Natalie Parde, Ph.D.
Department of Computer Science

University of lllinois at Chicago

CS 521: Statistical Natural Language
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin

Feedforward Neural | :
Networks



https://web.stanford.edu/~jurafsky/slp3/

Wh at dalre  Classification models comprised of

iInterconnected computing units, or
neu ral neurons, (loosely!) mirroring the

networks’) Interconnected neurons in the human brain

2/4/20 Natalie Parde - UIC CS 521



ACL Year # Paper Titles with “Neural” | % Paper Titles with “Neural”

2000 0 0
2001 0 0
Neural networks 2002 0 0
— — 2003 0 0
are an increasingly o 1 o
fundamental tool 2005 0 0
2006 0 0
for natu ral 2007 1 1/207 = 0.5%
language 2008 0 0
- 2009 1 1/248 = 0.4%
processing. 2010 0 0
2011 0 0
2012 0 0
2013 5 5/399 = 1.3%
2014 11 11/333 = 3.3%
2015 36 36/363 = 9.9%
2016 49 49/390 = 12.6%
2017 81 81/357 =22.7%
2018 138 138/674 = 20.5%
2019 197 197/1449 = 13.6%

2/4/20



Are neural networks new?

1943: First 1971: Implementation 1982: First
mathematical of feedforward network recurrent neural
NN model’ with 8 layers? network®

1957: The 1982: First

perceptron is convolutional
proposed? neural network*

1MC_3C?U”°Ch, W. S.,_and W. Pitts. "A Iogi_cal Calfwlus of the ideas immanent in nervous 3lvakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133. Man, and Cybernetics, (4), 364-378.

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
Para. Cornell Aeronautical Laboratory. mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

SHopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
2/4/20 Natalie Parde - UIC CS 521 4



Why haven’t they
been a big deal until
recently then?

 Data

« Computing power



Neural
networks
are
everywhere!

2/4/20

Augmenting Neural Networks with First-order Logic

Tao Li
University of Utah
tli@cs.utah.edu

Abstract

Today, the dominant paradigm for training
neural networks involves minimizing task loss
on a large dataset. Using world knowledge to
inform a model, and yet retain the ability to
perform end-to-end training remains an open
question. In this paper, we present a novel
framework for introducing declarative knowl-
edge to neural network architectures in order
to guide training and prediction. Our frame-
work systematically compiles logical state-
ments into computation graphs that augment

Vivek Srikumar
University of Utah
svivek@cs.utah.edu

Paragraph: Gaius Julius Caesar (July 100 BC — 15 March 44
BC), Roman g statesman, Consul and
notable FITT of ISHAIOSE, played a critical
role in the cvents that led to the demise of the
Roman Republic and the risc of the Roman
Empire through his various military campaigns.

Question: - Which Foman gssial is known for prose?

Figure 1: An example of reading comprehension that
illustrates alignments/attention. In this paper, we con-
sider the problem of incorporating external knowledge
about such alignments into training neural networks.

Do Neural Dialog Systems Use the Conversation History Effectively?

An Empirical Study
Chinnadhurai Sankar'>%* Sandeep Subramanian’?°
Christopher Pal'*® Sarath Chandar’?* Yoshua Bengio '
IMila  *Université de Montréal *Ecole Polytechnique de Montréal

"Google Research, Brain Team “Element Al Montréal

Neural Relation Extraction for Knowledge Base Enrichment

Bayu Distiawan Trisedya', Gerhard Weikum?, Jianzhong Qi', Rui Zhang'*
! The University of Melbourne, Australia
2 Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
{btrisedya@student, jianzhong.qi@, rui.zhang@}unimelb.edu.au
weikum@mpi-inf.mpg.de

Abstract

We study relation extraction for knowledge
base (KB) enrichment. Specifically, we aim
to extract entities and their relationships from
sentences in the form of triples and map the
clements of the extracted triples to an existing
KB in an end-to-end manner. Previous stud-
ies focus on the extraction itself and rely on
Named Entity Disambiguation (NED) to map
triples into the KB space. This way, NED er-
rors may cause extraction errors that affect the
overall precision and recall. To address this

Abstract they still lack the ability to “understand” and pro-
cess the dialog history to produce coherent and
interesting responses. They often produce bor-
ing and repetitive responses like “Thank you.” (Li
etal., 2015; Serban et al., 2017a) or meander away

Neural generative models have been become
increasingly popular when building conversa-
tional agents. They offer flexibility, can be eas-
ily adapted to new domains, and require min-

imal domain engineering. A common criti- from the topic of conversation. This has been often
cism of these systems is that they seldom un- attributed to the manner and extent to which these
derstand or use the available dialog history ef- models use the dialog history when generating re-
fectively. In this paper, we take an empiri- sponses. However, there has been little empirical

cal approach to understanding how these mod-

TS B TE SRS T ST SO TP T

investigation to validate these speculations.

Tnput sentence:

"New York University is a private
university in Manhattan."
Unsupervised approach output:
TNYU, 15, private '.\nlvers).ty§
{NYU,is private university in,Manhattan)
Supervised approach output

YU, instance of, Private U
NYU, located in, Manhattan)
Canonicalized output:
(049210, P31, 0902104)
{049210, P131, 011299)

ersity,

Table 1: Relation extraction example.

Effective Adversarial Regularization for Neural Machine Translation

Motoki Sato’, Jun Suzuki®?, Shun Kiyono®*
Preferred Networks, Inc., 2Tohoku University,
SRIKEN Center for Advanced Intelligence Project
sato@preferred.jp, jun.suzuki @ecei.tohoku.ac.jp, shun kiyono@riken.jp

Cross-Domain Generalization of Neural C i 'y Parsers

Daniel Fried” Nikita Kitaev* Dan Klein
Computer Science Division
University of California, Berkeley
{dfried, kitaev, klein}@cs.berkeley.edu

Abstract

Neural parsers obtain state-of-the-art results
on benchmark trecbanks for constituency
parsing—but to what degree do they general-
ize to other domains? We present three re-
sults about the generalization of neural parsers
in a zero-shot setting: training on trees from

treebanks still transfer to out-of-domain improve-
ments (McClosky et al., 2006).

Is the success of neural constituency parsers
(Henderson 2004; Vinyals et al. 2015; Dyer et al.
2016; Cross and Huang 2016; Choe and Charniak
2016; Stern et al. 2017; Liu and Zhang 2017; Ki-
taev and Klein 2018, inter alia) similarly transfer-

one corpus and evaluating on out-of-d
corpora. First, neural and non-neural parsers
generalize comparably to new domains. Sec-
ond, incorporating pre-trained encoder repre-
sentations into neural parsers substantially im-
proves their performance across all domains,
but does not give a larger relative improvement
for out-of-domain treebanks. Finally, despite
the rich input representations they learn, neu-

ral parsers still benefit from structured oulp\N ata" ':eofpa redlenstlmewpr@: C S q 2 1

able to f-domain treebanks? In this work, we
focus on zero-shot generalization: training parsers
on a single treebank (e.g. WSJ) and evaluating
on a range of broad-coverage, out-of-domain tree-
banks (e.g. Brown (Francis and Kucera, 1979),
Genia (Tateisi et al., 2005), the English Web Tree-
bank (Petrov and McDonald, 2012)). We ask three
questions about zero-shot generalization proper-

Abstract

A regularization technique based on adversar-
ial perturbation, which was initially developed
in the field of image processing, has been suc-
cessfully applied to text classification tasks
and has yielded attractive improvements. We
aim to further leverage this promising method-
ology into more sophisticated and critical neu-
ral models in the natural language processing
field, i.e., neural machine translation (NMT)
models. However, it is not trivial to apply this

[ , Encoder Decoder ]
2 A
[ : i

Figure 1: An intuitive sketch that explains how we
add adversarial perturbations to a typical NMT model
structure for adversarial regularization. The definitions
of e; and f; can be found in Eq. 2. Moreover, those of
7; and 7] are in Eq. 8 and 13, respectively.



* Neural networks are comprised of small
computing units

Neu ral  Each computing unit takes a vector of
Network input values

- « Each computing unit produces a single
Basics output value

« Many different types of neural networks
exist

2/4/20 Natalie Parde - UIC CS 521



Types of Neural Networks

» Feedforward Neural Network

» Convolutional Neural Network

e Recurrent Neural Network

» Generative Adversarial Network
» Sequence-to-Sequence Network

o Autoencoder
 Transformer



Types of Neural Networks

eura

 Recurrent Neural Network
 Generative Adversarial Network
» Sequence-to-Sequence Network

\
\
|

\

!

 Autoencoder :
|

 Transformer

Today’s IectureTJ




 Earliest and simplest form of neural network
 Data is fed forward from one layer to the next

* Each layer:
* One or more units
Feedforward - A unit in layer n receives input from all
Neural units in layer n-1 and sends output to all
units in layer n+1
Networks * Aunitin layer n does not communicate

with any other units in layer n

* The outputs of all units except for those in
the last layer are hidden from external
viewers




Feedforward Neural Networks

o

Feature vector (e.g., 300-
; |dimensional word embedding)

Predicts a class label or output value

P 4
\N —’
—
—y _— ’___—
~y -

~ ”

O

2/4/20 Natalie Parde - UIC CS 521 11



Feedforward Neural Networks

a oo

I
I
\ /
\ \ | ~ Q) \
. XY
\\ '
\ ]
1 n
211 =
s, >
= g
- =
) >
oY
: m
- O

\—_——

12

Natalie Parde - UIC CS 521

2/4/20



Feedforward Neural Networks

- = T~

e S
Data is fed forward > ( \
from input to the
first hidden layer

2/4/20 Natalie Parde - UIC CS 521

13



Feedforward Neural Networks

om T mm oy o ImE Emm o Ny

Data is fed forward from ( \ [ \
the first hidden layer to I
the second hidden layer

~
——————

2/4/20 Natalie Parde - UIC CS 521 14



Feedforward Neural Networks

m mEm EEE SN S o
- = oy

, om T mm oy ﬁ———~\

Data is fed forward from ( \ ( \
the second hidden layer
to the output unit

2/4/20 Natalie Parde - UIC CS 521 15



Feedforward Neural Networks

— >| Class label

2/4/20 Natalie Parde - UIC CS 521 16



Are feedforward neural networks an
example of deep learning?

Yes ...if they have multiple layers

People often tend to refer to neural network-based

machine learning as deep learning

 Modern networks often have many layers (in other words, they're deep)

2/4/20 Natalie Parde - UIC CS 521 17



How many layers is “deep?”

2/4/20 Natalie Parde - UIC CS 521

18



How many layers is “deep?”

2/4/20 Natalie Parde - UIC CS 521

19



How many layers is “deep?” @

om T mmm oy o= mmm Em m oy o mmm Em m oy o mmm m o .y

edledie e
/

{
————— / S === Se———= S ===’/

222222



Neural
hetworks tend
to be more
powerful than

traditional
classification
algorithms.

2/4/20

 Traditional classification algorithms usually

assume that data is linearly separable

* |n contrast, neural networks learn nonlinear

functions

Natalie Parde - UIC CS 521



Neural networks also commonly use different types
of features from traditional classification algorithms.

mmme | raditional classification

« Manually engineer a set of features and extract them for each
Instance

» Part-of-speech label
« Number of exclamation marks
e Sentiment score

Neural networks

 Implicitly learn features and extract those for each instance
« Word embeddings

2/4/20 Natalie Parde - UIC CS 521 22



2/4/20

Neural
networks
aren’t
necessarily

the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network — more
data needed

Thus, neural nets tend to work very
well for large-scale problems, but
not that well for small-scale
problems



» At their core, neural networks are
comprised of computational units

Bu | Id | ng « Computational units:

1. Take a set of real-valued numbers as

Blocks for Ut
Neu ral 2. Perform some computation on them
3. Produce a single output
Networks

2/4/20 Natalie Parde - UIC CS 521 24



* The computation performed by each unit is
a weighted sum of inputs

» Assign a weight to each input
 Add one additional bias term

Computational

Units  More formally, given a set of inputs

X1, -, Xy, @ UNit has a set of corresponding
weights wy, ..., w,,; and a bias b, so the
weighted sum z can be represented as:

® Z=b+ Ziwixi

2/4/20 Natalie Parde - UIC CS 521



Sound

familiar?

* This is exactly the same sort of weighted
sum of inputs that we needed to find with
logistic regression!

» Recall that we can also represent the
weighted sum z using vector notation:

*zZz=w-x+b

Natalie Parde - UIC CS 521 26



* The weighted sum of inputs computes a
linear function of x

» As we already saw, neural networks
learn nonlinear functions

Computational

» These nonlinear functions are

U nltS commonly referred to as activations

* The output of a computation unit is thus
the activation value for the unit, y

*y=f(@)=f(w-x+b)




There are many different activation
functions!

softplus

hyperbolic tangent (tanh)

2/4/20 Natalie Parde - UIC CS 521 28



There are many different activation
functions!

softplus
hyperbolic tangent (tanh)

\
~ o Exact same sigmoid function used with logistic regression

2/4/20 Natalie Parde - UIC CS 521 29




Computational Unit with Sigmoid
Activation

—]

R



Example: Computational Unit with
Sigmoid Activation

—]

R

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
‘ , Natalie Parde - UIC CS 521




Example: Computational Unit with
Sigmoid Activation

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

R

Natalie Parde - UIC CS 521

[0.5, 0.6]

32



Example: Computational Unit with
Sigmoid Activation

(

0&!

R

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

33



Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0&!

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

34



Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

7= 0.78_0 a E’

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

35



Example: Computational Unit with
Sigmoid Activation

R

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

36



Example: Computational Unit with
Sigmoid Activation

—]

R

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

37



Example: Computational Unit with
Sigmoid Activation

0.686

7 = 0.78_& = 0.686 ‘ y | 5 e

—]

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

38



Remember, there are many different
activation functions!

softplus

hyperbolic tangent (tanh)

2/4/20 Natalie Parde - UIC CS 521 39



Remember, there are many different
activation functions!

softplus

2/4/20

My

hyperbolic tangent (tanh)

\
= - "E:’articularly common activation functions

Natalie Parde - UIC CS 521

40



2/4/20

Activation:
tanh

 Variant of sigmoid that ranges from -1 to +1

. __ er—e™?
Y = eZ+e—2

* Once again differentiable

 Larger derivatives — generally faster
convergence

Natalie Parde - UIC CS 521

41



Example: Computational Unit with

tanh Activation

0.1+0.18+0.5=0.78

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Input: “beautiful brutalist architecture” >

7= 0.78_@ a E’

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

42



Example: Computational Unit with

tanh Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

43



Example: Computational Unit with

tanh Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0 78 __ —0 78

= 0.653

e0.78 4 0—0.78

@4

R

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

44



Example: Computational Unit with

tanh Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0 78 __ —0 78

= 0.653

e0.78 4 0—0.78

Z = 078_@1 0653(

—]

R

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

45



Example: Computational Unit with

tanh Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0.653
z=0.78

-@‘ = 0653»&[0.653

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

46



« Ranges from 0 to o«

- - " « Simplest activation function:
Activation: = (s, 03

ReLU  Very close to a linear function!
* Quick and easy to compute

2/4/20 Natalie Parde - UIC CS 521

47



Example: Computational Unit with
RelLU Activation

0.1+0.18+0.5=0.78

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

7= 0.78_@ a E’

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

48



Example: Computational Unit with
RelLU Activation

0.1+0.18 +0.5=0.78 max(z, 0)

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

7= 0.78_@ a E’

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

49



Example: Computational Unit with

RelLU Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

z=0.78

max(z,0) = 0.78

|

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

50



Example: Computational Unit with

RelLU Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

z=0.78

max(z,0) = 0.78

—]

a=0.78ﬂ
\

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

51



Example: Computational Unit with

RelLU Activation

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0.78
z=0.78 _@a = (.78 ( y | 078

—]

Input: “beautiful brutalist architecture” >

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]

Natalie Parde - UIC CS 521

52



Comparing
sigmoid,
tanh, and
RelLU

1.0

0.8

0.6/

0.4

0.07 =6 -4 -2

2 4 6

8

nearly linear around 0 but outlier values get squashed toward O or 1.

| QP W Al The sigmoid function takes a real value and maps it to the range [0,1]. It is

1.0
0.5
x
€
o 0.0
s
]
>
-05
—1.015 =5 0 5 10
(a)

y=max(z,0)

10

—105 -5 0

(b)

10

IO W] The tanh and ReLU activation functions.

53




Combining
Computational

Units

2/4/20

.

Neural networks are powerful
primarily because they are able
to combine multiple
computational units into

larger networks

\_

~

e

Many problems cannot be
solved using a single
computational unit

\_

Natalie Parde - UIC CS 521




Early example of this: The XOR problem

Y -
2y | Y x| 2y

0
0
1
1

y
0 0
1 1
0 1
1 0

- O O O
— a2 O O
—_ O - 0O

0 0 0
1 0 1
1 1 0
1 1 1



_10,ifw-x+b <0
Y= 11Lifw-x+b>0

» Perceptron: A function that outputs a binary value
AND and OR can based on whether the product of its inputs and
both be solved associated weights surpasses a threshold
using a sing|e « Learns this threshold iteratively by trying to find
the boundary that is best able to distinguish
perceptron. J 2

between data of different categories

2/4/20

Natalie Parde - UIC CS 521 56



It’s easy to
compute
AND and OR

using
perceptrons.

Natalie Parde - UIC CS 521

AND

|

0,ifw-x+b<0
1L,ifw-x+b>0

o7



OR

It’s easy to
compute
AND and OR

_0ifw-x+b <0
 |Lifw-x+b>0

using

perceptrons.

Natalie Parde - UIC CS 521



L » a0 | oR | xR
i e [y =i 2 [y xi2]y
0) O O O O O O O O

-~ 4o O
I o T
- a
-~ a O
- O =
O = -

0 1 0
1 0 O
1 1 1

However, it's
impossible to

te XOR - » Perceptrons are linear classifiers
compute using « XOR is not a linearly separable function

a single perceptron.

2/4/20 Natalie Parde - UIC CS 521 59



The only successful way to compute XOR is by
combining these smaller units into a larger network.




























Why does this work?

* When computational units are combined, the outputs from each
successive layer provide new representations for the input

* These new representations are linearly separable

Lar " _
£
O O

0

X2

0 1 1
1 0 1 2 1 0
1 1 0

AJ%

b i o

N mo——

|
2/4/20 X4 Natalie Parde - UIC CS 521 h, 69




Why does this work?

* When computational units are combined, the outputs from each
successive layer provide new representations for the input

* These new representations are linearly separable

2/4/20 X4 Natalie Parde - UIC CS 521



* In our XOR example, we manually assigned
weights to each unit

-y * In real-world examples, these weights are
Comblnlng learned automatically using a

Computationa| backpropagation algorithm

Units * Thus, the network is able to learn a useful
representation of the input training data on
its own

« Key advantage of neural networks

2/4/20 Natalie Parde - UIC CS 521



More about specific
unit types in
feedforward
networks....

* Three main unit types:
* Input units
» Hidden units
« Output units

QO

72



Input Units 05 02 (01 107 04

* Vector of scalar values
* Word embedding
e Other feature vector

« No computations performed in input units



Hidden Units

« Computation units
* As described previously, take a weighted sum
of inputs and apply a nonlinear function to it
« Contained in one or more layers

 Layers are fully connected
 All units in layer n receive inputs from all units
in layer n-1
« Layer n-1 can be the input layer or an
earlier hidden layer



2/4/20

Hidden

Layers

« Remember: Individual computation units have
parameters w (the weight vector) and b (the
bias)

» The parameters for an entire hidden layer
(including all computation units within that layer)
can then be represented as:

* W. Weight matrix containing the weight
vector w; for each unit j

 b: Bias vector containing the bias value b,
for each unit J

 Single bias for layer, but each unit can
associate a different weight with the bias

* W represents the weight of the connection from
input unit x; to hidden unit h;

Natalie Parde - UIC CS 521



* More efficient computation across the

entire layer
Why « Use matrix operations!
* Multiply the weight matrix by input vector x
represent « Add the bias vector b
W as a « Apply the activation function g (e.g.,
. sigmoid, tanh, or ReLU
single 510 |
) * This means that we can compute a
matrix? vector h representing the output of a '
hidden layer as follows:
*h= og(Wx+b) /
> 4

o
Natalie Parde - UIC CS 521 76



Formal

Definitions

* An input (layer 0) vector x has a
dimensionality of ny, where n, is the number
of inputs

e S0, x € R"o

* The subsequent hidden layer (layer 1) has
dimensionality n,, where n, is the number of
hidden units in the layer

« So, h € R™ and b € R™ (remember, b
contains the different weighted bias
values associated with each hidden unit)

* The weight matrix thus has the
dimensionality W € R™1*"o



Output Units

* Provide probabilities indicating whether
the input belongs to a given class

* Number of output units can vary:

 Binary classification might have a
single output unit

* Multinomial classification (e.g., part-of-
speech tagging) might have an output
unit for each class




* Provides a probability distribution across
the output nodes

* How?
« Output layer also has a weight matrix, U

 Bias vector is optional

 Following intuition/examples, z = Uh,
where h is the vector of outputs from the
previous hidden layer

2/4/20 Natalie Parde - UIC CS 521



Formal

Definitions

* Letting n, be the number of output
nodes, z € R"2

* The weight matrix U thus has the
dimensionality U € R™2*"1 where n, is
the number of hidden units in the
previous layer

* Uj is the weight from unit j in the hidden
layer to unit / in the output layer

Natalie Parde - UIC CS 521

80



Just like with logistic regression, the values
in z are just real-valued numbers.

« We need to convert them to probabilities instead!

« We do this using activation functions
« Sigmoid
« Softmax
« Eftc.
« Popular choice in multinomial feedforward networks:
Softmax

* Increase the probability of the highest value in the
vector

« Decrease the probabilities of the other values

f - e
. . —
softmax(z;) Zl Lz

PN

2/4/20 Natalie Parde - UIC CS 521

81




Feedforward
Network

2/4/20

* Final set of equations:
*h= oc(Wx+Db)
 z="Uh
* y = softmax(z)
* This represents a two-layer feedforward
neural network

 When numbering layers, count the
hidden and output layers but not the
iInput layer

Natalie Parde - UIC CS 521

82



What if we
want our
hetwork to

have more
than two
layers?

2/4/20

« Let W' be the weight matrix for layer n, bl
be the bias vector for layer n, and so forth
* Let g(-) be an activation function
 RelLU
* tanh
 softmax
* Etc.

« Let al"l be the output from layer n, and zl"]
be the combination of weights and biases
Winl gln-11+ plnl

* Let the input layer be al’l

Natalie Parde - UIC CS 521



What if we
want our
hetwork to

have more
than two
layers?

2/4/20

« With this representation, a two-layer network
becomes:

« With this notation, we can easily generalize to
networks with more layers:

e Foriin1..n
o 7t = Wlilgli-11 4 plil
o glil = g[i](z[i])

Natalie Parde - UIC CS 521



* The activation function g(-) generally differs
for the final layer

One final  Earlier layers will more commonly be RelLU
or tanh
nOte mem * Final layers will more commonly be softmax

(for multinomial classification) or sigmoid (for
binary classification)




Summary:
Feedforward

Neural
Networks

2/4/20

Neural networks are classification models comprised of
interconnected computing units

Feedforward neural networks are a subset of neural
networks in which information is passed forward from one
fully-connected layer to the next

Individual computing units in neural networks calculate
weighted sums of input values

Activation functions are applied to these linear combinations
to produce non-linear representations
Feedforward neural networks contain three types of units:
* Input
* Hidden
e Output
When neural networks contain multiple layers stacked on top

of one another, they are often referred to as deep neural
networks

Natalie Parde - UIC CS 521



