
Vector
Semantics and
Embeddings
Natalie Parde
UIC CS 421

What we know so far….
• Word vectors: Vectors of numbers used to encode language
• Simple techniques to create word vectors:

• Co-occurrence frequency (bag of words)
• TF-IDF

1 0 0 1 0 1 1 0 0 1 0.7 0 0 0 0 0.9 0.1 0 0 0.5

Natalie Parde - UIC CS 421 2

Word vectors indicate a
word’s meaning with
respect to other words!

Natalie Parde - UIC CS 421 3

Now that we know how to create a vector space model, how
can we use it to compute similarity between words?

• Cosine similarity
• Based on the dot product (also called inner

product) from linear algebra
• dot product v, w = v , w =
∑!"#$ 𝑣!𝑤! = 𝑣#𝑤# + 𝑣%𝑤% +⋯+ 𝑣$𝑤$

• Similar vectors (those with large values in the same
dimensions) will have high values; dissimilar
vectors (those with zeros or low values in different
dimensions) will have low values

Natalie Parde - UIC CS 421 4

Why don’t
we just use
the dot
product?

• More frequent words tend to co-occur with
more words and have higher co-occurrence
values with each of them

• Thus, the raw dot product will be higher
for frequent words

• This isn’t good! ☹
• We want our similarity metric to tell us

how similar two words are regardless of
frequency

• The simplest way to fix this problem is to
normalize for the vector length (divide the
dot product by the lengths of the two vectors)

Natalie Parde - UIC CS 421 5

Normalized Dot
Product = Cosine of
the angle between
two vectors

• The cosine similarity metrics between two vectors v and w can thus be computed
as:

• cosine v,w = v&w
v |w|

= ∑!"#
$)!*!

∑!"#
$)!

% ∑!"#
$ *!

%

• This value ranges between 0 (dissimilar) and 1 (similar) for frequency or TF-IDF
vectors

Natalie Parde - UIC CS 421 6

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?

Natalie Parde - UIC CS 421 7

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223,4,3 , 5,6743,6635
223!84!83! 5!86743!86635!

Natalie Parde - UIC CS 421 8

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

Natalie Parde - UIC CS 421 9

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017

Natalie Parde - UIC CS 421 10

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017

cos(digital, information) = 5∗58:;46∗67438:;<=∗6635
5!8:;46!8:;<=! 5!86743!86635!

= 0.996

Natalie Parde - UIC CS 421 11

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = 223∗584∗674383∗6635
223!84!83! 5!86743!86635!

= 0.017

cos(digital, information) = 5∗58:;46∗67438:;<=∗6635
5!8:;46!8:;<=! 5!86743!86635!

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
Natalie Parde - UIC CS 421 12

Limitations of
Classic Word

Representation
Strategies

• No capacity to infer deeper semantic
content

• Can’t encode the following using a bag-of-
words vector:

• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts

Natalie Parde - UIC CS 421 13

Additionally,
remember that
bag of words
representations
are sparse.

• Very high-dimensional
• Lots of empty (zero-valued) cells

Natalie Parde - UIC CS 421 14

We’d
prefer to
have dense
vectors.

• Lower-dimensional (~ 50-1000 cells)
• Most cells with non-zero values

• We’d also prefer to be able to encode other
dimensions of meaning than word type
alone

• Good should be:
• Far from bad
• Close to great

Natalie Parde - UIC CS 421 15

It turns out that dense vectors are
preferable for NLP tasks for many
reasons!

• Easier to include as features in machine learning
systems

• Classifiers have to learn ~100 weights instead of
~50,000

• Fewer parameters → lower chance of overfitting
• May generalize better to new data

• Better at capturing synonymy
• Words are not distinct dimensions; instead,

dimensions correspond to meaning
components

Natalie Parde - UIC CS 421 16

What is the best way to generate
dense word vectors?
• The answer changes quite frequently:

• https://super.gluebenchmark.com/leaderboard/
• Current state-of-the-art models are bidirectional (trained to

represent words using both their left and right context),
contextual (produce different vectors for different word senses)
models built using Transformers (a type of neural network)

Natalie Parde - UIC CS 421 17

https://super.gluebenchmark.com/leaderboard/

Somewhere between TF-IDF and
contextual word vectors….

• Word2Vec: A method for automatically
learning dense word representations
from large text corpora

critique 1.23 2.14 3.21 4.32 1.35 2.43 5.22 1.34 2.33

Natalie Parde - UIC CS 421 18

Characteristics of
Word2Vec
• Non-contextual
• Fast
• Efficient to train

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

Natalie Parde - UIC CS 421 19

Word2Vec

• Technically a tool for implementing word
vectors:

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to

as Word2Vec is the skip-gram model with
negative sampling

Natalie Parde - UIC CS 421 20

https://code.google.com/archive/p/word2vec

How does Word2Vec work?
• Instead of counting how often each word occurs near each

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task

as our word embeddings

Natalie Parde - UIC CS 421 21

None of this
requires
manual
supervision.

• Text (without any other labels) is framed as implicitly supervised
training data

• Given the question: Is word w likely to occur near context word c?
• If w occurs near c in the training corpus, the gold standard

answer is “yes”
• This idea comes from neural language modeling (neural networks

that predict the next word based on prior words)
• However, Word2Vec is simpler than a neural language model:

• It has fewer layers
• It makes binary yes/no predictions rather than predicting words

Natalie Parde - UIC CS 421 22

What does the
classification
task look like?

• Assume the following:
• Text fragment: this sunday, watch the super bowl

at 5:30 p.m.
• Target word: super
• Context window: ± 2 words

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

Natalie Parde - UIC CS 421 23

What does the
classification
task look like?

• Goal: Train a classifier that, given a tuple (t, c) of a
target word t paired with a context word c (e.g., (super,
bowl) or (super, laminator)), will return the probability
that c is a real context word

• P(+ | t,c)

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

Natalie Parde - UIC CS 421 24

How do we predict
P(+ | t,c)?

• We base this decision on the similarity between the input vectors
for t and c

• More similar vectors → more likely that c occurs near t

Natalie Parde - UIC CS 421 25

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

super bowl

Natalie Parde - UIC CS 421 26

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

super bowl

super very
super fork

super calendar

Natalie Parde - UIC CS 421 27

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

Natalie Parde - UIC CS 421 28

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

Natalie Parde - UIC CS 421 29

0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level
Overview:

How
Word2Vec

Works

• Represent all words in a
vocabulary as a vector

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Find the similarity for each
(t,c) pair and use this to
calculate P(+|(t,c))

• Train a classifier to
maximize these
probabilities to distinguish
between positive and
negative cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

Natalie Parde - UIC CS 421

0 0 1 0 0

30

How do we compute
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot

product between two vectors
• Similarity(t,c) ∝ 𝑡 # 𝑐

Natalie Parde - UIC CS 421 31

A dot
product
gives us a
number,
not a
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did

with logistic regression!)
• We can set:

• P(+|t,c) = !
!"#&'()

• Then:
• P(+ | t,c) = !

!"#&'()

• P(- | t,c) = 1 - P(+ | t,c) = #&'()

!"#&'()

32

We’re usually
not just looking
at words in
isolation.

• What if we’re considering the probability of a span of text occurring in the context of a target word?
• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏*+,
- ,

,./!"#$%
, or

• log P(+|t,c1:k) = ∑*+,- log ,
,./!"#$%

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = ,
,./!"#$

P(-|t,c) = /!"#$

,./!"#$

Natalie Parde - UIC CS 421 33

With this in
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how
similar the context window is to the target word

• We do so by applying the logistic function to the dot product of the embeddings of t with
each context word c

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super,
watch) = .7

P(+|
super,
the) =

.5

P(+|super,
bowl) = .9

P(+|
super
at) =

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575

Natalie Parde - UIC CS 421 34

Computing P(+ | t,c)
and P(- | t,c): ✓

• However, we still have some unanswered
questions….

• How do we determine our input
vectors?

• How do we learn word embeddings
throughout this process (this is the real
goal of training our classifier in the first
place)?

Natalie Parde - UIC CS 421 35

Input Vectors: ✓

• Input words are typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position

corresponding to a given word, and a “0” in every other
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl

Natalie Parde - UIC CS 421 36

Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 𝜎 𝑧 = #

#+,!"
= #

#+,!#$%&'

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = #

#+,!($)

Natalie Parde - UIC CS 421 37

What does this look like?

super

Start with an input t

Natalie Parde - UIC CS 421 38

What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r

Natalie Parde - UIC CS 421 39

What does this look like?

…

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 40

What does this look like?

…

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 41

What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output
units for every possible c

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 42

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$

Natalie Parde - UIC CS 421 43

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot
vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
Natalie Parde - UIC CS 421 44

These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 421 45

How do we optimize these
weights over time?

• The weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time

Natalie Parde - UIC CS 421 46

Since we initialize
our weights
randomly, the
classifier’s first
prediction will
almost certainly be
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

Natalie Parde - UIC CS 421 47

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Natalie Parde - UIC CS 421 48

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and
c1 so if we tried to make these predictions
again, we’d have lower error values

Natalie Parde - UIC CS 421 49

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4

Natalie Parde - UIC CS 421 50

What is our
training data?

• We are able to assume that all occurrences of words in similar contexts in our training
corpus are positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 51

What is our
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 52

What is our
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝-(𝑤), where 𝛼

is a weight:
• 𝑝5(𝑤) = count(7)!

∑"# count(7#)!

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 53

What is our
training data?

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly higher

probability of being randomly sampled
• Assuming we want twice as many negative samples as positive

samples, we can thus randomly select noise words according to
weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples

Natalie Parde - UIC CS 421 54

Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from
positive examples

• Minimize the vector similarity of the (target, context) pairs drawn from
negative examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function

Natalie Parde - UIC CS 421 55

Learning Skip-Gram Embeddings

• Even though we’re maintaining two embeddings for each word during training
(the target vector and the context vector), we only need one of them

• When we’re finished learning the embeddings, we can just discard the context
vector

• Alternately, we can add them together to create a summed embedding of the
same dimensionality, or we can concatenate them into a longer embedding
with twice as many dimensions

Natalie Parde - UIC CS 421 56

Context window size can impact
performance!

• Because of this, context window size is often tuned on a validation or
development set

• Larger window size → more required computations (important to consider
when using very large datasets)

Natalie Parde - UIC CS 421 57

What if we want to predict a target word
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!
• The difference:

• Instead of learning to predict a context word from a target word vector, you
learn to predict a target word from a set of context word vectors

Natalie Parde - UIC CS 421 58

Skip-Gram
vs. CBOW
Embeddings

• Small datasets
• Rare words and phrases

In general, skip-gram
embeddings are good with:

• Larger datasets (they’re faster to
train)

• Frequent words

CBOW embeddings are
good with:

Natalie Parde - UIC CS 421 59

Are there any
other variations

of Word2Vec?

• fastText
• An extension of Word2Vec that also

incorporates subword models
• Designed to better handle unknown

words and sparsity in language

Natalie Parde - UIC CS 421 60

fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +

Natalie Parde - UIC CS 421 61

fastText
• Skip-gram embedding is learned for each constituent

n-gram
• Word is represented by the sum of all embeddings of

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown

words based on subword constituents alone

Source code available online:
https://fasttext.cc/

Natalie Parde - UIC CS 421 62

https://fasttext.cc/

Word2Vec and fastText
embeddings are nice …but
what’s another alternative?

• Word2Vec is an example of a
predictive word embedding model

• Learns to predict whether
words belong in a target word’s
context

• Other models are count-based
• Remember co-occurrence

matrices?
• GloVE combines aspects of both

predictive and count-based models

Natalie Parde - UIC CS 421
63

Global Vectors for Word
Representation (GloVe)
• Co-occurrence matrices quickly grow extremely large
• Intuitive solution to increase scalability?

• Dimensionality reduction!
• However, typical dimensionality reduction strategies may result in too

much computational overhead
• GloVe learns to predict weights in a lower-dimensional space that correspond

to the co-occurrence probabilities between words

Natalie Parde - UIC CS 421 64

GloVe

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

• GloVe models also encode the ratios of
co-occurrence probabilities between
different words …this makes these
vectors particularly useful for word
analogy tasks

Natalie Parde - UIC CS 421
65

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Natalie Parde - UIC CS 421 66

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj

Natalie Parde - UIC CS 421 67

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Weighting function:

𝑓 𝑋*1 = -(
𝑋*1
𝑥234

)5 , 𝑋*1 < 𝑋𝑀𝐴𝑋

1, otherwise

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1)7

Natalie Parde - UIC CS 421 68

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1)7

Minimize the cost function to
learn ideal embedding values
for wi and wj

Natalie Parde - UIC CS 421 69

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤*0𝑤1 + 𝑏* + 𝑏1 = log𝑋*1

Define a cost function
𝐽 = >

*+,

6

>
1+,

6

𝑓(𝑋*1)(𝑤*0𝑤1 + 𝑏* + 𝑏1 − log𝑋*1)7

Minimize the cost function to
learn ideal embedding values
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

Natalie Parde - UIC CS 421 70

Why does
GloVe
work?

• Ratios of co-occurrence probabilities have the
potential to encode word similarities and
differences

• These similarities and differences are useful
components of meaning

• GloVe embeddings perform particularly
well on analogy tasks

Natalie Parde - UIC CS 421
71

Which is best …Word2Vec or
GloVe?
• It depends on your data!
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)

Natalie Parde - UIC CS 421 72

https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N19-1423/

Summary:
Word2Vec
and GloVe

• Cosine similarity, commonly used to calculate word
vector similarity, measures the distance between vectors
by computing the normalized dot product between them

• Word2Vec is a predictive word embedding approach that
learns word representations by training a classifier to
predict whether a context word should be associated with
a given target word

• fastText is an extension of Word2Vec that also
incorporates subword models

• GloVe is a count-based word embedding approach that
learns an optimized, lower-dimensional version of a co-
occurrence matrix

Natalie Parde - UIC CS 421 73

Evaluating Vector
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP task,
and see whether and how this changes performance
relative to a baseline model

• Most important evaluation metric for word embeddings!
• Word embeddings are rarely needed in isolation
• They are almost solely used to boost performance

in downstream tasks
• Intrinsic Evaluation

• Performance at predicting word similarity

Natalie Parde - UIC CS 421 74

Evaluating Performance at
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d)
correlated

Natalie Parde - UIC CS 421 75

Other Common Evaluation Tasks

Natalie Parde - UIC CS 421 76

• Evaluates the performance of sentence-level similarity
algorithms, rather than word-level similarity

Semantic Textual Similarity

• Evaluates the performance of algorithms at solving analogies
• Chicago is to Illinois as Omaha is to (Nebraska)
• Embedding is to embeddings as assignment is to

(assignments)

Analogy

Semantic Properties of
Embeddings
• Major advantage of dense word embeddings: Ability to capture elements of meaning
• Context window size impacts what type of meaning is captured

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of speech

• Longer context window → more topical representations
• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., waiter and

menu, rather than spoon and fork)

Natalie Parde - UIC CS 421 77

Analogy

• Word embeddings can also capture
relational meanings

• This is done by computing the offsets
between values in the same columns for
different vectors

• Famous examples (Mikolov et al., 2013;
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome

Natalie Parde - UIC CS 421 78

Word embeddings have
many practical applications. • Incorporated as

features in nearly
every modern NLP
task

• Useful for
computational social
science

• Studying word
meaning over time

• Studying implicit
associations
between words

Natalie Parde - UIC CS 421 79

Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding
spaces, each using only texts
from a specific historical period

Useful corpora:
Google N-grams:
https://books.google.com/ngrams
Corpus of Historical American English:
https://www.english-corpora.org/coha/

Natalie Parde - UIC CS 421 80

https://books.google.com/ngrams
https://www.english-corpora.org/coha/

Unfortunately, word embeddings
can also end up reproducing
implicit biases and stereotypes
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora

also produce:
• man - computer programmer + woman =

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications
(e.g., resume scoring models)

Natalie Parde - UIC CS 421 81

Bias and
Embeddings

• Caliskan et al. (2017) identified known, harmful
implicit associations in GloVe embeddings

• Thus, learning word representations is an
ethically complex topic!

Natalie Parde - UIC CS 421 82

African-American
Names

European-American
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common
among Older Adults

Names Common
among Younger Adults

Unpleasantness

How do we keep the useful associations
present in word embeddings, but get rid of
the harmful ones?

• Recent research has begun examining ways to
debias word embeddings by:

• Developing transformations of embedding spaces
that remove gender stereotypes but preserve
definitional gender

• Changing training procedures to eliminate these
issues before they arise

• Although these methods reduce bias, they do not
eliminate it

• Increasingly active area of study:
• https://facctconference.org

Natalie Parde - UIC CS 421 83

https://facctconference.org/

Now that we
have more
advanced word
embeddings….

• We can incorporate these word embeddings in
more sophisticated text classification models

• Extremely popular modern text classification
model: Neural networks

Natalie Parde - UIC CS 421 84

What are
neural

networks?

• Classification models comprised of
interconnected computing units, or
neurons, (loosely!) mirroring the
interconnected neurons in the human brain

Natalie Parde - UIC CS 421 85

Neural networks
are fundamental to
many modern NLP

tasks.

ACL Year # Paper Titles with “Neural” % Paper Titles with “Neural”
2000 0 0

2001 0 0

2002 0 0

2003 0 0

2004 1 1/89 = 1.1%

2005 0 0

2006 0 0

2007 1 1/132 = 0.8%

2008 0 0

2009 1 1/216 = 0.5%

2010 0 0

2011 0 0

2012 0 0

2013 5 5/330 = 1.5%

2014 11 11/288 = 3.8%

2015 37 37/320 = 11.6%

2016 47 47/330 = 14.2%

2017 77 77/304 = 25.3%

2018 81 81/383 = 21.1%

2019 108 108/661 = 16.3%

2020 93 93/779 = 11.9%

2021 68 68/712 = 9.55%

2022 47 47/701 = 6.7%

Natalie Parde - UIC CS 421 86

Are neural networks new?
1943: First

mathematical
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The
perceptron is

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

1971: Implementation
of feedforward network

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
Man, and Cybernetics, (4), 364-378.

1982: First
convolutional

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First
recurrent neural

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Natalie Parde - UIC CS 421 87

Why haven’t
they been a
big deal until
recently
then?

• Data

• Computing power

Natalie Parde - UIC CS 421 88

Neural
networks
are
everywhere!

Natalie Parde - UIC CS 421 89

There are many
types of neural
networks!

Feedforward
Neural
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in
the last layer are hidden from external
viewers

Natalie Parde - UIC CS 421 91

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 421 92

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 421 93

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

Natalie Parde - UIC CS 421 94

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

Natalie Parde - UIC CS 421 95

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

Natalie Parde - UIC CS 421 96

Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 421 97

Are
feedforward

neural
networks an
example of

deep
learning?

98

How many layers is “deep?”

Input Output

Natalie Parde - UIC CS 421 99

How many layers is “deep?”

Input Output

Natalie Parde - UIC CS 421 100

How many layers is “deep?”

Input Output

Natalie Parde - UIC CS 421 101

Neural
networks tend

to be more
powerful than

traditional
classification

algorithms.

• Traditional classification algorithms usually
assume that data is linearly separable

• In contrast, neural networks learn nonlinear
functions

Natalie Parde - UIC CS 421 102

Neural networks also commonly use different types
of features from traditional classification algorithms.

• Manually engineer a set of features and extract them for each
instance
• Part-of-speech label
• Number of exclamation marks
• Sentiment score

Traditional classification

• Implicitly learn features and extract those for each instance
• Word embeddings

Neural networks

Natalie Parde - UIC CS 421 103

Neural
networks
aren’t
necessarily
the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network →
more data needed

Neural nets tend to work very well
for large-scale problems, but not
as well for small-scale problems

Natalie Parde - UIC CS 421 104

How do you build
a neural network?

105

Building
Blocks for

Neural
Networks

• At their core, neural networks are
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

Natalie Parde - UIC CS 421 106

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥@, … , 𝑥A, a unit has a set of corresponding
weights 𝑤@, … , 𝑤A and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑B𝑤B𝑥B

Natalie Parde - UIC CS 421 107

Sound
familiar?

• This is exactly the same sort of weighted
sum of inputs that we needed to find with
logistic regression!

• Recall that we can also represent the
weighted sum 𝑧 using vector notation:

• 𝑧 = 𝑤 # 𝑥 + 𝑏

Natalie Parde - UIC CS 421 108

Computational
Units

• The weighted sum of inputs computes a
linear function of 𝑥

• As we already saw, neural networks
learn nonlinear functions

• These nonlinear functions are
commonly referred to as activations

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 # 𝑥 + 𝑏)

Natalie Parde - UIC CS 421 109

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 421 110

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression

Natalie Parde - UIC CS 421 111

Computational Unit with Sigmoid
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Natalie Parde - UIC CS 421 112

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
Natalie Parde - UIC CS 421 113

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 114

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 115

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 116

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 117

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒89.;< = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 118

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒89.;< = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 119

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 120

Although some
neural networks
look like logistic
regression, they
can be
customized in
many ways.

Natalie Parde - UIC CS 421
121

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 421 122

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions

Natalie Parde - UIC CS 421 123

Activation:
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = H!IH"!

H!JH"!

• Once again differentiable
• Larger derivatives → generally faster

convergence

Natalie Parde - UIC CS 421 124

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 125

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒= − 𝑒8=

𝑒= + 𝑒8=

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 126

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒9.;< − 𝑒89.;<

𝑒9.;< + 𝑒89.;< = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 127

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒9.;< − 𝑒89.;<

𝑒9.;< + 𝑒89.;< = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 128

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 129

Activation:
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

Natalie Parde - UIC CS 421 130

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 131

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 132

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 133

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 134

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 135

Comparing
sigmoid,
tanh, and
ReLU

Natalie Parde - UIC CS 421 136

Summary:
Word
Embeddings
and
Introduction to
Neural
Networks

N
atalie Parde -U

IC
 C

S 421

• Word embeddings can be evaluated through their
incorporation in other language tasks

• By altering their training sets and hyperparameters, word
embeddings can be used to model syntactic and semantic
properties and even the evolution of language over time

• Word embeddings may reflect the same biases found in
the data used to train them

• Neural networks are classification models that implicitly
learn sophisticated feature representations during their
training process

• Feedforward neural networks are the simplest type of
neural network, and are comprised of interconnected
layers of computing units through which information is
passed forward from one layer to the next

• An activation function is one of many possible non-linear
functions applied to the weighted sum of inputs for a
computing unit

137

