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What is 
language 

modeling?

• The process of building statistical models 
that predict the likelihood of different word 
or character sequences in a language.

I’m so excited to be taking CS 
521 this ______!

spring

fall

refrigerator

and
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Why is language modeling useful?

• Many reasons!
• Helps in tasks that require words to be identified 

from noisy, ambiguous input
• Speech recognition
• Autocorrect

• Helps in tasks that require sequences of text to 
be generated

• Machine translation
• Image captioning
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Language models 
come in many 
forms.

• Simple (today’s focus):
• N-gram language models

• More sophisticated (later this 
semester):

• Neural language models
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N-Gram 
Language 

Models

• Goal: Predict P(word|history)
• P(“spring” | “I’m so excited to be taking 

CS 521 this”)

P(“fall” | “I’m
 

so excited to 

be taking CS 

521 this”)
P(“refrigerator” | 

“I’m so excited 

to be taking CS 

521 this”)

P(“and” | “I’m so excited to be taking CS 521 this”)
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How do we predict these 
probabilities?
• One method: Estimate it from frequency counts

• Take a large corpus
• Count the number of times you see the history
• Count the number of times the specified word 

follows the history

P(“spring” | “I’m so excited to be taking CS 521 this”) 
= C(“I’m so excited to be taking CS 521 this spring”) / 
C(“I’m so excited to be taking CS 521 this”)
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However, there are a few problems 
with this method.
• What if our word (or our history) contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 521 this”)

Out of all possible 11-word sequences on the web, how 
many are “I’m so excited to be taking Natalie Parde’s
CS 521 this”?
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We need a better way to estimate 
P(word|history)!

• The solution: Instead of computing the probability of a 
word given its entire history, approximate the 
history using the most recent few words.

• These sequences of words are referred to as n-
grams, where n is the length of the recent words + 
the current word

P(“spring” | “taking CS 521 this”)

P(“spring” | “CS 521 this”)

P(“spring” | “521 this”)

P(“spring” | “this”)
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Special 
N-Grams

• Most higher-order (n>3) n-
grams are simply referred 
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to 
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 521 this”)

P(“spring” | “CS 521 this”)

P(“spring” | “521 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram
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N-gram 
models follow 
the Markov 
assumption.

• We can predict the probability of some 
future unit without looking too far into 
the past

• Bigram language model: 
Probability of a word depends only 
on the previous word

• Trigram language model: 
Probability of a word depends only 
on the two previous words

• N-gram language model: 
Probability of a word depends only 
on the n-1 previous words
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More formally….

• 𝑃 𝑤# 𝑤$#%$ ≈ 𝑃(𝑤#|𝑤#%)*$#%$ )
• We can then multiply these individual word 

probabilities together to get the probability of a word 
sequence

• 𝑃 𝑤$# ≈ ∏-.$
# 𝑃(𝑤-|𝑤-%)*$-%$ )

P(“Winter break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) * 
P(“is” | “break”) * P(“break” | “Winter”)
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To compute 
n-gram 

probabilities, 
maximum 
likelihood 

estimation is 
often used.

• Maximum Likelihood Estimation (MLE):
• Get the requisite n-gram frequency 

counts from a corpus
• Normalize them to a 0-1 range

• P(wn | wn-1) = # of occurrences of the 
bigram wn-1 wn / # of occurrences of 
the unigram wn-1
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.
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Example: Maximum Likelihood 
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You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1
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Example: Maximum Likelihood 
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Bigram Freq.

<s> I 1

I am 1
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cold. </s> 3

… …
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I 1

am 1
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… …
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25
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Example: Maximum Likelihood 
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You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>
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<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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What do bigram counts from larger 
corpora look like?

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0
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What do bigram probabilities from larger 
corpora look like?

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079

want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011

to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087

eat 0 0 0.0027 0 0.021 0.0027 0.056 0

chinese 0.0063 0 0 0 0 0.52 0.0063 0

food 0.014 0 0.014 0 0.00092 0.0037 0 0

lunch 0.0059 0 0 0 0 0.0029 0 0

spend 0.0036 0 0.0036 0 0 0 0 0
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What can we learn 
from n-gram 
statistics?
• Syntactic information

• “to” is usually followed by a 
verb

• Nouns often follow verbs
• Task information

• Virtual assistants are likely 
to hear the word “I”

• Cultural/sociological information
• People like some cuisines 

more than others
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What type 
of n-gram 
is best?

• In general, the highest-order value of n that 
your data can handle!

• Higher order → sparser
• Note: Because n-gram probabilities tend to 

be small, it is most common to perform 
operations in log space

• Multiplying in linear space = adding in log 
space

• Less likely to run into numerical 
underflow when representing sequences
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Evaluating 
Language 
Models

• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the language 
model in an application, and compute 
changes in task performance

• Intrinsic evaluation: Measure the quality 
of the model, independent of any 
application
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Perplexity

• Intrinsic evaluation metric for language 
models

• Perplexity (PP) of a language model on a 
test set is the inverse probability of the 
test set, normalized by the number of 
words in the test set
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More formally….

• 𝑃𝑃 𝑊 = 1 $
2(3435…31)

= 1 ∏7.$
# $

2(38|34…3894)

• Where W is a test set containing words w1, w2, …,  
wn

• Higher conditional probability of a word sequence → 
lower perplexity

• Minimizing perplexity = maximizing test set 
probability according to the language model
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Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set
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Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String
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Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)
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Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“521”) = C(“521”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
521 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

1/16/20 Natalie Parde - UIC CS 521 33



Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
521 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 521 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

PP(“CS 521 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= 4= $
>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$∗>.$

= 10
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Example: Perplexity

Word Frequency P(Word)
CS 1
521 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
521 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
521 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
1 1
𝑃(𝑤$𝑤; …𝑤#)

=
1

<
7.$

#
1

𝑃(𝑤7|𝑤$ …𝑤7%$)

PP(“CS 521 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= 4= $
>.>$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$∗>.B$

= 1.73
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Perplexity can be used to compare 
different language models.

Which language model is best?

• Model A: Perplexity = 962

• Model B: Perplexity = 170

• Model C: Perplexity = 109
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Perplexity can be used to compare 
different language models.

Which language model is best?

• Model A: Perplexity = 962

• Model B: Perplexity = 170

• Model C: Perplexity = 109
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A cautionary 
note….

• Improvements in perplexity do not 
guarantee improvements in task 
performance!

• However, the two are often correlated (and 
perplexity is quicker and easier to check)

• Strong language model evaluations also 
include an extrinsic evaluation component
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Generalization 
and Sparsity

• Probabilities in n-gram models often encode specific 
characteristics of the training corpus

• These characteristics are encoded more strongly 
in higher-order n-grams

• We can see this when generating text from different 
n-gram models

• Select an n-gram randomly from the distribution 
of all n-grams in the training corpus

• Randomly select an n-gram from the same 
distribution, dependent on the previous n-gram

• In a bigram model, if the previous bigram was “CS 521” 
then the next bigram has to start with “521”

• Repeat until the sentence-final token is reached
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Sample 
Sentences 
Generated from 
Shakespearean 
N-Gram Models

• To him swallowed confess hear both.  Of save on trail for are ay 
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit 
the King Henry.  Live king.  Follow.

• What means, sir.  I confess she? then all sorts, he is trim, 
captain.

Bigram

• Fly, and will rid me these news of price.  Therefore the sadness 
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry.  What!  I will go seek the traitor Gloucester.  Exeunt 
some of the watch.  A great banquet serv’d in;

• It cannot be but so.

4-gram
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Sample 
Sentences 
Generated from 
Shakespearean 
N-Gram Models

• To him swallowed confess hear both.  Of save on trail for are ay 
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit 
the King Henry.  Live king.  Follow.

• What means, sir.  I confess she? then all sorts, he is trim, 
captain.

Bigram

• Fly, and will rid me these news of price.  Therefore the sadness 
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry.  What!  I will go seek the traitor Gloucester.  Exeunt 
some of the watch.  A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words
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Sample 
Sentences 
Generated from 
Shakespearean 
N-Gram Models

• To him swallowed confess hear both.  Of save on trail for are ay 
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit 
the King Henry.  Live king.  Follow.

• What means, sir.  I confess she? then all sorts, he is trim, 
captain.

Bigram

• Fly, and will rid me these news of price.  Therefore the sadness 
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry.  What!  I will go seek the traitor Gloucester.  Exeunt 
some of the watch.  A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words
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Sample 
Sentences 
Generated from 
Shakespearean 
N-Gram Models

• To him swallowed confess hear both.  Of save on trail for are ay 
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit 
the King Henry.  Live king.  Follow.

• What means, sir.  I confess she? then all sorts, he is trim, 
captain.

Bigram

• Fly, and will rid me these news of price.  Therefore the sadness 
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry.  What!  I will go seek the traitor Gloucester.  Exeunt 
some of the watch.  A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words

More coherence….
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Sample 
Sentences 
Generated from 
Shakespearean 
N-Gram Models

• To him swallowed confess hear both.  Of save on trail for are ay 
device and rote life have

• Hill he late speaks; or! a more to leg less first you enter

Unigram

• Why dost stand forth thy canopy, forsooth; he is this palpable hit 
the King Henry.  Live king.  Follow.

• What means, sir.  I confess she? then all sorts, he is trim, 
captain.

Bigram

• Fly, and will rid me these news of price.  Therefore the sadness 
of parting, as they say, ‘tis done.

• This shall forbid it should be branded, if renown made it empty.

Trigram

• King Henry.  What!  I will go seek the traitor Gloucester.  Exeunt 
some of the watch.  A great banquet serv’d in;

• It cannot be but so.

4-gram

No coherence between words

Minimal local coherence between words

More coherence….

Direct quote from Shakespeare
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Why did we end up with a 
direct Shakespearean quote?
• The corpus of all Shakespearean text is 

relatively small
• N=884,647
• V=29,066

• This means the higher-order n-gram 
matrices are very sparse!

• Only five possible continuations (that, I, 
he, thou, and so) for the sequence It 
cannot be but
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Sparse n-gram models assume a probability of 
zero for a large number of n-grams.

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2

Training
CS 521

Test

P(“521” | “CS”) = 0
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Why is this 
problematic?

• We’re underestimating the probability of lots 
of potential n-grams

• If the probability of any n-gram in the test 
set is 0, the probability of the entire test set 
will be 0

• Perplexity is the inverse probability of 
the test set

• It’s impossible to divide by 0
• We can’t compute perplexity!
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Handling Unknown Words
• Out of vocabulary (OOV)
• Model potential OOV words by adding a pseudoword, <UNK>
• How to assign a probability to <UNK>?

• Option A:
• Choose a fixed word list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with 

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware of “gaming” perplexity!!
• If you choose a small vocabulary and thus assign <UNK> a 

high probability, your language model will probably have lower 
perplexity (make sure to only compare to other language 
models using the exact same vocabulary)
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Handling 
Words in 
Unseen 
Contexts

• Smoothing: Taking a bit of the probability 
mass from more frequent events and giving it 
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1     🥰
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Laplace 
Smoothing

• Add one to all n-gram counts before they 
are normalized into probabilities

• Not the highest-performing technique for 
language modeling, but a useful baseline

• Practical method for other text 
classification tasks

• 𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

1/16/20 Natalie Parde - UIC CS 521 52



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 =
𝑐7
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 =
𝑐7
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1

Corpus Statistics:

𝑃 𝑤7 = E8
)

→ 𝑃Laplace 𝑤7 = E8*$
)*L

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

1/16/20 Natalie Parde - UIC CS 521 59



This results 
in a sharp 
change in 

probabilities!

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8 = 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12 = 0.08
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Add-K 
Smoothing

• Moves a bit less of the probability mass from 
seen to unseen events

• Rather than adding one to each count, add a 
fractional count

• 0.5
• 0.05
• 0.01

• The value k can be optimized on a validation 
set

• 𝑃 𝑤7 = E8
)

→ 𝑃Add−K 𝑤7 = E8*-
)*-L

• 𝑃 𝑤#|𝑤#%$ = E(319431)
E(3194)

→ 𝑃Add−K 𝑤#|𝑤#%$ = E 319431 *-
E 3194 *-L
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Add-K smoothing is useful for 
some tasks, but still tends to be 
suboptimal for language modeling.

• Other smoothing techniques?
• Backoff: Use the specified n-gram size to 

estimate probability if its count is greater 
than 0; otherwise, backoff to a lower-order 
n-gram

• Interpolation: Mix the probability 
estimates from multiple n-gram sizes, 
weighing and combining the n-gram 
counts
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Interpolation
• Linear interpolation

• 𝑃Z 𝑤# 𝑤#%;𝑤#%$ = 𝜆$𝑃 𝑤# 𝑤#%;𝑤#%$ + 𝜆;𝑃 𝑤# 𝑤#%$ + 𝜆\𝑃(𝑤#)
• Where ∑7 𝜆7 = 1

• Conditional interpolation
• 𝑃Z 𝑤# 𝑤#%;𝑤#%$ = 𝜆$(𝑤#%;#%$)𝑃 𝑤# 𝑤#%;𝑤#%$ + 𝜆;(𝑤#%;#%$)𝑃 𝑤# 𝑤#%$ + 𝜆\(𝑤#%;#%$)𝑃(𝑤#)

Context-conditioned weights
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Backoff
• If the n-gram we need has zero 

counts, approximate it by backing 
off to the (n-1)-gram

• Continue backing off until we 
reach a size that has non-zero 
counts

• Just like with smoothing, some 
probability mass from higher-
order n-grams needs to be 
redistributed to lower-order n-
grams
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Katz Backoff
• Incorporate a function 𝛼 to distribute probability mass to lower-order n-

grams
• Rely on a discounted probability P* if the n-gram has non-zero counts
• Otherwise, recursively back off to the Katz probability for the (n-1)-gram

• 𝑃_` 𝑤# 𝑤#%)*$#%$ = a
𝑃∗ 𝑤# 𝑤#%)*$#%$ , if 𝑐 𝑤#%)*$# > 0
𝛼 𝑤#%)*$#%$ 𝑃_` 𝑤# 𝑤#%)*;#%$ , otherwise
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Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• Subtracts an absolute discount d from each count
• Simple absolute discounting:

• 𝑃AbsoluteDiscounting 𝑤7 𝑤7%$ = q 389438 %r
∑s q(3894t)

+ 𝜆 𝑤7%$ 𝑃(𝑤7)
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Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• Subtracts an absolute discount d from each count
• Simple absolute discounting:

• 𝑃AbsoluteDiscounting 𝑤7 𝑤7%$ = q 389438 %r
∑s q(3894t)

+ 𝜆 𝑤7%$ 𝑃(𝑤7)

• Kneser-Ney smoothing comes up with a more sophisticated way to handle the 
lower-order n-gram distribution
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Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are 
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135 

million results on Google), but it’s mainly frequent when it follows the word 
“new”

• Creates a unigram model that estimates the probability of seeing the word w as a 
novel continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = t∶q t3 w>

xy,3Z :q xy3Z w>
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Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$ ) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$ )𝑃KN(𝑤7|𝑤7%#*;
7%$ )
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Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$ ) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$ )𝑃KN(𝑤7|𝑤7%#*;
7%$ )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤7%$ =
𝑑

∑t 𝐶(𝑤7%$𝑣)
𝑤 ∶ 𝑐 𝑤7%$𝑤 > 0
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Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$ ) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$ )𝑃KN(𝑤7|𝑤7%#*;
7%$ )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤7%$ =
𝑑

∑t 𝐶(𝑤7%$𝑣)
𝑤 ∶ 𝑐 𝑤7%$𝑤 > 0

Normalized discount Number of word types that can follow 𝑤7%$
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Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$ ) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$ )𝑃KN(𝑤7|𝑤7%#*;
7%$ )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams

1/16/20 Natalie Parde - UIC CS 521 72



Kneser-Ney Smoothing

𝑃KN(𝑤7|𝑤7%#*$
7%$ ) =

max 𝑐~) 𝑤7%#*$7 − 𝑑, 0
∑t 𝑐~) 𝑤7%#*$7%$ 𝑣

+ 𝜆(𝑤7%#*$7%$ )𝑃KN(𝑤7|𝑤7%#*;
7%$ )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams

At termination of recursion, unigrams are interpolated with the uniform distribution (𝜀 = empty string)

𝑃~) 𝑤 =
max(𝑐~) 𝑤 − 𝑑, 0)

∑3Z 𝑐~)(𝑤Z) + 𝜆(𝜀)
1
𝑉
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Stupid Backoff
• Gives up the idea of trying to make the language model a true 

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤7 𝑤7%-*$7%$ = �
E(389��4

8 )
E(389��4

894 )
if 𝑐 𝑤7%-*$7 > 0

𝜆𝑆 𝑤7 𝑤7%-*;7%$ otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = E(3)
)
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Stupid Backoff
• Gives up the idea of trying to make the language model a true 

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤7 𝑤7%-*$7%$ = �
E(389��4

8 )
E(389��4

894 )
if 𝑐 𝑤7%-*$7 > 0

𝜆𝑆 𝑤7 𝑤7%-*;7%$ otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = E(3)
)

Generally, 0.4 works well (Brants et al., 2007)
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Summary: Language Modeling

• Language models are statistical models that predict the likelihood of word or character sequences 
in a language

• N-gram language models are based on n-gram frequencies
• N-Gram: An n-length sequence of words or characters

• Maximum likelihood estimation is often used to compute n-gram probabilities
• Language models can be evaluated intrinsically using perplexity
• Unknown words and words in unseen contexts need to be handled to avoid issues stemming from 

n-gram sparsity
• N-gram language models can be improved using a variety of smoothing techniques

• Laplace smoothing
• Add-K smoothing
• Interpolation
• Katz backoff
• Kneser-Ney smoothing
• Stupid backoff
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