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What we know so far....

* Word vectors: Vectors of numbers used to encode language

« Simple techniques to create word vectors:
« Co-occurrence frequency (bag of words)
* TF-IDF
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Word vectors indicate a
word’s meaning with
respect to other words!

« Each vector represents a point in
the n-dimensional semantic space

* |V|-dimensional word
embedding & |V|-dimensional
semantic space
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Now that we know how to create a vector space model, how

can we use it to compute similarity between words?

« Cosine similarity

« Based on the dot product (also called inner
product) from linear algebra

* dot product(v,w) =v-w =
ZIiV=1 ViW; = 1wy + VUoW»H + .- 4 UVnWhnN

« Similar vectors (those with large values in the same
dimensions) will have high values; dissimilar
vectors (those with zeros or low values in different
dimensions) will have low values




* More frequent words tend to co-occur with
more words and have higher co-occurrence
values with each of them

Why don’t * Thus, the raw dot product will be higher
for frequent words

we just use [N

the dot * We want our similarity metric to tell us
how similar two words are regardless of
prOd UCt? frequency

* The simplest way to fix this problem is to
normalize for the vector length (divide the
dot product by the lengths of the two vectors)




Normalized Dot
Product = Cosine of
the angle between
two vectors

* The cosine similarity metrics between two vectors v and w can thus be computed
as:
N o
V|[W
M \/Zli\ilviz\/zli\ilwiz

» This value ranges between 0 (dissimilar) and 1 (similar) for frequency or TF-IDF
vectors

e cosine(v,w) =
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Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325

| cos(unicorn, information) = ? ﬁ 0




Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325

. f " B [442,8,2]-[5,3982,3325]
cos(unicom, information) = V4422+82+22V52+39822+33252 ¢




Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
442x54+8%x3982+2+%3325

cos(unicorn, information) =

V4422+82+224/524398224+33252

o O



Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
. . ) 442+5+8+3982+2%3325
cos(unicorn, information) = = 0.017
( ) V44224824224/52439822433252




Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
442x54+8%x3982+2+x3325

cos(unicorn, information) =

V4422+82+224/524398224+33252

= 0.017

5+%5+1683%3982+1670%3325

cos(digital, information) =

V52+16832+16702vV52+39822+33252

= 0.996
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Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
. . ) 442+5+8+3982+2%3325
cos(unicorn, information) = = 0.017
( ) V44224824224/52439822433252

5¥5+1683%x3982+1670%3325

= (0.996
V52+16832+16702vV52+39822+33252

cos(digital, information) =

= R = T =
: 0101 0 ' ﬁ Result: information is way closer to digital than it is to unicorn!

Natalie Parde - UIC CS 421 12



« No capacity to infer deeper semantic

o ] content

L|m|ta_t|ons of « Can’t encode the following using a bag-of-
Classic Word words vector:

Representation * Synonyms

* Antonyms
 Positive/negative connotations
* Related contexts

Strategies
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Additionally,
remember that
bag of words

* Very high-dimensional

.  Lots of empty (zero-valued) cells
representations

are sparse.




* Lower-dimensional (~ 50-1000 cells)
 Most cells with non-zero values

We’d

prefer to
» We'd also prefer to be able to encode other
dimensions of meaning than word type have dense
alone
* Good should be: VeCto rs'

« Far from bad
* Close to great




It turns out that dense vectors are
preferable for NLP tasks for many

reasons!

 Easier to include as features in machine learning

systems
 Classifiers have to learn ~100 weights instead of

~50,000
* Fewer parameters — lower chance of overfitting
« May generalize better to new data

« Better at capturing synonymy
 \Words are not distinct dimensions: instead,
dimensions correspond to meaning
components



What is the best way to generate
dense word vectors?

* The answer changes quite frequently:
e https://super.gluebenchmark.com/leaderboard/

 Current state-of-the-art models are bidirectional (trained to
represent words using both their left and right context),
contextual (produce different vectors for different word senses)
models built using Transformers (a type of neural network)

\
N\

G
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https://super.gluebenchmark.com/leaderboard/

Somewhere between TF-IDF and
contextual word vectors....

* Word2Vec: A method for automatically
learning dense word representations
from large text corpora

- UIC CS 421

m 123 214 321 432 135 243 522 134 233




Characteristics of
Word2Vec

 Non-contextual

>

“"agmgn"”

‘- >

 Fast

» Efficient to train




 Technically a tool for implementing word
vectors:

e https://code.google.com/archive/p/word2vec

Wordzvec * The algorithm that people usually refer to

as Word2Vec is the skip-gram model with
negative sampling



https://code.google.com/archive/p/word2vec

How does Word2Vec work?

* Instead of counting how often each word occurs near each
context word, train a classifier on a binary prediction task

* |s word w likely to occur near context word c?
* The twist: We don’t actually care about the classifier!

* We use the learned classifier weights from this prediction task
‘ as our word embeddings

\
N\

G
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None of this

requires
yEREL
supervision.

Text (without any other labels) is framed as implicitly supervised
training data

« Given the question: Is word w likely to occur near context word c?

 If woccurs near c in the training corpus, the gold standard
answer is “yes”

This idea comes from neural language modeling (neural networks
that predict the next word based on prior words)
However, Word2Vec is simpler than a neural language model:

* It has fewer layers

|t makes binary yes/no predictions rather than predicting words



this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4
« Assume the following:
What _d_oes_ the « Text fragment: this sunday, watch the super bowl
I classification $t5:32 2
$ « Target word: super
taSk IOOk Ilke? « Context window: + 2 words



this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4
What does the « Goal: Train a classifier that, given a tuple (t, c¢) of a
. . target word t paired with a context word c (e.g., (super,
ClaSSIflcatlon bowl) or (super, laminator)), will return the probability
that c is a real context word

task look like? . P+ | o)



How do we predict
P(+ | t,c)?

* We base this decision on the similarity between the input vectors
fortand c

* More similar vectors — more likely that ¢ occurs near t



High-Level
Overview:
How
Word2Vec
Works

» Treat the target word w

and a neighboring context
word ¢ as positive
samples

Natalie Parde - UIC CS 421
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High-Level
Overview:
How
Word2Vec
Works

» Treat the target word w
and a neighboring context
word ¢ as positive
samples

« Randomly sample other
words in the lexicon to get
negative samples

Natalie Parde - UIC CS 421
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H |g h-Level « Treat the target word w

and a neighboring context

Overview: word ¢ as positive
H ow samples
« Randomly sample other
Word2Vec words in the lexicon to get
Works negative samples

* Train a classifier to
distinguish between those pumg |
two cases '

Natalie Parde - UIC CS 421 28



H |g h-Level « Treat the target word w

and a neighboring context

Overview: word ¢ as positive
H ow samples
« Randomly sample other
Word2Vec words in the lexicon to get
Works negative samples

* Train a classifier to
distinguish between those pumg |
two cases '

» Use the weights from that
classifier as the word

embeddings super (041 [05 |01 |03
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* Represent all words in a o lo 11 lo lo
vocabulary as a vector

« Treat the target word w
and a neighboring context

High-Leve| word ¢ as positive
Overview: S
- « Randomly sample other
How words in the lexicon to get

negative samples

Word2Vec
Works

super o

0 0 1 0 0

4

super | 0.1 0.5 0.1 0.3

» Use the weights from that
classifier as the word
embeddings

Natalie Parde - UIC CS 421 30



How do we compute
P(+ | t,c)?

* This is based on vector similarity

* We can assume that vector similarity is proportional to the dot
product between two vectors

o Similarity(t,c) x t - c



A dOt  How do we turn it into a probability?
product B e
gives us a Mecnset
number! * Then:

not a « P(+ | t0) = ——
probability. AR

1+e~ b€

e_t°c

1+e~t¢
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We’re usually
nOt jUSt IOOking this sunday, we:ch t:ze sutper b(C);NI : 5:30 p.m.
at words In "P(ﬂtc):

iIsolation. o) =

1+e~tC

« What if we're considering the probability of a span of text occurring in the context of a target word?
« Simplifying assumption: All context words are independent
« S0, we can just multiply their probabilities:

« P(+|t,csx) = [1E :

* log P(+|t,c14) = XX, log

or

1
1+e b€




With this in this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4

u
P(+|super, P+l P(+[super,  P(+|
E E EE watch) = .7 super, bowl) = .9 super
the) = at) =
.5 5

P(+|t,C1_-k) =7*5*9* 5= 1575

» Given t and a context window of k words c,.,, we can assign a probability based on how
similar the context window is to the target word

« We do so by applying the logistic function to the dot product of the embeddings of t with
each context word ¢



Computing P(+ | t,c)
and P(-| t,c): V

« However, we still have some unanswered
questions....

« How do we determine our input
vectors?

« How do we learn word embeddings
throughout this process (this is the real
goal of training our classifier in the first
place)?

Natalie Parde - UIC CS 421



Input Vectors: vV

 Input words are typically represented as one-hot vectors

- Binary bag-of-words approach: Place a “1” in the position
corresponding to a given word, and a “0” in every other
position

super bowl

Natalie Parde - UIC CS 421 36



Learned Embeddings....

« Embeddings are the weights learned for a two-layer classifier that predicts
P(+]tc)

» Recall from our discussion of logistic regression:
1 1

ry=o0(2)= 1+e—2  14+e-wx+b

« This is quite similar to the probability we're trying to optimize:
. P(+]|tc)=—

14+e~tc

Natalie Parde - UIC CS 421 37



What does this look like?

Start with an input £

-
————————
”

Natalie Parde - UIC CS 421
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What does this look like?

Get the one-hot vector for ¢

-
-
- -
------------
Y
-
-
-

Natalie Parde - UIC CS 421
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What does this Igok like?

-—

rFeed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted

Lsum of inputs \

super

J

Natalie Parde - UIC CS 421
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What does this look like?
)

Feed the outputs from those
units into a final unit that
predicts whetheraword cis |\
: \
a valid context for ¢ )

super

. J

Natalie Parde - UIC CS 421 41



super

e

units for every possible ¢

Create one of those output |5

————




Behind the scenes....

S

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

- —

~_~\

z=0*xw; +0*xwy +1*xwz+--+0*w,

|
|
l
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Behind the scenes....

/

[ Since our inputs are one-hot — P(+ [ tcy)

vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
— Lfor each input word

— P(+ | 1.c)

— P(+[tc5)

— P(+ [ 1.cy)

Zz=0%xw; +0*xwy, + 1xwyz+ -+ 0xw, -

Z2=0xw; +0xwy+1xwys +--+0xw, (€=

—> P(+ | 1.cn)

——

z=0*w; +0xwy + 1 *xwpz +--+0xw, ="
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These are the weights we’re interested in! \/

super

~ calendar . P(+ | t,c4)
—
coffee .3 -5 .8
’/
z=0xw;+0xwy, +1x0.14 -+ 0*w, [€ super A 4 .8 J
z=0%xw; +0xwy +1%0.7+--+0x*w, [€ 4 lobe 4 9 5
,,, . g : : : 5> P(+ | t,Cn)
Y 4 - L} \' IHUIII'\JHI 1AL L
&
-
z=0*w; +0*xwy, +1x084+ -4+ 0w, ="
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How do we optimize these
weights over time?

« The weights are initialized to some random value for each word

* They are then iteratively updated to be more similar for words that occur in similar contexts in the
training set, and less similar for words that do not

« Specifically, we want to find weights that maximize P(+|{,c) for words that occur in similar
contexts and minimize P(+|f,c) for words that do not, given the information we have at the time



Predicted: 0.9

Actual: 0 \Q\B

Since we initialize 0
__our weights
.. randomly, the
:: classifier’s first
.. prediction will
"~ almost certainly be
wrong.

super




However, the error :

Predicted: 0.9
Actual: O

Error: -0.9

super

__ values from our

.. Incorrect guesses
.. are what allow us
:: to improve our

embeddings over
time.

48



However, the error
.. values from our
.. incorrect guesses
:: are what allow us
.. to improve our
"~ embeddings over
time.

super

Predicted: 0.9

Actual: 0 | @
Error: -0.9 j

¢4 so if we tried to make these predictions

Adjust the embeddings (weights) for t and
again, we'd have lower error values




However, the error :

Predicted: 0.4
Actual: 0

Error: -0.4

super

__ values from our

.. Incorrect guesses
.. are what allow us
:: to improve our

embeddings over
time.

50



..........
e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

« We are able to assume that all occurrences of words in similar contexts in our training
corpus are positive samples



..........
e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

 However, we also need negative samples!

* In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
« We need to create our own negative examples



..........
e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

« How to create negative examples?
» Target word + “noise” word that is sampled from the training set

» Noise words are chosen according to their weighted unigram frequency p,(w), where a
IS a weight:
_countmw)«
* Pa(W) = Y., countw’)@




e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

Wh at iS Ou r - Negative Examples
training data? (T OSSN

super calendar
super watch
S— the super exam
super loud
super bowl
super bread
super at
_ . super cellphone
* How to create nega’gve examples. | | S— S—
« Often, a = 0.75 to give rarer noise words slightly higher — B—
probability of being randomly sampled
super drive

« Assuming we want twice as many negative samples as positive
samples, we can thus randomly select noise words according to
weighted unigram frequency



Learning Skip-Gram Embeddings

 The model uses these positive and negative samples to:

« Maximize the vector similarity of the (target, context) pairs drawn from
positive examples

* Minimize the vector similarity of the (target, context) pairs drawn from
negative examples
« Parameters (target and context weight vectors) are fine-tuned by:
» Applying stochastic gradient descent
« Optimizing a cross-entropy loss function
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Learning Skip-Gram Embeddings

« Even though we're maintaining two embeddings for each word during training
(the target vector and the context vector), we only need one of them

 When we’re finished learning the embeddings, we can just discard the context
vector

 Alternately, we can add them together to create a summed embedding of the
same dimensionality, or we can concatenate them into a longer embedding
with twice as many dimensions

Natalie Parde - UIC CS 421 56



Context window size can impact
performance!

 Because of this, context window size is often tuned on a validation or
development set

« Larger window size — more required computations (important to consider
when using very large datasets)



What if we want to predict a target word
from a set of context words instead?

« Continuous Bag of Words (CBOW)
« Another variation of Word2Vec

* Very similar to skip-gram model!

* The difference:

* Instead of learning to predict a context word from a target word vector, you
learn to predict a target word from a set of context word vectors



Skip-Gram
vs. CBOW

Embeddings

In general, skip-gram
embeddings are good with:

 Small datasets
* Rare words and phrases

CBOW embeddings are
good with:

» Larger datasets (they're faster to
train)
* Frequent words

Natalie Parde - UIC CS 421



Are there any

other variations
of Word2Vec?

» fastText

* An extension of Word2Vec that also
Incorporates subword models

» Designed to better handle unknown
words and sparsity in language

Natalie Parde - UIC CS 421
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fastText

» Each word is represented as:
/7 ° ltself
« A bag of constituent n-grams =-~__

~ \
\L H
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fastText

« Skip-gram embedding is learned for each constituent
n-gram

« Word is represented by the sum of all embeddings of
its constituent n-grams

« Key advantage of this extension?

 Allows embeddings to be predicted for unknown
words based on subword constituents alone

Source code available online:
https://fasttext.cc/

Natalie Parde - UIC CS 421 62
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Word2Vec and fastText
embeddings are nice ...but
what’s another alternative?

« Word2Vec is an example of a
predictive word embedding model

» Learns to predict whether
words belong in a target word’s
context

 Other models are count-based
« Remember co-occurrence
matrices?

* GloVE combines aspects of both
predictive and count-based models

Natalie Parde - UIC CS 421
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Global Vectors for Word
Representation (GloVe)

« Co-occurrence matrices quickly grow extremely large

* Intuitive solution to increase scalability?
* Dimensionality reduction!

 However, typical dimensionality reduction strategies may result in too
much computational overhead

* GloVe learns to predict weights in a lower-dimensional space that correspond
to the co-occurrence probabilities between words



* Why is this useful?

* Predictive models — black box
» They work, but why?

» GloVe models are easier to interpret

* GloVe models also encode the ratios of
co-occurrence probabilities between
different words ...this makes these
vectors particularly useful for word
analogy tasks

Natalie Parde - UIC CS 421 C

65



How does GloVe work?

--------—--
— R
- —~
-
-~y

=

_ 123 456 Build a huge word-context
_ co-occurrence matrix
t . 789




How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

Scaler biases for t; and ¢;

N

Define soft constraints for each word pair == w/w; + b; + b; = log X;;
-~ L{'
/ S ~
ll ) N._-.‘\
Vector fort;  Vector for ¢; Co-occurrence count for tic;
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How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

1 Weighting function:

Define a cost function Xij )%, Xij < XMAX

vov
_ )
1 /= ZZJC(XUXWLTWJ’ +b; + b —logX;; )? f(Xij) = { “tmax

1, otherwise
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How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

WL-TW]- + b; + b; = log X;;

g s
g \ Minimize the cost function to
Define a cost function | | ¥ 7 learn ideal embedding values
—9q /= sz X)Wl 'w; + by + b — log X;; )? for w; and w,
(=1j=1_
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How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

WL-TW]- + b; + b; = log X;;

- I

,,f""“\\ (
¢ i . | Minimize the cost function to
Define a cost function | | ¥ 7 “~o learn ideal embedding values
o J = ZZ]C U)(W Wj +b +b logXU )2 for W, and W;
(=1j=1_
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Why does
GloVe

work?

« Ratios of co-occurrence probabilities have the
potential to encode word similarities and
differences

 These similarities and differences are useful
components of meaning

* GloVe embeddings perform particularly
well on analogy tasks

Natalie Parde - UIC CS 421
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Which is best ...Word2Vec or
GloVe?

It depends on your datal

In general, Word2Vec and GloVe produce similar embeddings
Word2Vec — slower to train but less memory intensive

GloVe — faster to train but more memory intensive

« Word2Vec and Glove both produce context-independent embeddings

« Contextual embeddings:
 ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
« BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)

Natalie Parde - UIC CS 421
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Summary:
Word2Vec

and GloVe

Cosine similarity, commonly used to calculate word
vector similarity, measures the distance between vectors
by computing the normalized dot product between them

Word2Vec is a predictive word embedding approach that
learns word representations by training a classifier to
predict whether a context word should be associated with
a given target word

fastText is an extension of Word2Vec that also
incorporates subword models

GloVe is a count-based word embedding approach that
learns an optimized, lower-dimensional version of a co-
occurrence matrix
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Evaluating Vector
Models

» Extrinsic Evaluation

« Add the vectors as features in a downstream NLP task,
and see whether and how this changes performance
relative to a baseline model

» Most important evaluation metric for word embeddings!
« Word embeddings are rarely needed in isolation

« They are almost solely used to boost performance
in downstream tasks

* Intrinsic Evaluation
» Performance at predicting word similarity
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Evaluating Performance at
Predicting Word Similarity

« Compute the cosine similarity between vectors for pairs of words

« Compute the correlation between those similarity scores and word similarity ratings for the
same pairs of words manually assigned by humans
» Corpora for doing this:
* WordSim-353
« SimLex-999
 TOEFL Dataset

» Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d)
correlated
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Other Common Evaluation Tasks

mam  ocmantic Textual Similarity

« Evaluates the performance of sentence-level similarity
algorithms, rather than word-level similarity

s Analogy

« Evaluates the performance of algorithms at solving analogies
« Chicago is to lllinois as Omaha is to (Nebraska)

 Embedding is to embeddings as assignment is to
(assignments)

Natalie Parde - UIC CS 421
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Semantic Properties of
Embeddings

« Major advantage of dense word embeddings: Ability to capture elements of meaning

« Context window size impacts what type of meaning is captured
« Shorter context window — more syntactic representations
 Information is from immediately nearby words
* Most similar words tend to be semantically similar words with the same parts of speech
* Longer context window — more topical representations
 Information can come from longer-distance dependencies

» Most similar words tend to be topically related, but not necessarily similar (e.g., waiter and
menu, rather than spoon and fork)
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Analogy

 Word embeddings can also capture
relational meanings

» This is done by computing the offsets
between values in the same columns for
different vectors

 Famous examples (Mikolov et al., 2013;

Levy and Goldberg, 2014):
« king - man + woman = queen
« Paris - France + Italy = Rome
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Word embeddings have
many practical applications. * Incorporated as

features in nearly
every modern NLP
task

« Useful for
computational social

science
« Studying word
meaning over time
« Studying implicit
associations
between words
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Embeddings and Historical Semantics

spread | . -="" B N
Compute multiple embedding I
spaces, each using only texts r-‘--==::: """" - coed broadcast (1850s)
from a specific historical period | \ =~ —
p & - \*\ scatter | sow |
1 N SOWS
: - \
,l circulated ¥
broadcast (1900s)
rs
/,’
l, ___
/ [

Useful corpora:
Google N-grams:

/
:’ — https://books.google.com/ngrams
4 Corpus of Historical American English:

https://www.english-corgora.org/coha/

broadcast (1990s)
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Unfortunately, word embeddings
can also end up reproducing
implicit biases and stereotypes
latent In text.

» Recall: king - man + woman = queen
* Word embeddings trained on news corpora
also produce:

* man - computer programmer + woman =
homemaker

» doctor - father + mother = nurse

 Very problematic for real-world applications
(e.g., resume scoring models)
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« Caliskan et al. (2017) identified known, harmful
implicit associations in GloVe embeddings

Thus, learning word representations is an
ethically complex topic!

Unpleasantness
- African-American European-American
Bias and

Unpleasantness

Names Common
among Younger Adults

Embeddings pesecniae
g Older Adults
Mathematics
Male Names h Female Names
Arts '
Male Names E Female Names

/
_

Natalie Parde - UIC CS 421 82




How do we keep the useful associations
present in word embeddings, but get rid of
the harmful ones?

* Recent research has begun examining ways to
debias word embeddings by:

» Developing transformations of embedding spaces
that remove gender stereotypes but preserve
definitional gender

« Changing training procedures to eliminate these
issues before they arise

 Although these methods reduce bias, they do not
eliminate it

 Increasingly active area of study:
» https://facctconference.org



https://facctconference.org/

Now that we
have more

advanced word
embeddings....

« We can incorporate these word embeddings in
more sophisticated text classification models

« Extremely popular modern text classification
model: Neural networks

Natalie Parde - UIC CS 421 C



What are
neural
networks?

 Classification models comprised of
iInterconnected computing units, or
neurons, (loosely!) mirroring the
Interconnected neurons in the human brain

Natalie Parde - UIC CS 421
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ACL Year # Paper Titles with “Neural” | % Paper Titles with “Neural”

2000 0 0
2001 0 0
2002 0 0
2003 0 0
2004 1 1/89=1.1%
2005 0 0
2006 0 0
N eu ral nEtWO rkS 2007 1 1/132 = 0.8%
2008 0 0
are fundamental to — 1 —
many modern NLP 20 o0 :
2011 0 0
tasks. - X -
2013 5 5/330 = 1.5%
2014 11 11/288 = 3.8%
2015 37 37/320 = 11.6%
2016 47 47/330 = 14.2%
2017 77 77/304 = 25.3%
2018 81 81/383 =21.1%
2019 108 108/661 = 16.3%
2020 93 93/779 = 11.9%
2021 68 68/712 = 9.55%

2022 47 47/701 =6.7%




Are neural networks new?

1943: First 1971: Implementation 1982: First
mathematical of feedforward network recurrent neural
NN model’ with 8 layers? network®

1957: The 1982: First

perceptron is convolutional
proposed? neural network*

1MC_3C?U”°Ch, W. S.,_and W. Pitts. "A Iogi_cal Calfwlus of the ideas immanent in nervous 3lvakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133. Man, and Cybernetics, (4), 364-378.

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
Para. Cornell Aeronautical Laboratory. mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

SHopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
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Why haven'’t

they been a . Data

blg deal until « Computing power
recently

then?
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Neural
networks
are
everywhere!

Augmenting Neural Networks with First-order Logic

Tao Li
University of Utah
tli@cs.utah.edu

Abstract

Today, the dominant paradigm for training
neural networks involves minimizing task loss
on a large dataset. Using world knowledge to
inform a model, and yet retain the ability to
perform end-to-end training remains an open
question. In this paper, we present a novel
framework for introducing declarative knowl-
edge to neural network architectures in order
to guide training and prediction. Our frame-
work systematically compiles logical state-
ments into computation graphs that augment

Vivek Srikumar
University of Utah
svivek@cs.utah.edu

Paragraph: Gaius Julius Caesar (July 100 BC - 15 March 44
BC), Roman g statesman, Consul and
notable FITT of ISHAIOSE, played a critical
role in the cvents that led to the demise of the
Roman Republic and the risc of the Roman
Empire through his various military campaigns.

Question: - Which Foman gssial is known for prose?

Figure 1: An example of reading comprehension that
illustrates alignments/attention. In this paper, we con-
sider the problem of incorporating external knowledge
about such alignments into training neural networks.

Neural Relation Extraction for Knowledge Base Enrichment

Bayu Distiawan Trisedya', Gerhard Weikum?, Jianzhong Qi', Rui Zhang'*
! The University of Melbourne, Australia
? Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
{btrisedya@student, jianzhong.qi@, rui.zhang@}unimelb.edu.au
weikum@mpi-inf.mpg.de

Abstract

We study relation extraction for knowledge
base (KB) enrichment. Specifically, we aim
to extract entities and their relationships from
sentences in the form of triples and map the
clements of the extracted triples to an existing
KB in an end-to-end manner. Previous stud-
ies focus on the extraction itself and rely on
Named Entity Disambiguation (NED) to map
triples into the KB space. This way, NED er-
rors may cause extraction errors that affect the
overall precision and recall. To address this

Do Neural Dialog Systems Use the Conversation History Effectively?

An Empirical Study
Chinnadhurai Sankar'>* Sandeep Subramanian’>°
Christopher Pal'*® Sarath Chandar!?2* Yoshua Bengio 12

IMila  *Université de M

gal ]Eoole?' hni de M 1

'xGoogle Research, Brain Team “Element Al Montréal

Abstract

Neural generative models have been become
increasingly popular when building conversa-
tional agents. They offer flexibility, can be eas-
ily adapted to new domains, and require min-
imal domain engineering. A common criti-
cism of these systems is that they seldom un-
derstand or use the available dialog history ef-
fectively. In this paper, we take an empiri-
cal approach to understanding how these mod-

PO L BRI T TN PRs X DOUSIons v £

they still lack the ability to “understand” and pro-
cess the dialog history to produce coherent and
interesting responses. They often produce bor-
ing and repetitive responses like “Thank you.” (Li
etal., 2015; Serban et al., 2017a) or meander away
from the topic of conversation. This has been often
attributed to the manner and extent to which these
models use the dialog history when generating re-
sponses. However, there has been little empirical
investigation to validate these speculations.

Tnput sentence:
"New York University is a private

university in Manhattan."
Unsupervised approach output:

NYU, 15, private university)

(NYU,is private university in,Manhattan)

Supervised approach output:
YU, instance of, Private U
NYU, located in, Manhattan)
Canonicalized output:
(049210, P31, 0902104)
{049210, P131, 011299)

ersity,

Table 1: Relation extraction example.

Cross-Domain Gen

of Neural C i 'y Parsers

Daniel Fried” Nikita Kitaev* Dan Klein
Computer Science Division
University of California, Berkeley
{dfried, kitaev, klein}@cs.berkeley.edu

Abstract

Neural parsers obtain state-of-the-art results
on benchmark trecbanks for constituency
parsing—but to what degree do they general-
ize to other domains? We present three re-
sults about the generalization of neural parsers
in a zero-shot setting: training on trees from

treebanks still transfer to out-of-domain improve-
ments (McClosky et al., 2006).

Is the success of neural constituency parsers
(Henderson 2004; Vinyals et al. 2015; Dyer et al.
2016; Cross and Huang 2016; Choe and Charniak
2016; Stern et al. 2017; Liu and Zhang 2017; Ki-
taev and Klein 2018, inter alia) similarly transfer-

one corpus and evaluating on out-of-d
corpora. First, neural and non-neural parsers
generalize comparably to new domains. Sec-
ond, incorporating pre-trained encoder repre-
sentations into neural parsers substantially im-
proves their performance across all domains,
but does not give a larger relative improvement
for out-of-domain treebanks. Finally, despite
the rich input representations they learn, neu-

ral parsers stll benefit from structured mllp\N ata" ':eofpa redlenstlmewplm@: C S z_2 1

able to f-domain treebanks? In this work, we
focus on zero-shot generalization: training parsers
on a single trecbank (e.g. WSJ) and evaluating
on a range of broad-coverage, out-of-domain tree-
banks (e.g. Brown (Francis and Kucera, 1979),
Genia (Tateisi et al., 2005), the English Web Tree-
bank (Petrov and McDonald, 2012)). We ask three
questions about zero-shot generalization proper-

Effective Adversarial Regularization for Neural Machine Translation

Motoki Sato’, Jun Suzuki®*, Shun Kiyono®~
Preferred Networks, Inc., 2Tohoku University,
SRIKEN Center for Advanced Intelligence Project
sato@preferred.jp, jun.suzuki @ecei.tohoku.ac.jp, shun kiyono@riken.jp

Abstract

A regularization technique based on adversar-
ial perturbation, which was initially developed
in the field of image processing, has been suc-
cessfully applied to text classification tasks
and has yielded attractive improvements. We
aim to further leverage this promising method-
ology into more sophisticated and critical neu-
ral models in the natural language processing
field, i.e., neural machine translation (NMT)
models. However, it is not trivial to apply this

. Encoder

=] ol ]
(7] i

Figure 1: An intuitive sketch that explains how we
add adversarial perturbations to a typical NMT model
structure for adversarial regularization. The definitions
of e; and f; can be found in Eq. 2. Moreover, those of
7; and 7 are in Eq. 8 and 13, respectively.
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There are many
types of neural
networks!

Feedforward neural networks

Recurrent neural networks

Convolutional neural networks

Transformers

90
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 Earliest and simplest form of neural network
 Data is fed forward from one layer to the next

* Each layer:
* One or more units
Feedforward - A unit in layer n receives input from all
Neural units in layer n-1 and sends output to all
units in layer n+1
Networks * Aunitin layer n does not communicate

with any other units in layer n

* The outputs of all units except for those in
the last layer are hidden from external
viewers




Feedforward Neural Networks

o

Feature vector (e.g., 300-
; |dimensional word embedding)

Predicts a class label or output value

P 4
\N —’
—
—y _— ’___—
~y -

~ ”

O
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Feedforward Neural Networks
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Feedforward Neural Networks

- = T~

< N

Data is fed forward > ( \
from input to the
first hidden layer

Natalie Parde - UIC CS 421
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Feedforward Neural Networks

om T mm oy o ImE Emm o Ny

Data is fed forward from ( \ [ \
the first hidden layer to I
the second hidden layer

~
——————
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Feedforward Neural Networks

—-——__ - — T~
— _—
-
- -

Data is fed forward from ( \ ( \
the second hidden layer
to the output unit
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Feedforward Neural Networks

— >| Class label

Natalie Parde - UIC CS 421 97



feedforward
heural

networks an
example of
deep
learning?

* Yes ...if they have multiple layers

» People often tend to refer to neural
network-based machine learning as
deep learning

 Why?
* Modern networks often have

many layers (in other words,
they’'re deep)

98
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How many layers is “deep?”

Natalie Parde - UIC CS 421
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How many layers is “deep?”
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How many layers is “deep?” @
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Neural
hetworks tend
to be more
powerful than

traditional
classification
algorithms.

 Traditional classification algorithms usually

assume that data is linearly separable

* |n contrast, neural networks learn nonlinear

functions

Natalie Parde - UIC CS 421



Neural networks also commonly use different types
of features from traditional classification algorithms.

mmme | raditional classification

« Manually engineer a set of features and extract them for each
Instance

» Part-of-speech label
« Number of exclamation marks
e Sentiment score

Neural networks

 Implicitly learn features and extract those for each instance
« Word embeddings

Natalie Parde - UIC CS 421 103



Neural
networks
aren’t
necessarily

the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network —
more data needed

Neural nets tend to work very well
for large-scale problems, but not
as well for small-scale problems



How do you build
a neural network?




» At their core, neural networks are
comprised of computational units

Bu | Id | ng « Computational units:

1. Take a set of real-valued numbers as
Blocks for Ut
Neu ral 2. Perform some computation on them

3. Produce a single output

Networks

Natalie Parde - UIC CS 421 106



* The computation performed by each unit is
a weighted sum of inputs

» Assign a weight to each input
 Add one additional bias term

Computational

Units  More formally, given a set of inputs

X1, -, Xy, @ UNit has a set of corresponding
weights wy, ..., w,,; and a bias b, so the
weighted sum z can be represented as:

® Z=b+ Ziwixi

Natalie Parde - UIC CS 421



* This is exactly the same sort of weighted
sum of inputs that we needed to find with

Sound logistic regression!

familiar? - Re_call that we can_also represent ’ghe
weighted sum z using vector notation:

*zZz=w-x+b

Natalie Parde - UIC CS 421 108



* The weighted sum of inputs computes a
linear function of x

» As we already saw, neural networks
learn nonlinear functions

Computational

» These nonlinear functions are

U nltS commonly referred to as activations

* The output of a computation unit is thus
the activation value for the unit, y

*y=f(@)=f(w-x+b)




There are many different activation
functions!

softplus

Natalie Parde - UIC CS 421

hyperbolic tangent (tanh)
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There are many different activation
functions!

softplus
hyperbolic tangent (tanh)
| \
\
~ o Exact same sigmoid function used with logistic regression

Natalie Parde - UIC CS 421 111




Computational Unit with Sigmoid
Activation

—]

R



Example: Computational Unit with
Sigmoid Activation

—]

R

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
Natalie Parde - UIC CS 421 113




Example: Computational Unit with
Sigmoid Activation

R

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” [0.5, 0.6]

- “brutalist,” and “architecture”)
Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
Natalie Parde - UIC CS 421 114




Example: Computational Unit with
Sigmoid Activation

/
:
I 0
= Q
! |
| w 6*0.3=0. Z a
| , *( Yl
- Y 5 6
Is :
|
I
= Compute vector (e.g.,
- . , , . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
- “brutalist,” and “architecture”)
Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78

R

0&!

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78
Z = 0.78_0 a ( y |

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

R

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

—]

R

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

0.686
7 = 0.78_& = 0.686 ‘ y | 5 e

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

—]

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Although some
neural networks
look like logistic
regression, they
can be
customized in
many ways.

Natalie Parde - UIC CS 421
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There are many different activation
functions!

softplus

Natalie Parde - UIC CS 421

hyperbolic tangent (tanh)
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There are many different activation
functions!

softplus

S \

hyperbolic tangent (tanh)

~N N\ _ . .
T == ‘E:’artlcularly common activation functions

Natalie Parde - UIC CS 421
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 Variant of sigmoid that ranges from -1 to +1
eZ—_e~Z

Activation: cy=
tan h « Once again differentiable

 Larger derivatives — generally faster
convergence
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Example: Computational Unit with
tanh Activation

0.1+0.18+0.5=0.78
Z = 0.78_@ a ( y |

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with

tanh Activation

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 421

126



Example: Computational Unit with
tanh Activation

0 78 __ —0 78

0078 1 —0.78 = 0.653
z = 078_@ ( ’

Compute vector (e.g.,
T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]

“brutalist,” and “architecture”)

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
tanh Activation

0 78 __ —0 78

0078 1 —0.78 = 0.653

Z = 078_@1 0653(

Compute vector (e.g.,
T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]

“brutalist,” and “architecture”)

—]

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
Natalie Parde - UIC CS 421 128




Example: Computational Unit with

tanh Activation

0.653
z=0.78

-@‘ = 0653»&[0.653

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 421
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Activation:
RelLU

« Ranges from 0 to o«
« Simplest activation function:
* y = max(z, 0)
 Very close to a linear function!
* Quick and easy to compute

Natalie Parde - UIC CS 421
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Example: Computational Unit with
RelLU Activation

0.1+0.18+0.5=0.78
Z = 0.78_@ a ( y |

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
RelLU Activation

0.1+0.18 +0.5=0.78 max(z, 0)
z=0.78_@ a ‘yf

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

R

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
RelLU Activation

max(z,0) = 0.78

z=0.78

|

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0
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Example: Computational Unit with
RelLU Activation

max(z,0) = 0.78

a=0.78ﬂ
\

—]

z=0.78

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0
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Example: Computational Unit with
RelLU Activation

—]

0.78
z=0.78 _@a = (.78 ( y | 078

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Comparing
sigmoid,
tanh, and
RelLU

1.0

0.8

0.6

0.4

0.2}

0.07 =6 -4 -2

2 4 6

8

nearly linear around 0 but outlier values get squashed toward O or 1.

| PP A] The sigmoid function takes a real value and maps it to the range [0,1]. It is

1.0
0.5
x
€
o 0.0
s
]
>
-05
—1.015 =5 0 5 10
(a)

y=max(z,0)

10

—105 -5 0

(b)

10

IO W] The tanh and ReLU activation functions.
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Summary:  Word embeddings can be evaluated through their
Word incorporation in other language tasks

Embeddings - By altering their training sets and hyperparameters, word
and embeddings can be used to model syntactic and semantic

properties and even the evolution of language over time

Introductlon tO « Word embeddings may reflect the same biases found in
Neural the data used to train them

Networks « Neural networks are classification models that implicitly
learn sophisticated feature representations during their
training process

» Feedforward neural networks are the simplest type of
neural network, and are comprised of interconnected
layers of computing units through which information is
passed forward from one layer to the next

* An activation function is one of many possible non-linear
functions applied to the weighted sum of inputs for a
computing unit
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