
Language Modeling

Natalie Parde, Ph.D.
Department of Computer
Science
University of Illinois at
Chicago

CS 521: Statistical Natural
Language Processing
Spring 2020

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/

What is
language

modeling?

• The process of building statistical models
that predict the likelihood of different word
or character sequences in a language.

I’m so excited to be taking CS
521 this ______!

spring

fall

refrigerator

and

1/16/20 Natalie Parde - UIC CS 521 2

What is
language

modeling?

• The process of building statistical models
that predict the likelihood of different word
or character sequences in a language.

I’m so excited to be taking CS
521 this ______!

spring

fall

refrigerator

and

1/16/20 Natalie Parde - UIC CS 521 3

Why is language modeling useful?

• Many reasons!
• Helps in tasks that require words to be identified

from noisy, ambiguous input
• Speech recognition
• Autocorrect

• Helps in tasks that require sequences of text to
be generated

• Machine translation
• Image captioning

1/16/20 Natalie Parde - UIC CS 521 4

Language models
come in many
forms.

• Simple (today’s focus):
• N-gram language models

• More sophisticated (later this
semester):

• Neural language models

1/16/20 Natalie Parde - UIC CS 521 5

N-Gram
Language

Models

• Goal: Predict P(word|history)
• P(“spring” | “I’m so excited to be taking

CS 521 this”)

P(“fall” | “I’m

so excited to

be taking CS

521 this”)
P(“refrigerator” |

“I’m so excited

to be taking CS

521 this”)

P(“and” | “I’m so excited to be taking CS 521 this”)

1/16/20 Natalie Parde - UIC CS 521 6

How do we predict these
probabilities?
• One method: Estimate it from frequency counts

• Take a large corpus
• Count the number of times you see the history
• Count the number of times the specified word

follows the history

P(“spring” | “I’m so excited to be taking CS 521 this”)
= C(“I’m so excited to be taking CS 521 this spring”) /
C(“I’m so excited to be taking CS 521 this”)

1/16/20 Natalie Parde - UIC CS 521 7

However, there are a few problems
with this method.
• What if our word (or our history) contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 521 this”)

Out of all possible 11-word sequences on the web, how
many are “I’m so excited to be taking Natalie Parde’s
CS 521 this”?

1/16/20 Natalie Parde - UIC CS 521 8

We need a better way to estimate
P(word|history)!

• The solution: Instead of computing the probability of a
word given its entire history, approximate the
history using the most recent few words.

• These sequences of words are referred to as n-
grams, where n is the length of the recent words +
the current word

P(“spring” | “taking CS 521 this”)

P(“spring” | “CS 521 this”)

P(“spring” | “521 this”)

P(“spring” | “this”)

1/16/20 Natalie Parde - UIC CS 521 9

Special
N-Grams

• Most higher-order (n>3) n-
grams are simply referred
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 521 this”)

P(“spring” | “CS 521 this”)

P(“spring” | “521 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram

1/16/20 Natalie Parde - UIC CS 521 10

N-gram
models follow
the Markov
assumption.

• We can predict the probability of some
future unit without looking too far into
the past

• Bigram language model:
Probability of a word depends only
on the previous word

• Trigram language model:
Probability of a word depends only
on the two previous words

• N-gram language model:
Probability of a word depends only
on the n-1 previous words

1/16/20 Natalie Parde - UIC CS 521 11

More formally….

• 𝑃 𝑤# 𝑤$#%$ ≈ 𝑃(𝑤#|𝑤#%)*$#%$)
• We can then multiply these individual word

probabilities together to get the probability of a word
sequence

• 𝑃 𝑤$# ≈ ∏-.$
𝑃(𝑤-|𝑤-%)*$-%$)

P(“Winter break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) *
P(“is” | “break”) * P(“break” | “Winter”)

1/16/20 Natalie Parde - UIC CS 521 12

To compute
n-gram

probabilities,
maximum
likelihood

estimation is
often used.

• Maximum Likelihood Estimation (MLE):
• Get the requisite n-gram frequency

counts from a corpus
• Normalize them to a 0-1 range

• P(wn | wn-1) = # of occurrences of the
bigram wn-1 wn / # of occurrences of
the unigram wn-1

1/16/20 Natalie Parde - UIC CS 521 13

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

1/16/20 Natalie Parde - UIC CS 521 14

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

1/16/20 Natalie Parde - UIC CS 521 15

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1

1/16/20 Natalie Parde - UIC CS 521 16

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

1/16/20 Natalie Parde - UIC CS 521 17

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

1/16/20 Natalie Parde - UIC CS 521 18

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

1/16/20 Natalie Parde - UIC CS 521 19

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

1/16/20 Natalie Parde - UIC CS 521 20

🤷

What do bigram counts from larger
corpora look like?

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1/16/20 Natalie Parde - UIC CS 521 21

What do bigram probabilities from larger
corpora look like?

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0

1/16/20 Natalie Parde - UIC CS 521 22

What can we learn
from n-gram
statistics?
• Syntactic information

• “to” is usually followed by a
verb

• Nouns often follow verbs
• Task information

• Virtual assistants are likely
to hear the word “I”

• Cultural/sociological information
• People like some cuisines

more than others

1/16/20 Natalie Parde - UIC CS 521 23

What type
of n-gram
is best?

• In general, the highest-order value of n that
your data can handle!

• Higher order → sparser
• Note: Because n-gram probabilities tend to

be small, it is most common to perform
operations in log space

• Multiplying in linear space = adding in log
space

• Less likely to run into numerical
underflow when representing sequences

1/16/20 Natalie Parde - UIC CS 521 24

Evaluating
Language
Models

• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the language
model in an application, and compute
changes in task performance

• Intrinsic evaluation: Measure the quality
of the model, independent of any
application

1/16/20 Natalie Parde - UIC CS 521 25

Perplexity

• Intrinsic evaluation metric for language
models

• Perplexity (PP) of a language model on a
test set is the inverse probability of the
test set, normalized by the number of
words in the test set

1/16/20 Natalie Parde - UIC CS 521 26

More formally….

• 𝑃𝑃 𝑊 = 1 $
2(3435…31)

= 1 ∏7.$
$

2(38|34…3894)

• Where W is a test set containing words w1, w2, …,
wn

• Higher conditional probability of a word sequence →
lower perplexity

• Minimizing perplexity = maximizing test set
probability according to the language model

1/16/20 Natalie Parde - UIC CS 521 27

Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

1/16/20 Natalie Parde - UIC CS 521 28

Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

1/16/20 Natalie Parde - UIC CS 521 29

Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

1/16/20 Natalie Parde - UIC CS 521 30

Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

1/16/20 Natalie Parde - UIC CS 521 31

Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“521”) = C(“521”) / C(<all unigrams>) = 10/100 = 0.1

1/16/20 Natalie Parde - UIC CS 521 32

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
521 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

1/16/20 Natalie Parde - UIC CS 521 33

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
521 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 521 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

PP(“CS 521 Statistical Natural Language Processing
University of Illinois Chicago”)

= 4= $
>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$

= 10

1/16/20 Natalie Parde - UIC CS 521 34

Example: Perplexity

Word Frequency P(Word)
CS 1
521 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

1/16/20 Natalie Parde - UIC CS 521 35

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
521 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

1/16/20 Natalie Parde - UIC CS 521 36

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
521 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

PP(“CS 521 Statistical Natural Language Processing
University of Illinois Chicago”)

= 4= $
>.>$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$

= 1.73

1/16/20 Natalie Parde - UIC CS 521 37

Perplexity can be used to compare
different language models.

Which language model is best?

• Model A: Perplexity = 962

• Model B: Perplexity = 170

• Model C: Perplexity = 109

1/16/20 Natalie Parde - UIC CS 521 38

Perplexity can be used to compare
different language models.

Which language model is best?

• Model A: Perplexity = 962

• Model B: Perplexity = 170

• Model C: Perplexity = 109

1/16/20 Natalie Parde - UIC CS 521 39

A cautionary
note….

• Improvements in perplexity do not
guarantee improvements in task
performance!

• However, the two are often correlated (and
perplexity is quicker and easier to check)

• Strong language model evaluations also
include an extrinsic evaluation component

1/16/20 Natalie Parde - UIC CS 521 40

Generalization
and Sparsity

• Probabilities in n-gram models often encode specific
characteristics of the training corpus

• These characteristics are encoded more strongly
in higher-order n-grams

• We can see this when generating text from different
n-gram models

• Select an n-gram randomly from the distribution
of all n-grams in the training corpus

• Randomly select an n-gram from the same
distribution, dependent on the previous n-gram

• In a bigram model, if the previous bigram was “CS 521”
then the next bigram has to start with “521”

• Repeat until the sentence-final token is reached

1/16/20 Natalie Parde - UIC CS 521 41

Sample
Sentences
Generated from
Shakespearean
N-Gram Models

• To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

• Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry. What! I will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

• It cannot be but so.

4-gram

1/16/20 Natalie Parde - UIC CS 521 42

Sample
Sentences
Generated from
Shakespearean
N-Gram Models

• To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

• Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry. What! I will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

1/16/20 Natalie Parde - UIC CS 521 43

Sample
Sentences
Generated from
Shakespearean
N-Gram Models

• To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

• Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry. What! I will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words

1/16/20 Natalie Parde - UIC CS 521 44

Sample
Sentences
Generated from
Shakespearean
N-Gram Models

• To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

• Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry. What! I will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words

More coherence….

1/16/20 Natalie Parde - UIC CS 521 45

Sample
Sentences
Generated from
Shakespearean
N-Gram Models

• To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

• What means, sir. I confess she? then all sorts, he is trim,
captain.

Bigram

• Fly, and will rid me these news of price. Therefore the sadness
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry. What! I will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words

More coherence….

Direct quote from Shakespeare

1/16/20 Natalie Parde - UIC CS 521 46

Why did we end up with a
direct Shakespearean quote?
• The corpus of all Shakespearean text is

relatively small
• N=884,647
• V=29,066

• This means the higher-order n-gram
matrices are very sparse!

• Only five possible continuations (that, I,
he, thou, and so) for the sequence It
cannot be but

1/16/20 Natalie Parde - UIC CS 521 47

Sparse n-gram models assume a probability of
zero for a large number of n-grams.

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2

Training
CS 521

Test

P(“521” | “CS”) = 0

1/16/20 Natalie Parde - UIC CS 521 48

Why is this
problematic?

• We’re underestimating the probability of lots
of potential n-grams

• If the probability of any n-gram in the test
set is 0, the probability of the entire test set
will be 0

• Perplexity is the inverse probability of
the test set

• It’s impossible to divide by 0
• We can’t compute perplexity!

1/16/20 Natalie Parde - UIC CS 521 49

Handling Unknown Words
• Out of vocabulary (OOV)
• Model potential OOV words by adding a pseudoword, <UNK>
• How to assign a probability to <UNK>?

• Option A:
• Choose a fixed word list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware of “gaming” perplexity!!
• If you choose a small vocabulary and thus assign <UNK> a

high probability, your language model will probably have lower
perplexity (make sure to only compare to other language
models using the exact same vocabulary)

1/16/20 Natalie Parde - UIC CS 521 50

Handling
Words in
Unseen
Contexts

• Smoothing: Taking a bit of the probability
mass from more frequent events and giving it
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1 🥰

1/16/20 Natalie Parde - UIC CS 521 51

Laplace
Smoothing

• Add one to all n-gram counts before they
are normalized into probabilities

• Not the highest-performing technique for
language modeling, but a useful baseline

• Practical method for other text
classification tasks

• 𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

1/16/20 Natalie Parde - UIC CS 521 52

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

1/16/20 Natalie Parde - UIC CS 521 53

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 =
𝑐7
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot

1/16/20 Natalie Parde - UIC CS 521 54

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 =
𝑐7
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

1/16/20 Natalie Parde - UIC CS 521 55

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

1/16/20 Natalie Parde - UIC CS 521 56

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

1/16/20 Natalie Parde - UIC CS 521 57

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot

1/16/20 Natalie Parde - UIC CS 521 58

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

1/16/20 Natalie Parde - UIC CS 521 59

This results
in a sharp
change in

probabilities!

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8 = 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12 = 0.08

1/16/20 Natalie Parde - UIC CS 521 60

Add-K
Smoothing

• Moves a bit less of the probability mass from
seen to unseen events

• Rather than adding one to each count, add a
fractional count

• 0.5
• 0.05
• 0.01

• The value k can be optimized on a validation
set

• 𝑃 𝑤7 = E8
)

→ 𝑃Add−K 𝑤7 = E8*-
)*-L

• 𝑃 𝑤#|𝑤#%$ = E(319431)
E(3194)

→ 𝑃Add−K 𝑤#|𝑤#%$ = E 319431 *-
E 3194 *-L

1/16/20 Natalie Parde - UIC CS 521 61

Add-K smoothing is useful for
some tasks, but still tends to be
suboptimal for language modeling.

• Other smoothing techniques?
• Backoff: Use the specified n-gram size to

estimate probability if its count is greater
than 0; otherwise, backoff to a lower-order
n-gram

• Interpolation: Mix the probability
estimates from multiple n-gram sizes,
weighing and combining the n-gram
counts

1/16/20 Natalie Parde - UIC CS 521 62

Interpolation
• Linear interpolation

• 𝑃Z 𝑤# 𝑤#%;𝑤#%$ = 𝜆$𝑃 𝑤# 𝑤#%;𝑤#%$ + 𝜆;𝑃 𝑤# 𝑤#%$ + 𝜆\𝑃(𝑤#)
• Where ∑7 𝜆7 = 1

• Conditional interpolation
• 𝑃Z 𝑤# 𝑤#%;𝑤#%$ = 𝜆$(𝑤#%;#%$)𝑃 𝑤# 𝑤#%;𝑤#%$ + 𝜆;(𝑤#%;#%$)𝑃 𝑤# 𝑤#%$ + 𝜆\(𝑤#%;#%$)𝑃(𝑤#)

Context-conditioned weights

1/16/20 Natalie Parde - UIC CS 521 63

Backoff
• If the n-gram we need has zero

counts, approximate it by backing
off to the (n-1)-gram

• Continue backing off until we
reach a size that has non-zero
counts

• Just like with smoothing, some
probability mass from higher-
order n-grams needs to be
redistributed to lower-order n-
grams

1/16/20 Natalie Parde - UIC CS 521 64

Katz Backoff
• Incorporate a function 𝛼 to distribute probability mass to lower-order n-

grams
• Rely on a discounted probability P* if the n-gram has non-zero counts
• Otherwise, recursively back off to the Katz probability for the (n-1)-gram

• 𝑃_` 𝑤# 𝑤#%)*$#%$ = a
𝑃∗ 𝑤# 𝑤#%)*$#%$, if 𝑐 𝑤#%)*$# > 0
𝛼 𝑤#%)*$#%$ 𝑃_` 𝑤# 𝑤#%)*;#%$, otherwise

1/16/20 Natalie Parde - UIC CS 521 65

Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• Subtracts an absolute discount d from each count
• Simple absolute discounting:

• 𝑃AbsoluteDiscounting 𝑤7 𝑤7%$ = q 389438 %r
∑s q(3894t)

+ 𝜆 𝑤7%$ 𝑃(𝑤7)

1/16/20 Natalie Parde - UIC CS 521 66

Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• Subtracts an absolute discount d from each count
• Simple absolute discounting:

• 𝑃AbsoluteDiscounting 𝑤7 𝑤7%$ = q 389438 %r
∑s q(3894t)

+ 𝜆 𝑤7%$ 𝑃(𝑤7)

• Kneser-Ney smoothing comes up with a more sophisticated way to handle the
lower-order n-gram distribution

1/16/20 Natalie Parde - UIC CS 521 67

Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135

million results on Google), but it’s mainly frequent when it follows the word
“new”

• Creates a unigram model that estimates the probability of seeing the word w as a
novel continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = t∶q t3 w>

xy,3Z :q xy3Z w>

1/16/20 Natalie Parde - UIC CS 521 68

Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$)𝑃KN(𝑤7|𝑤7%#*;
7%$)

1/16/20 Natalie Parde - UIC CS 521 69

Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$)𝑃KN(𝑤7|𝑤7%#*;
7%$)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤7%$ =
𝑑

∑t 𝐶(𝑤7%$𝑣)
𝑤 ∶ 𝑐 𝑤7%$𝑤 > 0

1/16/20 Natalie Parde - UIC CS 521 70

Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$)𝑃KN(𝑤7|𝑤7%#*;
7%$)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤7%$ =
𝑑

∑t 𝐶(𝑤7%$𝑣)
𝑤 ∶ 𝑐 𝑤7%$𝑤 > 0

Normalized discount Number of word types that can follow 𝑤7%$

1/16/20 Natalie Parde - UIC CS 521 71

Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$)𝑃KN(𝑤7|𝑤7%#*;
7%$)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

1/16/20 Natalie Parde - UIC CS 521 72

Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$)𝑃KN(𝑤7|𝑤7%#*;
7%$)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

At termination of recursion, unigrams are interpolated with the uniform distribution (𝜀 = empty string)

𝑃~) 𝑤 =
max(𝑐~) 𝑤 − 𝑑, 0)

∑3Z 𝑐~)(𝑤Z) + 𝜆(𝜀)
1
𝑉

1/16/20 Natalie Parde - UIC CS 521 73

Stupid Backoff
• Gives up the idea of trying to make the language model a true

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤7 𝑤7%-*$7%$ = �
E(389��4

8)
E(389��4

894)
if 𝑐 𝑤7%-*$7 > 0

𝜆𝑆 𝑤7 𝑤7%-*;7%$ otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = E(3)
)

1/16/20 Natalie Parde - UIC CS 521 74

Stupid Backoff
• Gives up the idea of trying to make the language model a true

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤7 𝑤7%-*$7%$ = �
E(389��4

8)
E(389��4

894)
if 𝑐 𝑤7%-*$7 > 0

𝜆𝑆 𝑤7 𝑤7%-*;7%$ otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = E(3)
)

Generally, 0.4 works well (Brants et al., 2007)

1/16/20 Natalie Parde - UIC CS 521 75

Summary: Language Modeling

• Language models are statistical models that predict the likelihood of word or character sequences
in a language

• N-gram language models are based on n-gram frequencies
• N-Gram: An n-length sequence of words or characters

• Maximum likelihood estimation is often used to compute n-gram probabilities
• Language models can be evaluated intrinsically using perplexity
• Unknown words and words in unseen contexts need to be handled to avoid issues stemming from

n-gram sparsity
• N-gram language models can be improved using a variety of smoothing techniques

• Laplace smoothing
• Add-K smoothing
• Interpolation
• Katz backoff
• Kneser-Ney smoothing
• Stupid backoff

1/16/20 Natalie Parde - UIC CS 521 76

