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How do we train neural 
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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Backpropagation
• A method for propagating loss values all the 

way back to the beginning of a deep neural 
network, even though it’s only computed at 
the end of the network
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Recall…. • For a “neural network” with just one weight 
layer containing a single computation unit + 
sigmoid activation (i.e., a logistic regression 
classifier), we can compute the gradient of 
our loss function by just taking its derivative:

• !"#$(&,()
!&*

= ,𝑦 − 𝑦 𝑥0 = (𝜎 𝑤 3 𝑥 + 𝑏 − 𝑦)𝑥0
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However, we 
can’t do that 
with a neural 
network that has 
multiple weight 
layers (“hidden” 
layers).

• Why?
• Simply taking the derivative like we did for 

logistic regression only provides the gradient 
for the most recent (i.e., last) weight layer

• What we need is a way to:
• Compute the derivative with respect to weight 

parameters occurring earlier in the network as well
• Even though we can only compute loss at a single 

point (the end of the network)

2/6/20 Natalie Parde - UIC CS 521 9



We do this 
using 
backward 
differentiation.

• Usually referred to as backpropagation
(“backprop” for short) in the context of 
neural networks

• Frames neural networks as 
computation graphs

2/6/20 Natalie Parde - UIC CS 521 10



What are 
computation 

graphs?

• Representations of interconnected 
mathematical operations

• Nodes = Operations
• Directed edges = connections between 

output/input of nodes
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There are 
two different 
ways that we 
can pass 
information 
through our 
neural 
network 
computation 
graphs.

• Forward pass
• Apply operations in the direction of the 

arrows
• Pass the output of one computation as the 

input to the next
• Backward pass

• Compute partial derivatives in the opposite 
direction of the arrows

• Multiply them by the partial derivatives 
passed down from the previous step
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Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass
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Example: Forward Pass
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Example: Forward Pass
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Example: Forward Pass
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d+a
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Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d
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L
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1
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2*b = 2

d+a = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Represent L(a, b, c) = c(a + 2b)

2/6/20 Natalie Parde - UIC CS 521 19



Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c
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How do we 
get from L 
all the way 
back to a, 
b, and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect 
to v(x)

• Find the derivative of v(x) with respect 
to x

• Multiply the two together
• 67
68 =

69
6: ∗

6:
68
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Example: Backward Pass
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Goal: Compute the derivative of L with 
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!"
!<
= ?

!"
!(
= ?

!"
!=
= ?
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Example: Backward Pass

a
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d
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2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

!"
!<
= ?

!"
!(
= ?

!"
!=
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐 = 𝑒
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

!"
!<
= ?

!"
!(
= ?

!"
!=
= 𝑒

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎 = 𝑐 ∗ 1 = 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

!"
!<
= 𝑐

!"
!(
= ?

!"
!=
= 𝑒

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏 = 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐
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Example: Backward Pass
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

!"
!<
= 𝑐 = −2

!"
!(
= 2𝑐 = 2 ∗ −2 = −4

!"
!=
= 𝑒 = 5
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Computation 
graphs for 
neural 
networks are 
a bit more 
complex than 
the previous 
example.

• More operations:
• Products (input * weight)
• Summations (of weighted inputs)
• Activation functions
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What would a computation graph look 
like for a simple neural network?

Input Output
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What would a computation graph look 
like for a simple neural network?
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What would a computation graph look 
like for a simple neural network?
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using backpropagation!
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What are the 
derivatives of 

some other 
common 

activation 
functions?

• tanh

• !IJKL(M)
!M = 1 − tanhR(𝑧)

• ReLU

• !TUVW(M)
!M = X0 for 𝑧 < 0

1 for 𝑧 ≥ 0

2/6/20 Natalie Parde - UIC CS 521 32



General Tips for 
Improving Neural 
Network Performance
• Normalize input values to have a mean of 0
• Initialize weights with small random numbers
• Randomly drop some units and their connections 

from the network during training (dropout)
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function
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Fortunately, you shouldn’t need to build 
your computation graphs from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J
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Neural 
Language 

Models

• Popular application of neural networks
• Advantages over n-gram language models:

• Can handle longer histories
• Can generalize over contexts of similar 

words
• Disadvantage:

• Slower to train
• Neural language models have higher 

predictive accuracy than n-gram language 
models trained on datasets of similar sizes
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Neural Language Models
• Neural language models are used to 

boost performance for many modern NLP 
tasks

• Machine translation
• Dialogue systems
• Language generation
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Sample Generated by a Neural 
Language Model (GPT-2)
• Link to article: https://openai.com/blog/better-language-models/

System Prompt (Human-Written): In a shocking finding, scientist discovered a herd of unicorns 
living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.
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Sample Generated by a Neural 
Language Model (GPT-2)
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes 
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with 
some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move
too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez 
stated, “We can see, for example, that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost 
race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each 
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a 
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I believe is a sign of 
evolution, or at least a change in social organization,” said the scientist.
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Feedforward 
Neural 
Language 
Model

• Input: Representation of some number of 
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible 

next words
• Goal: Approximate the probability of a word 

given the entire prior context 𝑃(𝑤`|𝑤b`cb)
based on the n previous words

• 𝑃(𝑤`|𝑤b`cb) ≈ 𝑃(𝑤`|𝑤`cefb`cb )
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Neural 
language 
models 
represent 
prior context 
using 
embeddings 
of the 
previous 
words.

• Allows them to generalize to unseen 
data better than n-gram models

• Embeddings can come from various 
sources

• E.g., pretrained Word2Vec embeddings
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Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤` = “write”|𝑤`cb = “to”, 𝑤`cR = “down”, 𝑤`cm = “sat”)
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Neural Language Model
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Neural Language Model
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Neural Language Model
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Neural Language Model
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Neural Language Model
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What if we 
don’t already 
have dense 
word 
embeddings?

• When we use another algorithm to learn 
the embeddings for our input words, this is 
called pretraining

• However, sometimes it’s preferable to learn 
embeddings while training the network, 
rather than using pretrained embeddings

• E.g., if the desired application places 
strong constraints on what makes a 
good representation
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Learning 
New 

Embeddings

• Start with a one-hot vector for each word 
in the vocabulary

• Element for a given word is set to 1
• All other elements are set to 0

• Randomly initialize the hidden 
(weight/embedding) layer

• Maintain a separate vector of weights for 
that layer, for each vocabulary word
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Formal 
Definition: 

Learning 
New 

Embeddings

• Letting E be an embedding matrix of 
dimensionality d, with one row for each word in 
the vocabulary:

• e = (𝐸8p, 𝐸8q, … , 𝐸8s)
• h = 𝜎 𝑊e + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• Optimizing this network using the same 
techniques discussed for other neural networks 
will result in both 

• A model that predicts words
• A new set of word embeddings that can be 

used for other tasks
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Neural Language Model
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Convolutional 
Neural 
Networks

• Neural networks that incorporate one or 
more convolutional layers

• Designed to reflect the inner workings of the 
visual cortex system

• CNNs require that fewer parameters are 
learned relative to standard feedforward 
networks for equivalent input data
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What are 
convolutional 

layers?

• Sliding windows that perform matrix 
operations on subsets of the input

• Compute products between those subsets 
of input and a corresponding weight matrix
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Convolutional Layers

• First layer(s): low-level features
• Color, gradient orientation
• N-grams

• Higher layer(s): high-level features
• Objects
• Phrases
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.
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521

Stride size = 1
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early
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CS

521

Kernel size = 2x5
Stride size = 2

Feature Map
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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It’s common to extract multiple different 
feature maps from the same input.
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After extracting 
feature maps 

from the input, 
convolutional 

neural 
networks 

(“CNNs” or 
“convnets”) 

utilize pooling 
layers.

• Pooling layers: Layers that reduce the 
dimensionality of input feature maps by 
pooling all of the values in a given region

• Why use pooling layers?
• Further increase efficiency
• Improve the model’s ability to be 

invariant to small changes
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Pooling Layers
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window
• Average pooling

• Take the average of all values computed in a 
given window

1
4
2
3

4
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window
• Average pooling

• Take the average of all values computed in a 
given window

1
4
2
3

2.5
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The output from pooling layers is typically 
then passed along as input to one or more 
feedforward layers.
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Convolutional neural 
network architectures 
can vary greatly!

• Additional hyperparameters:
• Kernel size
• Padding
• Stride size
• Number of channels
• Pooling technique
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Padding?

• Add empty vectors to the beginning and 
end of your text input

• Why do this?
• Allows you to apply a filter to every 

element of the input matrix
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Channels?

• Red, green, blue

For images, generally 
corresponds to color channels

• Different types of word embeddings
• Word2Vec, GloVe, etc.

• Other feature types
• POS tags, word length, etc.

For text, can mean:
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The big 
question 
…why use 
CNNs at 
all?

• Traditionally for image classification!
• However, offer unique advantages for 

NLP tasks:
• CNNs inherently extract meaningful local 

structures from input
• In NLP → implicitly-learned, useful n-grams!
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Summary: 
Backpropagation 
and 
Convolutional 
Neural Networks

• Weights are optimized in deep neural networks using 
backpropagation

• Backpropagation works by propagating loss values 
backward from the end of a neural network to the beginning, 
using the chain rule to eventually compute the gradient at the 
first layer

• This is done by framing networks as complex computation 
graphs

• Convolutional neural networks incorporate one or more 
convolutional layers

• After feature maps are produced using those convolutional 
layers, pooling techniques are used to reduce their 
dimensionality

• CNN architectures can vary greatly, and require additional 
hyperparameters:

• Kernel size
• Padding
• Stride size
• # channels
• Pooling technique

• A key advantage of CNNs is that they allow a model to 
automatically learn useful n-grams from the training data
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