Natalie Parde
UIC CS 421

Text

Preprocessing
and Edit
Distance

Natalie Parde - UIC CS 421



What is text preprocessing?

* Automated organization, normalization, and manipulation of text
such that it can more easily be handled by downstream
language processing tasks.

“Have some wine,” the March Hare
said in an encouraging tone.

Alice looked all round the table, but
there was nothing on it but tea. “l don't
see any wine," she remarked.

“There isn't any,” said the March Hare.

- Lewis Carroll, Alice’s Adventures in
Wonderland

—)

have some wine [PERSON 1] said in an
encouraging tone

[PERSON 2] looked all round the table but
there was nothing on it but tea

| don't see any wine she remarked
there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in
Wonderland



Text preprocessing steps can (and
should!) vary depending on your

needs.

capitalization

British vs. American spellings (for English text)

ﬁmportant

Not Important




One way to preprocess text
is by using regular
expressions.

a

* Regular expressions: A formal language for specifying

text strings.

« How can we search for any of these?

Donut
donut
Doughnut
doughnut
Donuts
doughnuts



Regular Expression Terminology

Regex: Common abbreviation for regular expression

Disjunction: Logical OR

Range: All characters in a sequence from c4-C,

Negation: Logical NOT

Scope: Indicates to which characters the regex applies

Anchor: Matches the beginning or end of a string



Regular
Expressions:
Disjunctions
(and Ranges)

 Disjunction: Letters
Inside square
brackets [aZz]

« Range: Hyphen
between the first
and last characters
In the range [a-Z]

[dDJonut

[0123456789]

[A-Z]

[0-9]

donut,
Donut

Any digit

An

uppercase
letter

Any digit

This morning would
be better with a
donut.

This morning would

be better with 5
donuts.

Donuts are an
excellent way to
start the day.

| just ate 5 donuts.



[*dD]onut

Any letter
except “d” or
“D” before
the
sequence
“onut”

Not an
uppercase
letter

Not a caret

The pattern
(13 DAO”

This morning
would be better
witha ¢

onuts are an
excellent way to
start the day.

What is your
favorite kind of
onut?

|Is D*onut a good
name for my donut
shop?

Regular Expressions:
Negation in
Disjunction

* Negation: A caret (") at the
beginning of a disjunction [*aZz]
* The caret must be at the

beginning of the disjunction to
negate it

Natalie Parde - UIC CS 421




Regular
Expressions: More
Disjunction

» The pipe | indicates the union (logical Pattern Matches Example
OR) of two smaller regular expressions

d|D “‘d” or “D” = This morning
would be better
with a donut.

 alb|c is equivalent to [abc]




*- Means that there must be 0 or more occurrences of
the preceding expression

L2y SO DIN - 8pJed dlfejeN

.. Awildcard that can mean any character

Regular

+: Means that there must be 1 or more occurrences of

Expressions- the preceding expression
Special

?: Means that there must be 0 or 1 occurrences of the
preceding expression

Characters

{m}. Means that there must be m instances of the
preceding expression

« {m,n}: Means that there must be between m and n
instances of the preceding expression

* (abc): Means that the operation should be applied to
the specified sequence




Regular Expressions: Special
Characters

donuts*

.onut
donuts+
donuts?
donuts{1}
donuts{0,1}

.o(nut)?

“donut” or “donuts” or “donutss” or
“donutsss’....

Any character followed by “onut”
“donuts” or “donutss” or “donutsss”....
“donut” or “donuts”

“donuts”

“donut” or “donuts”

13 ”»

Any character followed by “0” or “onut”

Natalie Parde - UIC CS 421

This morning | had many donuts.

Can | have a coconut donut?

Do you want one donut or two donuts?
Do you want one donut or two donuts?
Do you want one donut or two donuts?
Do you want one donut or two donuts?

Can | have a disco donut?



Regular Expressions: Anchors

* Indicate that a pattern should be matched only at the beginning
or end of a word

ADonuts “Donuts” only when it is at the beginning of a string  Donuts are an excellent way to
start the day.

donuts\.$ “donuts.” only when it is at the end of the string | just ate 5 donuts.



Case Example: Regex for

“the”
Fails on: The
[tT]he Fails on: other
AltT]he$ Fails on: Grab the disinfectant!

Natalie Parde - UIC CS 421

12



* |n iterating through possible
solutions to avoid failures, we were
trying to fix two types of errors:

» Matching strings that we should
not have matched (there, then,
other)

 False positives (Type )

* Not matching things that we
should have matched (The)

 False negatives (Type Il)

Natalie Parde - UIC CS 421 13



* This is a recurring theme in NLP!

« Reducing the error rate for an application
often involves two antagonistic efforts:

* Increasing accuracy or precision
(minimizing false positives)

 Increasing coverage or recall
(minimizing false negatives)

Natalie Parde - UIC CS 421 14



Extra Regular
Expression Tips

If you want to match a special character, you will
need to escape it with a backslash: \
You can also use shorthand character classes
« Can save time and space when searching for all
of a specific category of characters
Beware that different programming languages:

« May have different sets of shorthand character
classes

« May implement the same shorthands differently

Make sure you know the definitions for these in
the language you’re using!

Natalie Parde - UIC CS 421

15



Shorthand
Character
Classes

 Can be used inside or
outside disjunctions

« Can be negated

« Common shorthand
character classes:

- \d: All digits

* \s: All whitespace
characters




P
2
O
=
0
Q

ok
(0]

1

c
@)
@)
(0))
N
N
—

Regular Expressions: Takeaway

Points

Regular
expressions are a
surprisingly
powerful tool!

They are critical to
text tokenization
and normalization.

Y

They may also be
used to extract
features for
machine learning
classifiers.




Regular expressions
can be matched using
finite state automata.

N ie Parde - UIC CS 421



« Computational models that can generate
regular languages (such as those

specified by a reqular expression
What are P y @ regular expression)

 Also used in other NLP applications that

finite function by transitioning between finite
states
State  Dialogue systems
automata? » Morphological parsing

« Singular: Finite State Automaton (FSA)
 Plural: Finite State Automata (FSASs)



* Finite set of states
Key o Start state

 Final state

Components

e Set of transitions from one state to another

Natalie Parde - UIC CS 421




How do FSAs work?

* For a given sequence of items (characters, words, etc.) to match, begin in
the start state

* If the next item in the sequence matches a state that can be
transitioned to from the current state, go to that state

* Repeat
* If no transitions are possible, stop
* |f the state you stopped in is a final state, accept the sequence

Natalie Parde - UIC CS 421



FSAs are often represented
graphically.

* Nodes = states
* Arcs = transitions




* Five states

What dO we * (o is the start state
know abOut * Qg is the final (accept) state
this FSA') + Five transitions

 Alphabet = {a, b, !}

Natalie Parde - UIC CS 421 23



Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421 24



Regex that this FSA matches: baa+!

Test String: baa!

Natalie Parde - UIC CS 421 25



Regex that this FSA matches: baa+!

Ch/

Test String: baa!

Natalie Parde - UIC CS 421 26



Regex that this FSA matches: baa+!

Test String: baa!

Natalie Parde - UIC CS 421 27



Regex that this FSA matches: baa+!

/ a

Test String: baa!

Natalie Parde - UIC CS 421 28



Regex that this FSA matches: baa+!

Ch/

Test String: baa!

Natalie Parde - UIC CS 421 29



Regex that this FSA matches: baa+!

Test String: baa!

Natalie Parde - UIC CS 421 30



Regex that this FSA matches: baa+!

Test String: baa! @

Natalie Parde - UIC CS 421 31



Regex that this FSA matches: baa+!

Test String: baabaa!

Natalie Parde - UIC CS 421 32



Regex that this FSA matches: baa+!

Ch/

Test String™baabaa!

Natalie Parde - UIC CS 421 33



Regex that this FSA matches: baa+!

Test String: baabaal

Natalie Parde - UIC CS 421 34



Regex that this FSA matches: baa+!

/ a

Test String: baabaa!

Natalie Parde - UIC CS 421 35



Regex that this FSA matches: baa+!

Ch/

Test String: baabaa!

Natalie Parde - UIC CS 421 36



Regex that this FSA matches: baa+!

Ch/

d
Test String: baabaa!

Natalie Parde - UIC CS 421

37



Regex that this FSA matches: baa+!

Ch/

d
Test String: baabaa!

Natalie Parde - UIC CS 421

38



Note: More than one FSA can
correspond to the same regular
language!

Test String:

baaa! @

Test String:

baaal! @




 Afinite state automaton can be specified
by enumerating the following properties:

* The set of states, Q
 Afinite alphabet, 2
Fo rm al A start state, q,
- - A set of accept/final states, FEQ
Defl n It I o n A transition function or transition

matrix between states, 6(q,i)

* 0(q,i): Given a state qeQ and input i€z,
o(q,i) returns a new state g’€Q.

Natalie Parde - UIC CS 421
40




Example: FSA for Dollar Amounts

One  Six Ten Sixty Eleven Sixteen One  Six Ten Sixty Eleven Sixteen
Two Seven Twenty Seventy Twelve Seventeen Two Seven Twenty Seventy Twelve Seventeen
Three Eight Thirty Eighty Thirteen Eighteen Three Eight Thirty Eighty Thirteen Eighteen
Four Nine Forty Ninety Fourteen Nineteen Four Nine Forty Ninety Fourteen Nineteen
Five Fifty Fifteen Five Fifty Fifteen

Q2/

_Z
dollars
Twenty Sixty One  Six Twenty Sixty One  Six I
Thirty  Seventy Two Seven cents Thirty  Seventy Two Seven
Forty  Eighty Three Eight Forty  Eighty Three Eight /
Fifty Ninety Four  Nine Fifty Ninety Four  Nine
Five /

\ Five

AN —
— — ~t A pt tatsl’/

h———



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
| b | a | ! | <end>_

O

© Jdo
_UE) of
== d2
C

o of
O

Q4

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
-nn—
% J1 <=
n
c of
= Q2 — Go to State
C
o g3
)
@) Q4

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
| b | a | ! | <end>_
Jo of ® ® ®
of \
Q2 Go to State

ds
Q4

Currently in State

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
| b | a | ! | <end>_
% Jo of ® ® ®
UC) of ® 02 <—
é‘ Sp. — Go to State
g’ ds
8 Q4

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
| b | a | ! | <end>_
Jo of ® ® ®
of ® Q2 ® ®
Q2 ® Qs < Go to State

ds
Q4

Currently in State

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

ds ® qs <

a
Next Item in Sequence
| b | a | ! | <end>_

% Jo of ® ® ®

UC) of ® o) ® ®

= Q2 ® Q3 ® ® — Go to State
2

=

@)

Q4

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

a
Next Item in Sequence
| b | a | ! | <end>_
% Jo of ® ® ®
UC) of ® Q2 ® ®
é‘ Sp. ® Q3 ® ® — Go to State
g’ 3 ® 3 Qq <
8 Q4

Natalie Parde - UIC CS 421



State transitions in FSAs can be
represented using tables.

Next Item in Sequence

| b | a | ! | <end>
Jdo ® ®

% of ®

UC) of ® Q2 ® ®

é‘ Q2 ® ds ® ® Accept!
g’ ds ® ds Q4 ® /

3 Ja ® ® ® ©

Natalie Parde - UIC CS 421



State transition tables simplify the
process of determining whether your
input will be accepted by the FSA.

* For a given sequence of items to match, begin in the start
state with the first item in the sequence

« Consult the table ...is a transition to any other state
permissible with the current item?

* |f so, move to the state indicated by the table

* If you make it to the end of your sequence and to a final state,
accept



Formal Algorithm

index « beginning of sequence
current state « initial state of FSA

loop:
if end of sequence has been reached:

if current state is an accept state:
return accept

else:

return reject
else if transition table[current state, sequence[index]] is empty:

return reject

else:
current state « transition table[current state, sequence[index]]

index <« index + 1

end



Deterministic vs. Non-
Deterministic FSAs

Non-Deterministic
FSA: At one or more
points In processing a
seqguence, there are
multiple permissible next
steps (choices!)

Deterministic FSA: At
each point in processing

a sequence, there is one
unique thing to do (no
choices!)

Natalie Parde - UIC CS 421



Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421 53



Deterministic or Non-Deterministic?

o~
If input is !, do this

Deterministic!

If input is a, do this

Natalie Parde - UIC CS 421 54



Deterministic or Non-Deterministic?

Deterministic!

Non-Deterministic!

o~
If input is !, do this

If input is a, do this

Natalie Parde - UIC CS 421

—

If input is a, do ?

95



Every non-

deterministic e
* This means that both are equally
FSA can be powerful!
converted to a » Deterministic FSAs can accept as many
e | ) Ny
determmlstlc anguages as non-deterministic ones

FSA.

Natalie Parde - UIC CS 421
56




Non-

DEterminiStiC » Two approaches:

FSAs: How to 1.

check for
input
acceptance?

Convert the non-deterministic
FSA to a deterministic FSA and
then check that version

Manage the process as a state-
space search

o7

Natalie Parde - UIC CS 421




Non-
Deterministic

FSA Search
Assumptions

There exists at least one path
through the FSA for an item that is
part of the language defined by the
machine

Not all paths directed through the
FSA for an accept item lead to an
accept state

No paths through the FSA lead to an
accept state for an item not in the
language

58



Non- - Success: Path is found for a given item

Deterministic that ends in an accept

FSA Search  Failure: AII possible paths for a given item
Assumptions lead to failure

Natalie Parde - UIC CS 421




Example: Non-Deterministic FSA
Search

Test Inputsbaaa!



Example: Non-Deterministic FSA
Search

b@ a a !

Test Input: baaal



Example: Non-Deterministic FSA
Search

Test Input: baaa!



Example: Non-Deterministic FSA

Search

b

Test Input: baaal



Example: Non-Deterministic FSA
Search

Test Input: baaal



Example: Non-Deterministic FSA
Search

Test Input: baaal @



Example: Non-Deterministic FSA
Search

Test Input: baaal



Example: Non-Deterministic FSA
Search

Test Input: baaal



Example: Non-Deterministic FSA
Search

b a a ! @

Test Input: baaa!



Example: Non-Deterministic FSA
Search

b a a ! @

Test Input: baaa! @



» States in the search space are

NO“- pairings of sequence indices and
states in the FSA

Deterministic » By keeping track of which states have

FSA Search and have not been explored, we can

systematically explore all the paths
through an FSA given an input

N
<
79}
O
)
)
o)
ke
—
©
o
2
I
©
Z




Compositional FSAs

* You can apply set operations to any FSA
e Union
« Concatenation
* Negation
* For non-deterministic FSAs, first convert to a
deterministic FSA

e Intersection

* To do so, you may need to utilize an € transition

e ¢ transition: Move from one state to another without
consuming an item from the input sequence

Natalie Parde - UIC CS 421

71



» FSAs are computational models that
describe regular languages

* To determine whether an input item is a
summary: member.?f an FS/tAI\’s”Ia?guac{Jhe, yE[)urtctan
- = process it sequentially from the start to
F iNn |te State (hopefully) the final state
Automata - State transitions in FSAs can be

represented using tables

« FSAs can be either deterministic or
non-deterministic

-
N
<
0
O
Q
-]
i

®
el

2

©
o
2
©

©
P4



What’s the
next
natural

step?

Finite state transducers

Natalie Parde - UIC CS 421



What are
finite state
transducers?

Finite State Transducer (FST): A type of
FSA that describes mappings between
two sets of items

This means that FSTs recognize or
generate pairs of items

FSAs can be converted to FSTs by
labeling each arc with two items (e.g., a:b
for an input of a and and an output of b)



Example: Simple FST

aa:b b:a

b:e
b:b
«—— Final
a:ba

Start >




* A finite state transducer can be specified by
enumerating the following properties:

« The set of states, Q

 Afinite input alphabet, 2

* A finite output alphabet, A

« A start state, q,

A set of accept/final states, FEQ
Formal  Atransition function or transition matrix

D efiniti on between states, 6(q,i)

« An output function giving the set of possible
outputs for each state and input, o(q,i)

* 0(q,i): Given a state qeQ and input ie2,
0(q,i) returns a new state q’€Q.




Formal
Properties

Composition: Letting T, be an FST
from |, to O, and letting T, be an
FST from I, to O,, the two FSTs can
be composed such that the resulting
FST maps directly from [, to O..

Inversion: Letting T be an FST that
maps from | to O, its inversion (T-1)
will map from O to |.

a:b ab b:c b:c a:.c a.c



Deterministic vs. Non-
Deterministic FSTs

P
2
O
=
0
Q

ok
(0]

1

c
@)
@)
(0))
N
N
—

FSTs with underlying
deterministic FSAs (at any
state, a given input maps to
at most one transition out of
the state) are called
sequential transducers

Just like FSAs, FSTs can
be non-deterministic
...one input can be
translated to many possible

outputs!

Unlike FSAs, not all non-

deterministic FSTs can be
converted to

deterministic FSTs

Y

Y




Examples: Non-Deterministic and
Sequential Transducers

Non-Deterministic

Sequential




Morphology

 Morphemes:

« Small meaningful units that make
up words

« Stems: The core meaning-bearing
units

 Affixes: Bits and pieces that
adhere to stems and add
additional information

* Morphological parsing is a classic use
case for FSTs

80

Natalie Parde - UIC CS 421




* The task of recognizing the component

Morphological morphemes of words (e.g., foxes — fox

Parsing + es) and building structured
representations of those components

Natalie Parde - UIC CS 421
81




Why is
morphological

parsing
necessary?

mm Morphemes can be productive

« Example: -ing attaches to almost every verb,
iIncluding brand new words

« “Why are you Instagramming that?”

Some languages are very
morphologically complex

« Uygarlastiramadiklarimizdanmissinizcasina
« Uygar ‘civilized’ + las ‘become’

+ tir ‘cause’ + ama ‘not able’

+ dik ‘past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

82




Surface Text

Morphological Parse

cats cat +N +PL
cat cat +N +SG
cities city +N +PL
cats {cat +N +PL

| iy geese goose +N +PL
goose goose +N +SG
merging merge +V +PresPart
caught catch +V +Past

Finite State
Morphological
Parsing

Natalie Parde - UIC CS 421

Goal: Take input surface realizations and produce
morphological parses as output

83



Example Morphological Lexicon

irreg-past-verb-form

past (-ed)

reg-verb-stem

past participle (-ed)




Finite State Morphological
Parsing

regnoun _____________irreg-pl-noun irreg-sg-noun

fox goeoese goose

J #:+3G
I/ irreg-sg-nou
irreg-pl-noun _
N \ #.+PL
Q6
Rarde -4

cat

reg-noun




Finite State Morphological

Parsing
regnoun limeg-plnoun __________limeg-sgnoun
fox goeoese goose

cat

foxes Q:)

0:0 .
. As#+PL
a:a ' t:t e:+N ( #+SG

0.0 ' 0:0 ' S:S ' e:e ' €:+N >‘#:+SG
€0 e:0 >‘ S:S >‘ e:e >‘e:+N




Finite State Morphological

Parsing
regnoun limeg-plnoun __________limeg-sgnoun
fox goeoese goose

cat

foxes Q:)

0.0

d.da

0.0

e.o




Finite State Morphological

Parsing
regnoun limeg-plnoun __________limeg-sgnoun
fox goeoese goose

cat

foxes Q:)

0.0

d.da

0.0

e.o




Finite State Morphological

Parsing
regnoun Jimeg-plnoun  |imegsgnoun
fox goeoese goose

cat

foxes Q:) EOX

0:0 .
. As#+PL
a:a ' t:t e:+N ( #+SG

0.0 ' 0:0 ' S:S ' e:e ' €:+N >‘#:+SG
€0 e:0 >‘ S:S >‘ e:e >‘e:+N




Finite State Morphological

Parsing
regnoun Jimeg-plnoun  |imegsgnoun
fox goeoese goose

cat

foxes 5:) &ox +N

0:0 .
. As#+PL
a:a ' t:t e:+N ( #+SG

0.0 ' 0:0 ' S:S ' e:e ' €:+N >‘#:+SG
€0 e:0 >‘ S:S >‘ e:e >‘e:+N




Finite State Morphological

Parsing
regnoun Jimeg-plnoun  |imegsgnoun
fox goeoese goose

cat

foxes 5:) &ox +N

0:0 .
. As#+PL
a:a ' t:t e:+N ( #+SG

0.0 ' 0:0 ' S:S ' e:e ' €:+N >‘#:+SG
€0 e:0 >‘ S:S >‘ e:e >‘e:+N




Finite State Morphological

Parsing
regnoun Jimeg-plnoun  |imegsgnoun
fox goeoese goose

cat

foxes M | fox +N +PL




L2y SO JIN - 8pled 3lejeN

Summary:
Finite State
Transducers

FSTs are FSAs that describe
mappings between two sets

Although all non-deterministic FSAs
can be converted to deterministic
versions, all non-deterministic FSTs
cannot

FSTs with underlying deterministic
FSAs are called sequential
transducers

FSTs are particularly useful for
morphological parsing




Moving back to
more practical
details....

» Text tokenization is an important first step
for most NLP tasks

* It is often implemented using regular
expressions




Text Tokenization: Step #1 in Most NLP
Pipelines

» Atypical NLP pipeline begins by:
« Segmenting sentences in running text
» Separating words in running text
* Normalizing word formats (e.g., favourite = favorite)

Alice looked all round the table, but there was nothing on it but tea. “| don't see any wine," she remarked.



How many words?

| do uh main- mainly business data processing
* Fragments, filled pauses

e Seuss’s cat in the hat is different from other cats!

« Lemma: Words with the same stem, coarse-
grained part of speech, and general word sense

e cat and cats = same lemma

« Wordform: The full inflected surface form of a
word

» cat and cats = different wordforms




How many words?

s s s Alice looked all round the table, but there was nothing
on it but tea.

- Type: an element of the vocabulary.
« Token: an instance of that type in running text.

* How many?

* 14 tokens (or 167?)
« 13 types (or 157?)

Natalie Parde - UIC CS7421



How many words?

N = number of tokens

V = vocabulary = set of types
|V] is the size of the vocabulary

Types =V

Switchboard phone 2.4 million 20K
conversations
Shakespeare 884K 31K

Google N-grams 1 trillion 13 million



Issues in Tokenization

* Finland’s capital — Finland Finlands Finland’s ?
 what're, I'm, isn’t — What are, | am, is not ?

» Hewlett-Packard — Hewlett Packard 7?

o state-of-the-art — state of the art ?

* Lowercase — lower-case lowercase lower case ?
« San Francisco — one token or two?

« a.m., Ph.D. — ??

Natalie Parde - UIC CS 421



Tokenization: Language Issues

T

[ 'ensemble — one token or two?
e L?L°7?Le?
« Want I'ensemble to match with un ensemble

mmme |Okens Not Delineated by Whitespace

» Lebensversicherungsgesellschaftsangestellter
» life insurance company employee

o SSHLRIEIE BEEEE RRAMBIGS BiX,

« Sharapova now lives in Florida in the southeastern United States.

Natalie Parde - UIC CS 421 100



Maximum Matching
Word Segmentation Algorithm

Given a wordlist and a string:
1)  Start a pointer at the beginning of the string

2) Find the longest word in dictionary that matches the string starting at
pointer

3) Move the pointer over the word in string
4) Goto2

SHRLRIE I R RE RN HE BiX,

1

SHALRNE WE BiE E XE REH B BESERK



Doesn’t generally work well with

English....
Thecatinthehat » the cat in the hat
Thetabledownthere > ’P theta bled own there

the table down there

* Nice Python tokenizers:
 NLTK: http://www.nltk.org/api/nltk.tokenize.html
« spaCy: https://spacy.io/api/tokenizer
« StanfordNLP: https://github.com/stanfordnlp/stanza/



http://www.nltk.org/api/nltk.tokenize.html
https://spacy.io/api/tokenizer
https://github.com/stanfordnlp/stanza/

Text Normalization

 Normalization: Manipulating text such that all forms of the same word match
(e.g., U.S.A. = USA, flavour = flavor, etc.)
* To normalize text, you must define equivalence classes
« Example: Periods in a term — not important
» Words with the same characters but different capitalization are often considered
equivalent to one another (case folding)
« Example: Hello = hello
* Not a perfect strategy!
« US I=us
« Useful equivalence classes vary depending on task
« Capitalization can be very important in sentiment analysis



 Reduce inflections or variant forms to base
form

e am, are, IS — be

e car, cars, car's, cars' — car

Lemmatization

* the boy's cars are different colors — the
boy car be differ color

 Tricky because you need to find the correct
dictionary headword form

Natalie Parde - UIC CS 421 104




Stemming

» Automatically reduces words to their stems
using simple rules

« language dependent
« Example: {automate(s), automatic,
automation} — automat
» Pros: Very quick, simple to implement

« Cons: Groups together some words that don't
really mean the same thing, and doesn'’t
group together some words that do mean the
same thing

« {meanness, meaning} — mean
- {goose} — goos, {geese} — gees

Natalie Parde - UIC CS 421




Porter Stemming

« Step 1a « Step 2 (for long stems)
* SSes —» SS  caresses —» caress « ational— ate relational— relate
c jies —i ponies —> poni * izer— ize digitizer — digitize
* SS —SS caress —» caress « ator— ate operator — operate
°S 50 cats — cat . ...
. Step 1b «  Step 3 (for longer stems)
.« (*v¥)ing > @ walking — walk cal —>o revival — reviv
- sing — sing - able > @ adjustable — adjust
+ (*v¥)ed > @ plastered — plaster - ate > @  activate — activ

Much like tokenization, stemming
methods are difficult to transfer

across languages!

Natalie Parde - UIC CS 421 106



Sentence
Segmentation

« 1, ? are relatively unambiguous

« . is more ambiguous
« Sentence boundary
» Abbreviations like Inc. or Dr.
* Numbers like .02% or 4.3

« Simple sentence segmentation:
« Build a binary classifier that checks for “.”
 Classifier: A model that predicts labels for unseen test input
« At each token, decides EndOfSentence/NotEndOfSentence

Natalie Parde - UIC CS 421




We know how to preprocess
strings now ...but how can we

find the distance between
them?

Popular string (or other sequence) comparison technique:
 Minimum edit distance

S
Natalie Parde - UIC CS 421 108



s

chant

N¢
3%
|

plant

2

Edit
Distance

Simple way to answer the
question: How similar are
two strings?



Minimum
Edit
Distance

Minimum number of editing
operations needed to
transform one string into
another

* Possible editing operations:

* |nsertion
* Deletion
o Substitution

Natalie Parde - UIC CS 421




Minimum Edit Distance

* Two strings and their alignment:

I NTE * NT I ON

* E X ECUTTION



Minimum Edit I NTE * NT I ON
Distance

- If each operation has a cost
of 1 (Levenshtein distance)
« Distance between these is 5

>*

ECUTTION

« |If substitutions cost 2
(alternative also proposed
by Levenshtein)

E X
d s s 1 S
» Distance between them is 8 T T T T T



Other Uses of Edit Distance in
NLP

« Evaluating machine translation and speech recognition using word error rate

Spokesman confirms senior government adviser was shot
Spokesman said the senior adviser was shot dead
S I D I

 Named entity extraction and entity coreference
* Meta Platforms, Inc. announced today
» Meta profits



How to find the

« Search for a path
(sequence of edits) from
the start string to the final
string:

* Initial state: the word
we're transforming

« Operators: insert,

minimum edit distance?

delete, substitute
 Goal state: the word

/mterlmon\ we’'re trying to get to

Del  Path cost: what we

/ Iris Sub want to minimize (the
~ number of edits)

ntention eintention entention

Natalie Parde - UIC CS 421



+
[

> However,
the search
space of

all edit
seqguences
IS huge!

« We can'’t afford to navigate naively
 Lots of distinct paths wind up at the

same state

 We don'’t have to keep track of all
of them (just the shortest paths)

115

Natalie Parde - UIC CS 421




FOI'mal « For two strings

- mg m e Xof Iength n
DEfInItIOI\: * Y of length m
e « We define D(i,j) as the edit distance
Minimum between X[1..7] and Y[1.]

o X[1..]] = the first j characters of X

 The edit distance between X and Y is
thus D(n,m)

Edit
Distance

Natalie Parde - UIC CS 421

116



« Minimum edit distance can be solved
using dynamic programming
» Stores intermediate outputs in a
table

* Intuition: If some string B is in the
optimal path from string A to string

I ntu ition : C, then that path must also include

the optimal path from Ato B

Dyn a m i c * D(n,m) is computed tabularly,

combining solutions to subproblems

Programming + Bottom-up

« We compute D(i,j) for small i,j

* And compute larger D(i,j) based on
previously computed smaller
values

* i.e., compute D(ij) for all i (0 <
i<n) andj(0<j<m)

Natalie Parde - UIC CS 421




Formal Definition: Minimum Edit

Distance

* |nitialization
D(i,0) = i
D(0,3) = 3

 Algorithm:

For each i = 1l..n
]

For each = l..m
D(i-1,3) + 1
D(i,j)= min < D(i,Jj-1) + 1
| D(i-1,j-1) + <[2; if X(i) # Y(3)
0; 1f X(1i) = Y(3J)

* Termination:
D(N,M) Is distance



The Edit Distance Table

O |2

—

*H (| 2|dA\m|=|-

7 E X E C U T

Natalie Parde - UIC CS 421



The Edit Distance Table

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

# 0 4 5 8
7 C U O

Natalie Parde - UIC CS 421




The Edit Distance Table

N 9
0) 38
I 7 D(i-1,j) + 1
D(i)) = min JD(,j-1) + 1
T |6 D(-1,j-1) + [2; ifS,(i) # S,()
N_ |5 “ 0; if S,(i) = S,(j)
E 4
T 3
N 2
I 1
# 0 2 3 4 5 6 / 38
# X E C U [T |I O

Natalie Parde - UIC CS 421

121



The Edit Distance Table

N 9

O 8

I / D(i-1,j) + 1

- 5 D(i,j)) = min D(.i,j-%) +1 - | |

D(i-1,j-1) + | 2; if S;(i) # S,(j)

N e | |0; if S,(0) = S,(9)

E 4

T 3

N 2

I 1

* 0 2 4 5 6 8
# X C U T O

Natalie Parde - UIC CS 421

122



The Edit Distance Table

N 9

O 8

I / D(i-1,j) + 1

- 5 D(i,j)) = min D(.i,j-%) +1 - | |

D(i-1,j-1) + | 2; if S;(i) # S,(j)

N e | |0; if S,(0) = S,(9)

E 4

T 3

N 2

I 1 3 4 5 6 /

* 0 2 3 4 5 6 8
# X E C U T O

Natalie Parde - UIC CS 421

123



The Edit Distance Table

N 9

O 8

I / D(i-1,j) + 1

- 5 D(i,j)) = min D(.i,j-%) +1 - | |

D(i-1,j-1) + | 2; if S;(i) # S,(j)

N e | |0; if S,(0) = S,(9)

E 4

T 3

N 2

I 1 3 4 5 6 /

* 0 2 3 4 5 6 8
# X E C U T O

Natalie Parde - UIC CS 421

124



The Edit Distance Table

125

10
11

10

10
11

10

10

10

11

10

12
11

11
10

10

Natalie Parde - UIC CS 421



Backtrace for Computing

Alignments

* We know the minimum edit distance now ...but what is the alignment
between the two strings?
« We can figure this out by maintaining a backtrace
* For each new cell, remember where we came from!
* D(i-1,j) ?
* D(i,j-1) ?
e D(i-1,j-1) ?
* Once we reach the end of the table (upper right corner), we can trace
backward using these pointers to figure out the alignment

Natalie Parde - UIC CS 421 126



The Edit Distance Table

N 59 |48 79 10 (g1l 512 [q11 410 49 58
O [,8 |7 8 |59 5107011 410 |49 £ 8 +p9
[ 27 26 x7 18 99 1510 a9 g8 -»9 10
T 146 (45 56 57 58 59 o8- p9-»10->il
N 25 124 (5 006 57 158 %9 |10 11 10
E ,}4 23wt e5 6 w7 48 0 5107 9
T 163794 5 196 57 w8 57 148 1,9 48
N 142 53 154 15570,6 157 158 a7 %8 y7
L a1 52 13 54755 67,7 697 ->8
# O+wl1l—423 4 H»5—p6 -»7 8 9

# | E|X|E]Jclu|lT|]T1][O]|N

Natalie Parde - UIC CS 421




The Edit Distance Table

N .9 |28 9 |10 [J11 /12 |,11 19 I8

0 [,8 |~7 8 |59 15107 o011 |510 js-

I ,:97 46;,77 8/5,9,/710 2‘},9‘(78——?9-—

T 146 145 56 197 178 59 59 —

N o5 |44 |5 6/,‘77‘?,8339’ 11 510

E a4 |53 ,;,44;754-76 57 |48 10, 9

T ‘;,3/,,4‘3,5/16 7 98 197 a8 59

N ézyv3,y4 e 5 26/}77;?8 al

I $1'22273)4;5;6 7 5 6-%7~

# V013203245056 7 8 -
# | E| X |E|C|]U|T

Natalie Parde - UIC CS 421



Formal Definition: Minimum Edit
Distance with Backtrace

 Base conditions: Termination:
D(1,0) = 1 D(0,]) = 3 D(N,M) is distance
 Algorithm:
For each i = 1l..n
For each j = l.m
(‘

D(i-1,3) + 1
D(i,j)= min<D(i,j-1) + 1
D(i-1,j-1) + 2;{if X(1i) # Y(3)

- 0;|if X(i) = Y(3)
LEFT
ptr(i,j)= < DOWN

DIAG
-




Summary

Text Preprocessing: Preparing text
for downstream language processing
tasks

* Tokenization
 Normalization
 Lemmatization
e Stemming

Regular expressions are a powerful
tool for text preprocessing!

Edit Distance: Determining the
similarity between two strings based
on the number of insertions, deletions,
and substitutions needed to transform
one to another

Minimum edit distance, computed
using dynamic programming, allows
you to find the smallest number of
edits needed to do so.

Natalie Parde - UIC CS 421




