gradient descent
• A regularization term may be added to the loss function to avoid overfitting
• In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a 

powerful analytic tool
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We’ve learned 
about a variety 

of text 
classification 
techniques….

Natalie Parde - UIC CS 421

• Hidden Markov Models
• Naïve Bayes
• Logistic Regression
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Types of 
Classification 
Techniques

Natalie Parde - UIC CS 421

• Individual Labels
• Naïve Bayes
• Logistic Regression

• Sequences of Labels
• Hidden Markov Models
• Conditional Random Fields

Label Type

• Generative
• Naïve Bayes
• Hidden Markov Models

• Discriminative
• Logistic Regression
• Conditional Random Fields

Model Type
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Conditional Random Fields (CRFs)

• Generalized multi-class logistic regression
• Increased flexibility for sequence labeling

• HMMs: Joint probability ranging over observations and 
corresponding labels

• Can lead to rigid (and inaccurate) independence 
assumptions

• CRFs: Conditional probability over label sequences given 
specific sequence of observations

• Relaxes independence assumptions (model may more 
easily capture arbitrary or long-range dependencies)
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Special Case of Markov Random Fields

• Undirected graphical model

Natalie Parde - UIC CS 421

X

𝑿 = 𝑋%, … , 𝑋1(%, 𝑋1
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels

73

Satisfies the Markov property: 
The probability distribution for a 
set of variables depends on 
potential functions computed 
over fully-connected subgraphs



Special Case of Markov Random Fields

• Undirected graphical model

Natalie Parde - UIC CS 421

X

𝑿 = 𝑋%, … , 𝑋1(%, 𝑋1
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels

Conditionally independent labels 
cannot appear in the same 
potential function
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Special Case of Markov Random Fields

• Undirected graphical model

Natalie Parde - UIC CS 421

X

𝑿 = 𝑋%, … , 𝑋1(%, 𝑋1
Observation sequences

Y1 Y2 Y3 Yn-1 Yn…

Labels

Instead, require potential functions to 
operate only on random variables forming 
a maximal clique
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Conditional Random Fields

Natalie Parde - UIC CS 421

• Probability of label sequence Y given observation sequence X is then 
a normalized product of feature functions

• 𝑝 𝑌 𝑋 = Q
g(𝒙)

𝑒∑!"#
$ S!i!(j,k)

Normalization factor
Global feature function (a property of the entire
input sequence X and output sequence Y)

Computed by decomposing into a sum of 
local features for each position i in Y
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Training CRFs

• Seek to find the model distribution with maximum entropy
• Thus, parameters can be optimized by minimizing cross-entropy loss using 

stochastic gradient descent

Natalie Parde - UIC CS 421
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How do we find the best tag sequence for 
a given input?

• We can turn to an old favorite …dynamic programming!
• Viterbi-like algorithm where prior probabilities and likelihoods are 

replaced with CRF feature functions
• 𝑣O 𝑗 = max

`∈{Q,…,_}
𝑣OoQ(𝑖) ∑p^Qq 𝑤p𝑓p(𝑦OoQ, 𝑦O, 𝑋, 𝑡)

• Fill in a table with the appropriate values, keeping track of 
backpointers as you go

• When the table is filled, follow the backpointers from the 
maximum value back to the beginning of the table to get the best 
sequence of labels
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Additional 
Details about 
CRFs

• http://dirichlet.net/pdf/wallach0
4conditional.pdf

• http://pages.cs.wisc.edu/~jerry
zhu/cs769/CRF.pdf

• https://people.cs.umass.edu/~
mccallum/papers/crf-
tutorial.pdf

Natalie Parde - UIC CS 421
79

http://dirichlet.net/pdf/wallach04conditional.pdf
http://pages.cs.wisc.edu/~jerryzhu/cs769/CRF.pdf
https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf


Overview of 
Vector 

Semantics

• Vector semantics facilitates a form of 
representation learning based on the 
notion that similar words tend to occur in 
similar environments

• Representations that encode these 
contextual similarities are often called word 
embeddings
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Representation 
Learning
• The process of learning 

useful representations of 
input text

• Modern representation 
learning is self-
supervised

• Doesn’t require 
manually-defined 
features or labels
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The corresponding notion of encoding 
words based on their distribution is referred 
to as the distributional hypothesis.

• First formulated by linguists in the 1950s
• Joos (1950)
• Harris (1954)
• Firth (1957)
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1
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There are many 
ways to make 
use of the 
distributional 
hypothesis!

• Classical word vectors
• Bag of words representations and 

their variations
• Implicitly learned word vectors

• Word2Vec
• GloVe
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Vector semantics 
seeks to encode 

the same types of 
linguistic 

structures and 
phenomena that 

are often 
associated with 

lexical semantics.

87

• Key linguistics concepts and 
terminology (and useful properties of 
words):

• Lemmas and senses
• Synonymy
• Word similarity
• Word relatedness
• Frames and roles
• Connotation
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Lemmas 
and 
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a word
• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) reside near one 
another in vector space

• All of the word representations we’ll cover this semester encode 
different senses of the same word in the same way

• Contextual embeddings represent different word senses in different ways
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Synonymy

• When a word sense for one word is 
(nearly) identical to the word sense for 
another word

• Synonymy: Two words are synonymous if 
they are substitutable for one another in 
any sentence without changing the 
situations in which the sentence would be 
true

• This means that the words have the 
same propositional meaning

For my assignment I’m writing a scathing critique of Dr. 
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. 
Parde’s recent paper.
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Word 
Similarity

• Words don’t often have that many 
synonyms, but they do have a lot of similar
words

• Review ≈ summary
• Good way to check if two words are similar: 

Can word Y be commonly used in the same 
context as word X?

• I’m writing a summary 🙂
• Did you submit your summary yet? 🙂
• That is a scathing summary 🤨
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Word Relatedness

• Sometimes words are related, but not similar, to one 
another

• Word Relatedness: An association between words 
based on their shared participation in an event or 
semantic field

• Semantic Field: A set of words covering a semantic 
domain, even if they cannot be used in the same 
context as one another

• Restaurant: {waiter, menu, plate, food, …, chef}

coffee
cup

espresso
cafe
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Semantic 
Frames

• Semantic Frame: A set of words that denote 
perspectives or participants in a particular 
type of event

• Commercial Transaction = {buyer, seller, 
goods, money}

• Semantic Role: A participant’s underlying 
role with respect to the main verb in the 
sentence

Natalie bought five cookies for $5 from Devika.

buyer goods money seller
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Connotation
• Also referred to as affective meaning
• The aspects of a word’s meaning that are related to a writer 

or reader’s emotions, sentiment, opinions, or evaluations

• Generally three dimensions:
• Valence: Positivity

• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, controlling
• Low: Awed, influenced
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Connotation 
(Continued)
• For example, a word 

could be 
represented by its 
value on each of the 
three affective 
dimensions

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89
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Word vector! (Osgood et al., 1957)

https://psycnet.apa.org/record/1958-01561-000


How, then, 
should we 
represent 

the meaning 
of a word?

• Two classic strategies:
• Bag of words representations: A word 

is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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How, then, 
should we 
represent 

the meaning 
of a word?

• Two classic strategies:
• Bag of words representations: A word 

is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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Bag of 
words 
features 
leverage 
simple, 
document-
level vector 
semantics.

• Under the distributional hypothesis, we 
define a word by its environment or its 
distribution in language use

• This corresponds to the set of contexts in 
which the word occurs

• Context: Neighboring words or 
grammatical environments

• Two words with very similar sets of 
contexts (i.e., similar distributions) are 
assumed to have very similar meanings
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We do this to infer meaning 
in the real world all the time.
• Pretend you don’t know what the Cantonese word ongchoi means

• However, you read the following sentences:
• Ongchoi is delicious sautéed with garlic.
• Ongchoi is superb over rice.
• …ongchoi leaves with salty sauces…

• You’ve seen many of the other context words in these sentences 
previously:

• …spinach sautéed with garlic over rice…
• …chard stems and leaves are delicious…
• …collard greens and other salty leafy greens…

• Your (correct!) conclusion?
• Ongchoi is probably a leafy green similar to spinach, chard, or 

collard greens
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How can we do this 
computationally?

• Count the words in the context of 
ongchoi

• See what other words occur in those 
same contexts
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We can 
represent a 
word’s context 
using vectors.

• Define a word as a single vector 
point in an n-dimensional space

• For bag of words representations, 
n = vocabulary size

• Represent the presence or absence 
of words in its surrounding context 
using numeric values

• For bag of words representations, 
the value stored in a dimension n
corresponds to the presence of a 
context word c in the same 
sample as the target word w
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive

review
critique summary

valentine’s

holi

eid
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive analysis

critique

summary

+

=
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What other ways can 
we build vector 

representations for 
words?

critique

c1 … critique … cn

w1 … … … … …

… … … … … …

critique ? ? ? ? ?

… … … … … …

wn … … … … …
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One Approach: TF-IDF

• Term Frequency * Inverse Document Frequency
• Meaning of a word is defined by the counts of 

words in the same document, as well as overall
• To do this, a co-occurrence matrix is needed
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TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a 

selection

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V
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TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a 

selection

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
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In a term-document matrix, rows can be 
viewed as word vectors.

• Each dimension 
corresponds to a 
document

• Words with similar 
vectors occur in similar 
documents

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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In a term-document matrix, rows can be 
viewed as word vectors.

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]
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Different 
Types of 
Context

• We can also use word context for vector 
representations

• Referred to as a term-term matrix, word-word 
matrix, or term-context matrix

• In a word-word matrix, the columns are also 
labeled by words

• Thus, dimensionality is |V| x |V|
• Each cell records the number of times the 

row (target) word and the column (context) 
word co-occur in some context in a training 
corpus
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How can you decide 
if two words occur 

in the same 
context?

• Common context windows:
• Entire document

• Cell value = # times the 
words co-occur in the 
same document

• Predetermined span 
surrounding the target

• Cell value = # times the 
words co-occur in this 
span of words
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Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it 

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet
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Example Context 
Window (Size = 4)

• A simplified subset of a word-
word co-occurrence matrix 
could appear as follows, given a 
sufficient corpus

aardvark … compute r da ta resu l t p ie sugar …

cherry 0 … 2 8 9 442 25 …

strawberry 0 … 0 0 1 60 19 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet Vector for 
“strawberry”
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Co-occurrence 
matrices 
provide raw 
frequency 
counts of 
word co-
occurrences.

• However, this isn’t the best measure of 
association between words

• Some words co-occur frequently with 
many words, so won’t be very informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but 
less frequently across all texts
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TF-IDF is 
here to save 

the day!

• Term Frequency: The frequency of the 
word t in the document d

• 𝑡𝑓O,R = count(𝑡, 𝑑)
• Document Frequency: The number of 

documents in which the word t occurs
• Different from collection frequency (the 

number of times the word occurs in the 
entire collection of documents)
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Computing TF-IDF

• Inverse Document Frequency: The inverse of document frequency, 
where N is the total number of documents in the collection

• 𝑖𝑑𝑓O =
r
Rs%

• IDF is higher when the term occurs in fewer documents
• Document = Whatever is considered an instance or context in your 

dataset
• It is often useful to perform these computations in log space

• TF: logQt(𝑡𝑓O,R+1)
• IDF: logQt 𝑖𝑑𝑓O

Natalie Parde - UIC CS 421 115



Computing TF*IDF

• TF-IDF combines TF and 
IDF

• 𝑡𝑓𝑖𝑑𝑓O,R = 𝑡𝑓O,R×𝑖𝑑𝑓O

11
6



Example: 
Computing 

TF-IDF
• TF-IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Assume we’re looking at a 
subset of a 37-document 
corpus of Shakespearean 
plays….



• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Overall document frequencies 

from our 37 plays
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF-IDF(battle, d1) = 1 * 1.76 = 
1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 = 

1.76
• Alternately, TF-IDF(battle, d1) = 
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗ 𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76

• TF-IDF(battle, d1) = 1 * 1.76 = 
1.76

• Alternately, TF-IDF(battle, d1) = 
𝑙𝑜𝑔$)(1 + 1) ∗ 𝑙𝑜𝑔$) 1.76 = 0.074

d1 d2 d3 d4

battle 0.074 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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To convert our 
entire word co-
occurrence matrix 
to a TF-IDF 
matrix, we need 
to repeat this 
calculation for 
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of rarer words like “battle”
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Note that the TF-IDF 
model produces a 
sparse vector.

• Sparse: Many (usually 
most) cells have values 
of 0

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Note that the TF-IDF 
model produces a 
sparse vector.

• Sparse: Many (usually 
most) cells have values 
of 0
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We’ll learn 
about more 

sophisticated 
word 

representation 
techniques 

soon….

• However, TF-IDF remains a useful starting 
point for vector space models

• Generally combined with standard machine 
learning algorithms

• Logistic Regression
• Naïve Bayes
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Summary: 
CRFs and 

Introduction 
to Vector 

Semantics

• Conditional random fields are a generalized case of multi-
class logistic regression in which conditional probabilities are 
computed over label sequences given specific sequences of 
observations

• Like logistic regression, CRF model parameters can be 
optimized by minimizing cross-entropy loss, using a 
dynamic programming method to compute expectations

• Representation learning is the act of building or learning 
word vectors based on the distributional hypothesis

• This process seeks to encode the same linguistic phenomena 
observed in studies of lexical semantics

• Bag-of-words representations are one form of word vector, 
and TF-IDF representations are another

• TF-IDF representations combine simple term frequency with 
inverse document frequency to minimize the impact of 
words that occur more frequently in general
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