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What we know so far….
• Word vectors: Vectors of numbers used to encode language
• Simple techniques to create word vectors:

• Co-occurrence frequency (bag of words)
• TF-IDF

1 0 0 1 0 1 1 0 0 1 0.7 0 0 0 0 0.9 0.1 0 0 0.5
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Word vectors indicate a 
word’s meaning with 
respect to other words!
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Now that we know how to create a vector space model, how 
can we use it to compute similarity between words?

• Cosine similarity
• Based on the dot product (also called inner 

product) from linear algebra
• dot product v, w = v , w =
∑!"#$ 𝑣!𝑤! = 𝑣#𝑤# + 𝑣%𝑤% +⋯+ 𝑣$𝑤$

• Similar vectors (those with large values in the same 
dimensions) will have high values; dissimilar 
vectors (those with zeros or low values in different 
dimensions) will have low values
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Why don’t 
we just use 
the dot 
product?

• More frequent words tend to co-occur with 
more words and have higher co-occurrence 
values with each of them

• Thus, the raw dot product will be higher 
for frequent words

• This isn’t good! ☹
• We want our similarity metric to tell us 

how similar two words are regardless of 
frequency

• The simplest way to fix this problem is to 
normalize for the vector length (divide the 
dot product by the lengths of the two vectors)
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Normalized Dot 
Product = Cosine of 
the angle between 
two vectors

• The cosine similarity metrics between two vectors v and w can thus be computed 
as:

• cosine v,w = v&w
v |w|

= ∑!"#
$ )!*!

∑!"#
$ )!

% ∑!"#
$ *!

%

• This value ranges between 0 (dissimilar) and 1 (similar) for frequency or TF-IDF 
vectors
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223,4,3 , 5,6743,6635
223!84!83! 5!86743!86635!
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017

cos(digital, information) = 5∗58:;46∗67438:;<=∗6635
5!8:;46!8:;<=! 5!86743!86635!

= 0.996
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017

cos(digital, information) = 5∗58:;46∗67438:;<=∗6635
5!8:;46!8:;<=! 5!86743!86635!

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
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Limitations of 
Classic Word 

Representation 
Strategies

• No capacity to infer deeper semantic 
content

• Can’t encode the following using a bag-of-
words vector:

• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts
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Additionally, 
remember that 
bag of words 
representations 
are sparse.

• Very high-dimensional
• Lots of empty (zero-valued) cells
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We’d 
prefer to 
have dense 
vectors.

• Lower-dimensional (~ 50-1000 cells)
• Most cells with non-zero values

• We’d also prefer to be able to encode other 
dimensions of meaning than word type 
alone

• Good should be:
• Far from bad
• Close to great
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It turns out that dense vectors are 
preferable for NLP tasks for many 
reasons!

• Easier to include as features in machine learning 
systems

• Classifiers have to learn ~100 weights instead of 
~50,000

• Fewer parameters → lower chance of overfitting
• May generalize better to new data

• Better at capturing synonymy
• Words are not distinct dimensions; instead, 

dimensions correspond to meaning 
components
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What is the best way to generate 
dense word vectors?
• The answer changes quite frequently:

• https://super.gluebenchmark.com/leaderboard/
• Current state-of-the-art models are bidirectional (trained to 

represent words using both their left and right context), 
contextual (produce different vectors for different word senses) 
models built using Transformers (a type of neural network)
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Somewhere between TF-IDF and 
contextual word vectors….

• Word2Vec: A method for automatically 
learning dense word representations 
from large text corpora

critique 1.23 2.14 3.21 4.32 1.35 2.43 5.22 1.34 2.33
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Characteristics of 
Word2Vec
• Non-contextual
• Fast
• Efficient to train

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3
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Word2Vec

• Technically a tool for implementing word 
vectors: 

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to 

as Word2Vec is the skip-gram model with 
negative sampling
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How does Word2Vec work?
• Instead of counting how often each word occurs near each 

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task 

as our word embeddings
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None of this 
requires 
manual 
supervision.

• Text (without any other labels) is framed as implicitly supervised 
training data

• Given the question: Is word w likely to occur near context word c?
• If w occurs near c in the training corpus, the gold standard 

answer is “yes”
• This idea comes from neural language modeling (neural networks 

that predict the next word based on prior words)
• However, Word2Vec is simpler than a neural language model:

• It has fewer layers
• It makes binary yes/no predictions rather than predicting words
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What does the 
classification 
task look like? 

• Assume the following:
• Text fragment: this sunday, watch the super bowl 

at 5:30 p.m.
• Target word: super
• Context window: ± 2 words

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4
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What does the 
classification 
task look like? 

• Goal: Train a classifier that, given a tuple (t, c) of a 
target word t paired with a context word c (e.g., (super, 
bowl) or (super, laminator)), will return the probability 
that c is a real context word

• P(+ | t,c)

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4
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How do we predict 
P(+ | t,c)?

• We base this decision on the similarity between the input vectors 
for t and c

• More similar vectors → more likely that c occurs near t
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

super bowl
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

super bowl

super very
super fork

super calendar
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3
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0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level 
Overview: 

How 
Word2Vec 

Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(+|(t,c))

• Train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0
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How do we compute
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot 

product between two vectors
• Similarity(t,c) ∝ 𝑡 # 𝑐
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A dot 
product 
gives us a 
number, 
not a 
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did 

with logistic regression!)
• We can set:

• P(+|t,c) = !
!"#&'()

• Then:
• P(+ | t,c) = !

!"#&'()

• P(- | t,c) = 1 - P(+ | t,c) = #&'()

!"#&'()
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We’re usually 
not just looking 
at words in 
isolation.

• What if we’re considering the probability of a span of text occurring in the context of a target word?
• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏*+,
- ,

,./!"#$%
, or

• log P(+|t,c1:k) = ∑*+,- log ,
,./!"#$%

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = ,
,./!"#$

P(-|t,c) = /!"#$

,./!"#$
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With this in 
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how 
similar the context window is to the target word

• We do so by applying the logistic function to the dot product of the embeddings of t with 
each context word c

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super, 
watch) = .7

P(+|
super, 
the) = 

.5

P(+|super, 
bowl) = .9

P(+|
super
at) = 

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575
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Computing P(+ | t,c) 
and P(- | t,c): ✓

• However, we still have some unanswered 
questions….

• How do we determine our input 
vectors? 

• How do we learn word embeddings 
throughout this process (this is the real 
goal of training our classifier in the first 
place)?
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Input Vectors: ✓

• Input words are typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position 

corresponding to a given word, and a “0” in every other 
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl
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Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts 
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 𝜎 𝑧 = #

#+,!"
= #

#+,!#$%&'

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = #

#+,!($)

Natalie Parde - UIC CS 421 37



What does this look like?

super

Start with an input t
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What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r
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What does this look like?

…

Feed it into a layer of n units 
(where n is the desired 
embedding size), each of 
which computes a weighted 
sum of inputs0

0

1

…

0

su
pe

r
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What does this look like?

…

Feed the outputs from those 
units into a final unit that 
predicts whether a word c is 
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 41



What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output 
units for every possible c

0

0

1

…

0

su
pe

r
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate 
layer applies a specific 
weight to each input it 
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot 
vectors, this means we’ll end 
up with a specific set of 
weights (one for each unit) 
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
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These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6
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How do we optimize these 
weights over time?

• The weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the 

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar 

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time
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Since we initialize 
our weights 
randomly, the 
classifier’s first 
prediction will 
almost certainly be 
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and 
c1 so if we tried to make these predictions 
again, we’d have lower error values
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4
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What is our 
training data?

• We are able to assume that all occurrences of words in similar contexts in our training 
corpus are positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝-(𝑤), where 𝛼

is a weight:
• 𝑝5(𝑤) = count(7)!

∑"# count(7#)!

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly higher 

probability of being randomly sampled
• Assuming we want twice as many negative samples as positive 

samples, we can thus randomly select noise words according to 
weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples
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Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from 
positive examples

• Minimize the vector similarity of the (target, context) pairs drawn from 
negative examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function
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Learning Skip-Gram Embeddings

• Even though we’re maintaining two embeddings for each word during training 
(the target vector and the context vector), we only need one of them

• When we’re finished learning the embeddings, we can just discard the context 
vector

• Alternately, we can add them together to create a summed embedding of the 
same dimensionality, or we can concatenate them into a longer embedding 
with twice as many dimensions
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Context window size can impact 
performance!

• Because of this, context window size is often tuned on a validation or 
development set

• Larger window size → more required computations (important to consider 
when using very large datasets)
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What if we want to predict a target word 
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!
• The difference:

• Instead of learning to predict a context word from a target word vector, you 
learn to predict a target word from a set of context word vectors
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Skip-Gram 
vs. CBOW 
Embeddings

• Small datasets
• Rare words and phrases

In general, skip-gram 
embeddings are good with:

• Larger datasets (they’re faster to 
train)

• Frequent words

CBOW embeddings are 
good with:
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Are there any 
other variations 

of Word2Vec?

• fastText
• An extension of Word2Vec that also 

incorporates subword models
• Designed to better handle unknown 

words and sparsity in language
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fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +
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fastText
• Skip-gram embedding is learned for each constituent 

n-gram
• Word is represented by the sum of all embeddings of 

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown 

words based on subword constituents alone

Source code available online: 
https://fasttext.cc/
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Word2Vec and fastText 
embeddings are nice …but 
what’s another alternative?

• Word2Vec is an example of a 
predictive word embedding model

• Learns to predict whether 
words belong in a target word’s 
context

• Other models are count-based
• Remember co-occurrence 

matrices?
• GloVE combines aspects of both 

predictive and count-based models

Natalie Parde - UIC CS 421
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Global Vectors for Word 
Representation (GloVe)
• Co-occurrence matrices quickly grow extremely large
• Intuitive solution to increase scalability?

• Dimensionality reduction!
• However, typical dimensionality reduction strategies may result in too 

much computational overhead
• GloVe learns to predict weights in a lower-dimensional space that correspond 

to the co-occurrence probabilities between words
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GloVe

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

• GloVe models also encode the ratios of 
co-occurrence probabilities between 
different words …this makes these 
vectors particularly useful for word 
analogy tasks

Natalie Parde - UIC CS 421
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Weighting function:

𝑓 𝑋*1 = -(
𝑋*1
𝑥234

)5 , 𝑋*1 < 𝑋𝑀𝐴𝑋

1, otherwise

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1 )7
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1 )7

Minimize the cost function to 
learn ideal embedding values 
for wi and wj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1 )7

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3
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Why does 
GloVe 
work?

• Ratios of co-occurrence probabilities have the 
potential to encode word similarities and 
differences

• These similarities and differences are useful 
components of meaning

• GloVe embeddings perform particularly 
well on analogy tasks
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Which is best …Word2Vec or 
GloVe?
• It depends on your data!
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)
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Summary: 
Word2Vec 
and GloVe

• Cosine similarity, commonly used to calculate word 
vector similarity, measures the distance between vectors 
by computing the normalized dot product between them

• Word2Vec is a predictive word embedding approach that 
learns word representations by training a classifier to 
predict whether a context word should be associated with 
a given target word

• fastText is an extension of Word2Vec that also 
incorporates subword models

• GloVe is a count-based word embedding approach that 
learns an optimized, lower-dimensional version of a co-
occurrence matrix
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Evaluating Vector 
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP task, 
and see whether and how this changes performance 
relative to a baseline model

• Most important evaluation metric for word embeddings!
• Word embeddings are rarely needed in isolation
• They are almost solely used to boost performance 

in downstream tasks
• Intrinsic Evaluation

• Performance at predicting word similarity
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Evaluating Performance at 
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the 

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d) 
correlated
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Other Common Evaluation Tasks

Natalie Parde - UIC CS 421 76

• Evaluates the performance of sentence-level similarity 
algorithms, rather than word-level similarity

Semantic Textual Similarity

• Evaluates the performance of algorithms at solving analogies
• Chicago is to Illinois as Omaha is to (Nebraska)
• Embedding is to embeddings as assignment is to 

(assignments)

Analogy



Semantic Properties of 
Embeddings
• Major advantage of dense word embeddings: Ability to capture elements of meaning
• Context window size impacts what type of meaning is captured

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of speech

• Longer context window → more topical representations
• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., waiter and 

menu, rather than spoon and fork)
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Analogy

• Word embeddings can also capture 
relational meanings

• This is done by computing the offsets 
between values in the same columns for 
different vectors

• Famous examples (Mikolov et al., 2013; 
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome

Natalie Parde - UIC CS 421 78



Word embeddings have 
many practical applications. • Incorporated as 

features in nearly 
every modern NLP 
task

• Useful for 
computational social 
science

• Studying word 
meaning over time

• Studying implicit 
associations 
between words
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Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding 
spaces, each using only texts 
from a specific historical period

Useful corpora:
Google N-grams: 
https://books.google.com/ngrams
Corpus of Historical American English: 
https://www.english-corpora.org/coha/
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Unfortunately, word embeddings 
can also end up reproducing 
implicit biases and stereotypes 
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora 

also produce:
• man - computer programmer + woman = 

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications 
(e.g., resume scoring models)
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Bias and 
Embeddings

• Caliskan et al. (2017) identified known, harmful 
implicit associations in GloVe embeddings

• Thus, learning word representations is an 
ethically complex topic!
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African-American 
Names

European-American 
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common 
among Older Adults

Names Common 
among Younger Adults

Unpleasantness



How do we keep the useful associations 
present in word embeddings, but get rid of 
the harmful ones?

• Recent research has begun examining ways to 
debias word embeddings by:

• Developing transformations of embedding spaces 
that remove gender stereotypes but preserve 
definitional gender

• Changing training procedures to eliminate these 
issues before they arise

• Although these methods reduce bias, they do not 
eliminate it

• Increasingly active area of study:
• https://facctconference.org
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Now that we 
have more 
advanced word 
embeddings….

• We can incorporate these word embeddings in 
more sophisticated text classification models

• Extremely popular modern text classification 
model: Neural networks
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What are 
neural 

networks?

• Classification models comprised of 
interconnected computing units, or 
neurons, (loosely!) mirroring the 
interconnected neurons in the human brain
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Neural networks 
are fundamental to 
many modern NLP 

tasks.

ACL Year # Paper Titles with “Neural” % Paper Titles with “Neural”
2000 0 0

2001 0 0

2002 0 0

2003 0 0

2004 1 1/89 = 1.1%

2005 0 0

2006 0 0

2007 1 1/132 = 0.8%

2008 0 0

2009 1 1/216 = 0.5%

2010 0 0

2011 0 0

2012 0 0

2013 5 5/330 = 1.5%

2014 11 11/288 = 3.8%

2015 37 37/320 = 11.6%

2016 47 47/330 = 14.2%

2017 77 77/304 = 25.3%

2018 81 81/383 = 21.1%

2019 108 108/661 = 16.3%

2020 93 93/779 = 11.9%

2021 68 68/712 = 9.55%

2022 47 47/701 = 6.7%
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Are neural networks new?
1943: First 

mathematical 
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward network 

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, 
Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a 
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Natalie Parde - UIC CS 421 87



Why haven’t 
they been a 
big deal until 
recently 
then?

• Data

• Computing power
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Neural 
networks 
are 
everywhere!
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There are many 
types of neural 
networks!



Feedforward 
Neural 
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in 
the last layer are hidden from external 
viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value
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Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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Are 
feedforward 

neural 
networks an 
example of 

deep 
learning?

98



How many layers is “deep?”

Input Output
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How many layers is “deep?”

Input Output
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How many layers is “deep?”

Input Output
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Neural 
networks tend 

to be more 
powerful than 

traditional 
classification 

algorithms.

• Traditional classification algorithms usually 
assume that data is linearly separable

• In contrast, neural networks learn nonlinear 
functions
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Neural networks also commonly use different types 
of features from traditional classification algorithms.

• Manually engineer a set of features and extract them for each 
instance
• Part-of-speech label
• Number of exclamation marks
• Sentiment score

Traditional classification

• Implicitly learn features and extract those for each instance
• Word embeddings

Neural networks
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Neural 
networks 
aren’t 
necessarily 
the best 
classifier 
for all 
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network → 
more data needed

Neural nets tend to work very well 
for large-scale problems, but not 
as well for small-scale problems
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How do you build 
a neural network?

105



Building 
Blocks for 

Neural 
Networks

• At their core, neural networks are 
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥@, … , 𝑥A, a unit has a set of corresponding 
weights 𝑤@, … , 𝑤A and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑B𝑤B𝑥B
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Sound 
familiar?

• This is exactly the same sort of weighted 
sum of inputs that we needed to find with 
logistic regression!

• Recall that we can also represent the 
weighted sum 𝑧 using vector notation:

• 𝑧 = 𝑤 # 𝑥 + 𝑏
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Computational 
Units

• The weighted sum of inputs computes a 
linear function of 𝑥

• As we already saw, neural networks 
learn nonlinear functions

• These nonlinear functions are 
commonly referred to as activations

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 # 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression
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Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
Natalie Parde - UIC CS 421 113



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒89.;< = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒89.;< = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Although some 
neural networks 
look like logistic 
regression, they 
can be 
customized in 
many ways.
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions
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Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = H!IH"!

H!JH"!

• Once again differentiable
• Larger derivatives → generally faster 

convergence
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒= − 𝑒8=

𝑒= + 𝑒8=

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒9.;< − 𝑒89.;<

𝑒9.;< + 𝑒89.;< = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒9.;< − 𝑒89.;<

𝑒9.;< + 𝑒89.;< = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Comparing 
sigmoid, 
tanh, and 
ReLU
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Summary: 
Word 
Embeddings 
and 
Introduction to 
Neural 
Networks

N
atalie Parde -U

IC
 C

S 421

• Word embeddings can be evaluated through their 
incorporation in other language tasks

• By altering their training sets and hyperparameters, word 
embeddings can be used to model syntactic and semantic 
properties and even the evolution of language over time

• Word embeddings may reflect the same biases found in 
the data used to train them

• Neural networks are classification models that implicitly 
learn sophisticated feature representations during their 
training process

• Feedforward neural networks are the simplest type of 
neural network, and are comprised of interconnected 
layers of computing units through which information is 
passed forward from one layer to the next

• An activation function is one of many possible non-linear 
functions applied to the weighted sum of inputs for a 
computing unit
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