
Feedforward Neural
Networks

Natalie Parde, Ph.D.
Department of Computer Science

University of Illinois at Chicago

CS 521: Statistical Natural Language
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/

What are
neural

networks?

• Classification models comprised of
interconnected computing units, or
neurons, (loosely!) mirroring the
interconnected neurons in the human brain

2/4/20 Natalie Parde - UIC CS 521 2

Neural networks
are an increasingly

fundamental tool
for natural

language
processing.

ACL Year # Paper Titles with “Neural” % Paper Titles with “Neural”
2000 0 0

2001 0 0

2002 0 0

2003 0 0

2004 1 1/137 = 0.7%

2005 0 0

2006 0 0

2007 1 1/207 = 0.5%

2008 0 0

2009 1 1/248 = 0.4%

2010 0 0

2011 0 0

2012 0 0

2013 5 5/399 = 1.3%

2014 11 11/333 = 3.3%

2015 36 36/363 = 9.9%

2016 49 49/390 = 12.6%

2017 81 81/357 = 22.7%

2018 138 138/674 = 20.5%

2019 197 197/1449 = 13.6%

2/4/20 Natalie Parde - UIC CS 521 3

Are neural networks new?
1943: First

mathematical
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The
perceptron is

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

1971: Implementation
of feedforward network

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
Man, and Cybernetics, (4), 364-378.

1982: First
convolutional

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First
recurrent neural

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
2/4/20 Natalie Parde - UIC CS 521 4

Why haven’t they
been a big deal until
recently then?

• Data

• Computing power

2/4/20 Natalie Parde - UIC CS 521 5

Neural
networks
are
everywhere!

2/4/20 Natalie Parde - UIC CS 521 6

Neural
Network

Basics

• Neural networks are comprised of small
computing units

• Each computing unit takes a vector of
input values

• Each computing unit produces a single
output value

• Many different types of neural networks
exist

2/4/20 Natalie Parde - UIC CS 521 7

Types of Neural Networks

• Feedforward Neural Network
• Convolutional Neural Network
• Recurrent Neural Network
• Generative Adversarial Network
• Sequence-to-Sequence Network
• Autoencoder
• Transformer

2/4/20 Natalie Parde - UIC CS 521 8

Types of Neural Networks

• Feedforward Neural Network
• Convolutional Neural Network
• Recurrent Neural Network
• Generative Adversarial Network
• Sequence-to-Sequence Network
• Autoencoder
• Transformer

Today’s lecture!

2/4/20 Natalie Parde - UIC CS 521 9

Feedforward
Neural
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in
the last layer are hidden from external
viewers

2/4/20 Natalie Parde - UIC CS 521 10

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

2/4/20 Natalie Parde - UIC CS 521 11

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

2/4/20 Natalie Parde - UIC CS 521 12

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

2/4/20 Natalie Parde - UIC CS 521 13

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

2/4/20 Natalie Parde - UIC CS 521 14

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

2/4/20 Natalie Parde - UIC CS 521 15

Feedforward Neural Networks

Input Output Class label

2/4/20 Natalie Parde - UIC CS 521 16

Are feedforward neural networks an
example of deep learning?

Yes ...if they have multiple layers

People often tend to refer to neural network-based
machine learning as deep learning

Why?

• Modern networks often have many layers (in other words, they’re deep)

2/4/20 Natalie Parde - UIC CS 521 17

How many layers is “deep?”

Input Output

2/4/20 Natalie Parde - UIC CS 521 18

How many layers is “deep?”

Input Output

2/4/20 Natalie Parde - UIC CS 521 19

How many layers is “deep?”

Input Output

2/4/20 Natalie Parde - UIC CS 521 20

Neural
networks tend

to be more
powerful than

traditional
classification

algorithms.

• Traditional classification algorithms usually
assume that data is linearly separable

• In contrast, neural networks learn nonlinear
functions

2/4/20 Natalie Parde - UIC CS 521 21

Neural networks also commonly use different types
of features from traditional classification algorithms.

• Manually engineer a set of features and extract them for each
instance
• Part-of-speech label
• Number of exclamation marks
• Sentiment score

Traditional classification

• Implicitly learn features and extract those for each instance
• Word embeddings

Neural networks

2/4/20 Natalie Parde - UIC CS 521 22

Neural
networks
aren’t
necessarily
the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network → more
data needed

Thus, neural nets tend to work very
well for large-scale problems, but
not that well for small-scale
problems

2/4/20 Natalie Parde - UIC CS 521 23

Building
Blocks for

Neural
Networks

• At their core, neural networks are
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

2/4/20 Natalie Parde - UIC CS 521 24

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥", … , 𝑥%, a unit has a set of corresponding
weights 𝑤",… ,𝑤% and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑, 𝑤,𝑥,

2/4/20 Natalie Parde - UIC CS 521 25

Sound
familiar?

• This is exactly the same sort of weighted
sum of inputs that we needed to find with
logistic regression!

• Recall that we can also represent the
weighted sum 𝑧 using vector notation:

• 𝑧 = 𝑤 - 𝑥 + 𝑏

2/4/20 Natalie Parde - UIC CS 521 26

Computational
Units

• The weighted sum of inputs computes a
linear function of 𝑥

• As we already saw, neural networks
learn nonlinear functions

• These nonlinear functions are
commonly referred to as activations

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

2/4/20 Natalie Parde - UIC CS 521 27

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

2/4/20 Natalie Parde - UIC CS 521 28

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression

2/4/20 Natalie Parde - UIC CS 521 29

Computational Unit with Sigmoid
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

2/4/20 Natalie Parde - UIC CS 521 30

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
2/4/20 Natalie Parde - UIC CS 521 31

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 32

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 33

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 34

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 35

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒56.89 = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 36

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒56.89 = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 37

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 38

Remember, there are many different
activation functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

2/4/20 Natalie Parde - UIC CS 521 39

Remember, there are many different
activation functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions

2/4/20 Natalie Parde - UIC CS 521 40

Activation:
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = =>5=?>

=>@=?>

• Once again differentiable
• Larger derivatives → generally faster

convergence

2/4/20 Natalie Parde - UIC CS 521 41

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 42

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒A − 𝑒5A

𝑒A + 𝑒5A

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 43

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒6.89 − 𝑒56.89

𝑒6.89 + 𝑒56.89 = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 44

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒6.89 − 𝑒56.89

𝑒6.89 + 𝑒56.89 = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 45

Example: Computational Unit with
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 46

Activation:
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

2/4/20 Natalie Parde - UIC CS 521 47

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 48

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 49

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 50

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 51

Example: Computational Unit with
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 52

Comparing
sigmoid,
tanh, and
ReLU

2/4/20 Natalie Parde - UIC CS 521 53

Combining
Computational
Units

Neural networks are powerful
primarily because they are able
to combine multiple
computational units into
larger networks

Many problems cannot be
solved using a single
computational unit

2/4/20 Natalie Parde - UIC CS 521 54

Early example of this: The XOR problem

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

2/4/20 Natalie Parde - UIC CS 521 55

AND and OR can
both be solved
using a single
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value
based on whether the product of its inputs and
associated weights surpasses a threshold

• Learns this threshold iteratively by trying to find
the boundary that is best able to distinguish
between data of different categories

𝑦 = J0, if 𝑤 - 𝑥 + 𝑏 ≤ 0
1, if 𝑤 - 𝑥 + 𝑏 > 0

2/4/20 Natalie Parde - UIC CS 521 56

It’s easy to
compute
AND and OR
using
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 -1

2/4/20 Natalie Parde - UIC CS 521 57

It’s easy to
compute
AND and OR
using
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 0

2/4/20 Natalie Parde - UIC CS 521 58

However, it’s
impossible to
compute XOR using
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

2/4/20 Natalie Parde - UIC CS 521 59

The only successful way to compute XOR is by
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 60

Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 61

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 62

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 63

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 64

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 65

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 66

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 67

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

2/4/20 Natalie Parde - UIC CS 521 68

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

2/4/20 Natalie Parde - UIC CS 521 69

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

2/4/20 Natalie Parde - UIC CS 521 70

Combining
Computational

Units

• In our XOR example, we manually assigned
weights to each unit

• In real-world examples, these weights are
learned automatically using a
backpropagation algorithm

• Thus, the network is able to learn a useful
representation of the input training data on
its own

• Key advantage of neural networks

2/4/20 Natalie Parde - UIC CS 521 71

More about specific
unit types in
feedforward
networks….

• Three main unit types:
• Input units
• Hidden units
• Output units

2/4/20 Natalie Parde - UIC CS 521 72

Input Units

• Vector of scalar values
• Word embedding
• Other feature vector

• No computations performed in input units

0.5 0.2 0.1 0.7 0.4

2/4/20 Natalie Parde - UIC CS 521 73

Hidden Units
• Computation units

• As described previously, take a weighted sum
of inputs and apply a nonlinear function to it

• Contained in one or more layers
• Layers are fully connected

• All units in layer n receive inputs from all units
in layer n-1

• Layer n-1 can be the input layer or an
earlier hidden layer

2/4/20 Natalie Parde - UIC CS 521 74

Hidden
Layers

• Remember: Individual computation units have
parameters w (the weight vector) and b (the
bias)

• The parameters for an entire hidden layer
(including all computation units within that layer)
can then be represented as:

• W: Weight matrix containing the weight
vector wi for each unit i

• b: Bias vector containing the bias value bi
for each unit i

• Single bias for layer, but each unit can
associate a different weight with the bias

• Wij represents the weight of the connection from
input unit xi to hidden unit hj

2/4/20 Natalie Parde - UIC CS 521 75

Why
represent
W as a
single
matrix?

• More efficient computation across the
entire layer

• Use matrix operations!
• Multiply the weight matrix by input vector x
• Add the bias vector b
• Apply the activation function g (e.g.,

sigmoid, tanh, or ReLU)
• This means that we can compute a

vector h representing the output of a
hidden layer as follows:

• h = 𝜎(𝑊x + b)

2/4/20 Natalie Parde - UIC CS 521 76

Formal
Definitions

• An input (layer 0) vector x has a
dimensionality of n0, where n0 is the number
of inputs

• So, 𝑥 ∈ ℝ%T

• The subsequent hidden layer (layer 1) has
dimensionality n1, where n1 is the number of
hidden units in the layer

• So, ℎ ∈ ℝ%V and 𝑏 ∈ ℝ%V (remember, b
contains the different weighted bias
values associated with each hidden unit)

• The weight matrix thus has the
dimensionality 𝑊 ∈ ℝ%V×%T

2/4/20 Natalie Parde - UIC CS 521 77

Output Units
• Provide probabilities indicating whether

the input belongs to a given class
• Number of output units can vary:

• Binary classification might have a
single output unit

• Multinomial classification (e.g., part-of-
speech tagging) might have an output
unit for each class

2/4/20 Natalie Parde - UIC CS 521 78

Output
Layer

• Provides a probability distribution across
the output nodes

• How?
• Output layer also has a weight matrix, U
• Bias vector is optional
• Following intuition/examples, 𝑧 = 𝑈h,

where h is the vector of outputs from the
previous hidden layer

2/4/20 Natalie Parde - UIC CS 521 79

Formal
Definitions

• Letting n2 be the number of output
nodes, 𝑧 ∈ ℝ%Y

• The weight matrix U thus has the
dimensionality 𝑈 ∈ ℝ%Y×%V, where n1 is
the number of hidden units in the
previous layer

• Uij is the weight from unit j in the hidden
layer to unit i in the output layer

2/4/20 Natalie Parde - UIC CS 521 80

Just like with logistic regression, the values
in z are just real-valued numbers.

• We need to convert them to probabilities instead!
• We do this using activation functions

• Sigmoid
• Softmax
• Etc.

• Popular choice in multinomial feedforward networks:
Softmax

• Increase the probability of the highest value in the
vector

• Decrease the probabilities of the other values
• softmax 𝑧, = =>]

∑^_V
|z| =>^

2/4/20 Natalie Parde - UIC CS 521 81

Feedforward
Network

• Final set of equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward
neural network

• When numbering layers, count the
hidden and output layers but not the
input layer

2/4/20 Natalie Parde - UIC CS 521 82

What if we
want our

network to
have more

than two
layers?

• Let W[n] be the weight matrix for layer n, b[n]

be the bias vector for layer n, and so forth
• Let 𝑔(-) be an activation function

• ReLU
• tanh
• softmax
• Etc.

• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

2/4/20 Natalie Parde - UIC CS 521 83

What if we
want our
network to
have more
than two
layers?

• With this representation, a two-layer network
becomes:

• 𝑧["] = 𝑊["]𝑎[6] + 𝑏["]

• 𝑎["] = 𝑔 " 𝑧 "

• 𝑧[g] = 𝑊[g]𝑎["] + 𝑏[g]

• 𝑎[g] = 𝑔 g (𝑧 g)
• 𝑦h = 𝑎[g]

• With this notation, we can easily generalize to
networks with more layers:

• For i in 1..n
• 𝑧[,] = 𝑊[,]𝑎[,5"] + 𝑏[,]

• 𝑎[,] = 𝑔 , (𝑧 ,)
• 𝑦h = 𝑎[%]

2/4/20 Natalie Parde - UIC CS 521 84

One final
note….

• The activation function 𝑔(-) generally differs
for the final layer

• Earlier layers will more commonly be ReLU
or tanh

• Final layers will more commonly be softmax
(for multinomial classification) or sigmoid (for
binary classification)

2/4/20 Natalie Parde - UIC CS 521 85

Summary:
Feedforward

Neural
Networks

• Neural networks are classification models comprised of
interconnected computing units

• Feedforward neural networks are a subset of neural
networks in which information is passed forward from one
fully-connected layer to the next

• Individual computing units in neural networks calculate
weighted sums of input values

• Activation functions are applied to these linear combinations
to produce non-linear representations

• Feedforward neural networks contain three types of units:
• Input
• Hidden
• Output

• When neural networks contain multiple layers stacked on top
of one another, they are often referred to as deep neural
networks

2/4/20 Natalie Parde - UIC CS 521 86

