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Why is language modeling useful?

« Many reasons!
* Helps in tasks that require words to be identified
from noisy, ambiguous input
« Speech recognition
« Autocorrect
* Helps in tasks that require sequences of text to
be generated
« Machine translation
* Image captioning
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Language models —( )
come in many O

forms.

« Simple (today’s focus):
* N-gram language models

* More sophisticated (later this
semester):

* Neural language models
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* Goal: Predict P(word|history)

* P("spring” | “I'm so excited to be taking
N-Gram CS 521 this)

Language

Models

1/16/20 Natalie Parde - UIC CS 521



How do we predict these
probabilities?

* One method: Estimate it from frequency counts
« Take a large corpus
« Count the number of times you see the history

» Count the number of times the specified word
follows the history

P(“spring” | “I'm so excited to be taking CS 521 this”)

= C(“I'm so excited to be taking CS 521 this spring”) /
C(“I'm so excited to be taking CS 521 this”)
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However, there are a few problems
with this method.

* What if our word (or our history) contains uncommon words?
* What if we have limited computing resources?
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We need a better way to estimate
P(word|history)!

The solution: Instead of computing the probability of a
word given its entire history, approximate the

history using the most recent few words. P01 this”)
These sequences of words are referred to as n- P(‘spring \

grams, where n is the length of the recent words +

the current word ‘ 7
P('spring” | “thig) |




: * Most higher-order (n>3) n-
SpeCIaI grams are simply referred
to using the value of n
N-Grams 0

* 4-gram
« 5-gram

« However, lower-order n-
grams are often referred to

using special terms: trigram — j
« Unigram (1-gram) \P(“spr'\ng” |“521 this’)

« Bigram (2-gram)

« Trigram (3-gram) y~ bigram
M“this”d

unigram
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« We can predict the probability of some
future unit without looking too far into

N -gram the past

models follow - Bigram language model:
the Markov Probability of a word depends only

on the previous word

assumption_ « Trigram language model:
Probability of a word depends only

on the two previous words

 N-gram language model:
Probability of a word depends only
on the n-1 previous words
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More formally....

1/16/20

* P(Wn|WIL_1) ~ P(Wnlwg—_l%Hl)

» We can then multiply these individual word
probabilities together to get the probability of a word
sequence

» PwiM) = [Ty PWi Wiy +1)

P(“Winter break is already over?”)

N—
N

P(“is” | “break”) * P(“break” | “Winter”)

P(“over?” | “already”) * P(“already” | “is”) *

Natalie Parde - UIC CS 521
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To compute
n-gram
probabilities,
maximum

likelihood
estimation is
often used.

1/16/20

 Maximum Likelihood Estimation (MLE):

» Get the requisite n-gram frequency
counts from a corpus

* Normalize them to a 0-1 range

* P(w, | w,.4) = # of occurrences of the
bigram w,_, w,, / # of occurrences of
the unigram w,,
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Example: Maximum Likelihood
Estimation

| am cold.

E(ou are cold.

E/eryone Is cold.

This is Chicago.




Example: Maximum Likelihood

Estimation

| am cold.

<s> | am cold. </s> |

E(ou arecold. = — = =— = »| <s> You are cold. </s>
(] ‘\ L
Everyone is cold. = = = #] <s> Everyone Is cold. </s>

This is Chicago. [= = = =»>

<s> This is Chicago. </s>

A\




Example: Maximum Likelihood

Estimation

| am cold. = = = = = = > <s> | am cold. </s; <s> | 1
| am 1
E(ou arecold. = = — — = »| <s> You are cold. </s> am cold. 1
— cold. </s> 3
E/eryone Is cold. = = = #| <s> Everyone Is cold. </s>

is Chicago. 1

This is Chicago. |~ — — —*| <s> This is Chicago. </s> _ =
: ~ ————— Chicago. </s> 1
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Example: Maximum Likelihood

Estimation

lamcold. = = — — — — »| <s> | am cold. </s> <s>|
| am
E(ou arecold. = = = — = > <s> You are cold. </s> am cold.
cold. </s>
0 ‘\ .
Everyone is cold. = = = #] <s> Everyone Is cold. </s>
is Chicago.
| This is Chicago. [~ — = —*) <s> This is Chicago. </s> | Chicago. </s>
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Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

el

—_— .

| am cold. f= = = = = = » <s> | am cold. </s> <s> | 1 <s> 4
| am 1 I 1
E(ou arecold. = = = = = > <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
] ‘\ L
Everyone is cold. = = = #] <s> Everyone Is cold. </s>
is Chicago. 1 Chicago.
This is Chicago. P —>| <s> This is Chicago. </s> ! Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25
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Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

—_— .

lamcold. = = = — — = »| <s> | am cold. </s> | <s> | 1 <s> 4
i | am 1 | 1
E(ou arecold. = — = =— = »| <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
(] ‘\ L
Everyone is cold. = = = #] <s> Everyone Is cold. </s>

is Chicago. 1 Chicago.

This is Chicago. P —>| <s> This is Chicago. </s> ! Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 /3 = 1.00
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Example: Maximum Likelihood

Estimation
igram | Froq. [N Unigram

el

—_— .

| am cold. f= = = = = = » <s> | am cold. </s> <s> | 1 <s> 4
| am 1 I 1
E(ou arecold. = = = = = > <s> You are cold. </s> am cold. 1 am 1
cold. </s> 3 cold. 3
] ‘\ L
Everyone is cold. = = = #] <s> Everyone Is cold. </s>
is Chicago. 1 Chicago.
This is Chicago. P —>| <s> This is Chicago. </s> ! Chicago. </s> 1 </s> 4

P(I" | “<s>") = C(*<s> I) / G(“<s>") = 1/ 4 = 0.25

2 X @ i
A
¥ £
A
-

P(“</s>" | “cold.”) = C(“cold. </s>") / G(“cold.") = 3/ 3f
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What do bigram counts from larger

corpora look like?

i want Jto _leat chinese food _llunch _
0 9 0

I 5 827 0 0 2
want [ 0 608 1 6 6 5 1
I - 0 686 2 0 6 211
eat [V 0 0 16 2 42 0
chinese [ 0 0 0 82 1 0
m 15 0 15 0 1 4 0 0
lunch i 0 0 0 0 1 0 0
M1 0 1 0 0 0 0 0

1/16/20 Natalie Parde - UIC CS 521 21



What do bigram probabillities from larger

1/16/20

0.002
0.0022

0.00083

o

0.0063
0.014

0.0059
0.0036

0.3
0
0
0
0
0
0
0

0.66
0.0017
0.0027
0
0.014
0
0.0036

0.0036
0.0011
0.28

0

©o O O O
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0.0065
0.00083
0.021

0
0.00092
0

0

corpora look like?

0.0065
0
0.0027
0.52
0.0037
0.0029
0

0.0054
0.0025
0.056
0.0063
0

0

0

0.00079
0.0011
0.087

0

o O O O
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What can we learn
from n-gram
statistics?

» Syntactic information

» “to” is usually followed by a
verb

* Nouns often follow verbs

» Task information
 Virtual assistants are likely
to hear the word “I”
» Cultural/sociological information

» People like some cuisines
more than others
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* In general, the highest-order value of n that
your data can handle!

« Higher order — sparser

What type * Note: Because n-gram probabilities tend to
of n-gram

be small, it is most common to perform
operations in log space

iS beSt? * Multiplying in linear space = adding in log
space

* Less likely to run into numerical
underflow when representing sequences
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« Two types of evaluation paradigms:
 Extrinsic
* Intrinsic

SAVENTE]e
Language

- Extrinsic evaluation: Embed the language
model in an application, and compute

changes in task performance Models

* Intrinsic evaluation: Measure the quality
of the model, independent of any
application
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« Intrinsic evaluation metric for language
models

« Perplexity (PP) of a language model on a i
test set is the inverse probability of the PerpIeX|ty
test set, normalized by the number of

words in the test set

r

D ra,; |

o, 0127 g AN

.! . ')’L / \ ﬁ: ’o*xl
r r p J

1/16/20 Natalie Parde - Ul 4 h




More formally....

. _n 1 . n n 1
PP(W) = \/P(wlwz...wn) B JHi:lP(Wilwl---Wi—l)

« Where W is a test set containing words w,, w,, ...,
Wn
» Higher conditional probability of a word sequence —
lower perplexity
« Minimizing perplexity = maximizing test set
probability according to the language model

RS NS A e R Natalie Parde - UIC CS 521 27



Example: Perplexity

| Training Set |

\Word | Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
lllinois 10
Chicago 10
1/16/20

\

Natalie Parde - UIC CS 521
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Example: Perplexity

| Training Set |

\Word | Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
lllinois 10
Chicago 10
1/16/20

\

Test String

CS 521 Statistical Natural Language
Processing University of lllinois Chicago

Natalie Parde - UIC CS 521
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Example: Perplexity

| Training Set |

\Word | Frequency
CS 10
521 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
lllinois 10
Chicago 10
1/16/20

\

Test String

CS 521 Statistical Natural Language
Processing University of lllinois Chicago

PP(W) = n 1 _ n ﬁ 1
B P(wiw, ...w,,) B ) = P(w;|lwyq ...w;_q1)

Natalie Parde - UIC CS 521
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Example: Perplexity

CS

521
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

1/16/20

Training Set

Frequency

10
10
10
10
10
10
10
10

Test String

CS 521 Statistical Natural Language
Processing University of lllinois Chicago

PP(W) = n 1 _ n ﬁ 1
B P(wiw, ...w,,) B ) = P(w;|lwyq ...w;_q1)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 521
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Example: Perplexity

Training Set \ Test String

m CS 521 Statistical Natural Language

CS 10 Processing University of lllinois Chicago

521

Statistical

Natural PP(W) = n\/ 1 _ i ﬁ 1
Language P(wiw; ...wy) = P(wilwy ...w;_q)
Processing

University P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
of P(“5217) = C(“521”) / C(<all unigrams>) = 10/100 = 0.1
lllinois

Chicago
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Example: Perplexity

521
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

1/16/20

Training Set

\Word _| Frequency | P(Word)
CS 10 0.1

10
10
10
10
10
10
10
10
10

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

Test String

CS 521 Statistical Natural Language
Processing University of lllinois Chicago

PP(W) _n 1 . n ﬁ 1
- P(wiw; ...wy) - d =1 P(wi|wy ...w;_q)

Natalie Parde - UIC CS 521
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Example: Perplexity

521
Statistical
Natural
Language
Processing
University
of

lllinois
Chicago

1/16/20

Training Set

\Word _| Frequency | P(Word)
CS 10 0.1

10
10
10
10
10
10
10
10
10

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

Test String

CS 521 Statistical Natural Language
Processing University of lllinois Chicago

PP(W) _n 1 . n ﬁ 1
- P(wiw; ...wy) - d =1 P(wi|wy ...w;_q)

PP("CS 521 Statistical Natural Language Processing
University of lllinois Chicago”)

w0 ! 10
0.1%0.1%0.1%0.1%0.1%0.1%x0.1%0.1%x0.1%0.1 o
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Example: Perplexity

Training Set | Test String

M lllinois Chicago Chicago Chicago Chicago
CS 1 Chicago Chicago Chicago Chicago Chicago
521 1

Statistical 1

Natural 1 PP(W) = n\/ 1 _ e ﬁ 1
Language 1 P(wiwy ...wy) Jit P(wilwy ...w;_1)
Processing 1

University 1

of 1

lllinois 1

Chicago 91
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Example: Perplexity

Training Set | Test String

M lllinois Chicago Chicago Chicago Chicago

CS 1 0.01 Chicago Chicago Chicago Chicago Chicago

521 1 0.01

Statistical 1 0.01

Natural 1 0.01 PP n\/ 1 o ﬁ 1

Language 1 0.01 P(wiwy ...wy) Jit P(wilwy ...w;_1)

Processing 1 0.01

University 1 0.01

of 1 0.01

lllinois 1 0.01

Chicago 91 0.91
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Example: Perplexity

Training Set | Test String

M lllinois Chicago Chicago Chicago Chicago

CS 1 0.01 Chicago Chicago Chicago Chicago Chicago
521 1 0.01

Statistical 1 0.01

Natural 1 0.01 PP n\/ 1 o ﬁ 1
Language 1 0.01 P(wiwy ...wy) Jit P(wilwy ...w;_1)
Processing 1 0.01

University 1 0.01

of 1 0.01 PP(“CS 521 Statistical Natural Language Processing
linois 1 0.01 University of lllinois Chicago”)

Chicago 91 091 - 1(;/0_01*0_91*0_91*0_91*0_9110_91*0_91*0_91*0_91*0_91 =173
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1/16/20

Perplexity can be used to compare
different language models.

Which language model is best?

* Model A: Perplexity = 962

* Model B: Perplexity = 170

* Model C: Perplexity = 109

Natalie Parde - UIC CS 521
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Perplexity can be used to compare
different language models.

Which language model is best?

* Model A: Perplexity = 962

 Model B: Perplexity = 170

* Model C: Perplexity = 109

1/16/20 Natalie Parde - UIC CS 521
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A cautionary
note....

* Improvements in perplexity do not
guarantee improvements in task
performance!

* However, the two are often correlated (and
perplexity is quicker and easier to check)

« Strong language model evaluations also
Include an extrinsic evaluation component



* Probabilities in n-gram models often encode specific
characteristics of the training corpus

» These characteristics are encoded more strongly
in higher-order n-grams

« We can see this when generating text from different

Generalization n-gram models
I « Select an n-gram randomly from the distribution
and SparSIty of all n-grams in the training corpus

« Randomly select an n-gram from the same
distribution, dependent on the previous n-gram

* In a bigram model, if the previous bigram was “CS 521"
then the next bigram has to start with “521”

» Repeat until the sentence-final token is reached




maw Unigram

* To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

e Bigram

Sa m p I e » Why dost stand forth thy canopy, forsooth; he is this palpable hit

the King Henry. Live king. Follow.
Sente nces * What means, sir. | confess she? then all sorts, he is trim,
captain.

Generated from

Shakespearean .

* Fly, and will rid me these news of price. Therefore the sadness
N -G ram M Odels of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

 King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

* [t cannot be but so.
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* To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

N

Sa m p I e » Why dost stand forth thy canopy, forsooth; he is this palpable hit

the King Henry. Live king. Follow.
Sente nces * What means, sir. | confess she? then all sorts, he is trim,
captain.

Generated from

Shakespearean —

* Fly, and will rid me these news of price. Therefore the sadness
N -G ram M Odels of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

 King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

* [t cannot be but so.
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—

* To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

Minima’ ———————
N local Coherence between Words

Sa m p I e » Why dost stand forth thy canopy, forsooth; he is this palpable hit

the King Henry. Live king. Follow.
Sente nces * What means, sir. | confess she? then all sorts, he is trim,
captain.

Generated from

Shakespearean —

* Fly, and will rid me these news of price. Therefore the sadness
N -G ram M Odels of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

 King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

* [t cannot be but so.

1/16/20 Natalie Parde - UIC CS 521 44




—

* To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

* Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.

* What means, sir. | confess she? then all sorts, he is trim,

Generated from ceptan —

M
Shakespearean [EE c= LHETEow

* Fly, and will rid me these news of price. Therefore the sadness
N -G ram M Odels of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

Sample
Sentences

 King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

* [t cannot be but so.

1/16/20 Natalie Parde - UIC CS 521 45




—

* To him swallowed confess hear both. Of save on trail for are ay
device and rote life have

* Hill he late speaks; or! a more to leg less first you enter

. . *
Minimal loca| cope=

Coherence between words
Sa m p I e » Why dost stand forth thy canopy, forsooth; he is this palpable hit
the King Henry. Live king. Follow.
Sente nces * What means, sir. | confess she? then all sorts, he is trim,
captain.
Shakeonearean -
. Oreé coherence
Shakespearean
* Fly, and will rid me these news of price. Therefore the sadness
N -G ram M Odels of parting, as they say, ‘tis done.
* This shall forbid it should be branded, if renown made it empty.

Direct quote from Shakespeare

 King Henry. What! | will go seek the traitor Gloucester. Exeunt
some of the watch. A great banquet serv’d in;

* [t cannot be but so. «
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Why did we end up with a
direct Shakespearean quote?

* The corpus of all Shakespearean text is
relatively small

« N=884,647
» V=29,066

* This means the higher-order n-gram
matrices are very sparse!

* Only five possible continuations (that, |,
he, thou, and so) for the sequence [t
cannot be but

1/16/20 Natalie Parde - UIC CS 521
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Sparse n-gram models assume a probability of
zero for a large number of n-grams.

Training Test

CS521| . P(*5217|CS") =0
CS 421 8 T e
CS 590 5 i
CS 594 2 e
RO L

1/16/20 Natalie Parde - UIC CS 521 48



Why is this

problematic?

1/16/20

* We’re underestimating the probability of lots
of potential n-grams

* |f the probability of any n-gram in the test
set is 0, the probability of the entire test set

will be O

 Perplexity is the inverse probability of
the test set

* It's impossible to divide by 0
* We can’t compute perplexity!

Natalie Parde - UIC CS 521



Handling Unknown Words

« Qut of vocabulary (OOV)
» Model potential OOV words by adding a pseudoword, <UNK>

* How to assign a probability to <UNK>?
« Option A:
» Choose a fixed word list
« Convert any words not in that list to <UNK>
« Estimate the probabilities for <UNK> like any other word
» Option B:

» Replace all words occurring fewer than n times with
<UNK>

« Estimate the probabilities for <UNK> like any other word

« Beware of “gaming” perplexity!!
 |f you choose a small vocabulary and thus assign <UNK> a
high probability, your language model will probably have lower

perplexity (make sure to only compare to other language
models using the exact same vocabulary)

Natalie Parde - UIC CS 521 50



« Smoothing: Taking a bit of the probability
mass from more frequent events and giving it
to unseen events.

« Sometimes also called “discounting”
« Many different smoothing techniques:

Handling

WO rds In * Laplace (add-one)
Unseen  Addk
 Stupid backoff
Contexts . Kneser-Ney
CS 421 8 CS 421
CS 590 5 CS 590 5
CS 594 2 CS 594 2

CS 521 0w CS 521 1 463
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Laplace

Smoothing

1/16/20

« Add one to all n-gram counts before they
are normalized into probabilities

* Not the highest-performing technique for
language modeling, but a useful baseline

* Practical method for other text
classification tasks

(W) Tl
i) =

Laplace N+V

Natalie Parde - UIC CS 521



Example: Laplace Smoothing

(‘

W Unigram [ Frequency _

Chicago 4 Chicago is

Corpus Statistics: { is 8 is cold 4
cold 6 is hot 0
hot 0

1/16/20 Natalie Parde - UIC CS 521 53




Example: Laplace Smoothing

1/16/20

(‘
Unigram | Frequency
Chicago 4
Corpus Statistics: { is 8
cold 6
hot 0
f m
Chicago 1g = 022
Ci
P(w;) N < . 75 = 044
cold % =0.33
0

Natalie Parde - UIC CS 521

Chicago is
is cold 4
is hot 0

Chicago is
is cold

is hot 1
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Example: Laplace Smoothing

1/16/20

|

Corpus Statistics: {

P(w;)

| &

(

f

Unigram | Frequency
Chicago 4
is 8
cold 6
hot 0

Chicago =0.22
icag 18 = 0.
is 8—044
18
6

cold —=0.
18 0.33
0

hot —=0.

o 18 0.00

Natalie Parde - UIC CS 521

Chicago is
is cold 4
is hot 0

Chicago is

i 4
is cold 050

: |
is hot 0

5= 0.00
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Example: Laplace Smoothing

Corpus Statistics:

cit+1

P = % ekt N+V

Laplace (Wl) =

1/16/20

|

<

(

-

Unigram __| Frequency _

Chicago 4
is
cold
hot

Chicago

o O o

is
cold

hot

Natalie Parde - UIC CS 521

Chicago is
is cold 4
is hot 0

Chicago is
is cold

is hot
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Example: Laplace Smoothing

Corpus Statistics:

cit+1

P = % ekt N+V

Laplace (Wl) =

1/16/20

|

<

r
Unigram | Frequency _
Chicago 4+1
is 8+1
cold 6+1
hot 0+1
\\
B e
Chicago

is

< cold

hot

Natalie Parde - UIC CS 521

Chicago is 2+1

is cold 4+1

is hot 0+1

J

T T |

Chicago is

is cold

is hot

o7
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Example: Laplace Smoothing

Corpus Statistics:

cit+1

P = % ekt N+V

Laplace (Wl) =

1/16/20

|

s

(

f

Unigram | Frequency
Chicago 4+1
IS 8+1
cold 6+1
hot 0+1
hi = 0.
Chicago >3 = 0.23
is i =041
i— .
7
Id —=0.
co >3 0.32
1
hot —=0.
o) 72 0.05

Natalie Parde - UIC CS 521

Chicago is 2+1
is cold 4+1
is hot 0+1

Chicago is
is cold

is hot 1
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Example: Laplace Smoothing

Corpus Statistics:

cit+1

P = % ekt N+V

Laplace (Wl) =

1/16/20

(

f

Unigram __| Frequency _

Chicago 4+1
IS 8+1
cold 6+1
hot 0+1
hi
Chicago >3 = 0.23
is i =041
=
7
Id =
co >3 0.32
1
hot
o) > = 0.05
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Chicago is 2+1
is cold 4+1
is hot 0+1

Chicago is =§=
4+4 8
is cold 5 _ 5 _
8+4_12_0'42 {
is hot 1 1
8+4 12_0'08
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This results
in a sharp

change In
probabilities!

Bigram Probability
. . >
Chicago is £ 050
4
i 4
Is cold * 050
8
is hot 0
3= 0.00
Bigram Probability
: : 3
Chicago is ° _ 038
8
Is cold 5 _
7= 0.42
is hot 1
7= 0.08

1/16/20
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* Moves a bit less of the probability mass from
seen to unseen events

« Rather than adding one to each count, add a
fractional count

* 0.5

Add-K . 0.05

- * 0.01
SmOOth I ng * The value k can be optimized on a validation
set
Ci __ Citk
s P(w) = == P (W) =~
* P(wnlwn_q) = C(::;l];l_‘f;l) PAdd—K(Wnlwn—l) — A

c(Wp—1)+kV
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Add-K smoothing is useful for
some tasks, but still tends to be
suboptimal for language modeling.

« Other smoothing techniques?

« Backoff: Use the specified n-gram size to
estimate probability if its count is greater
than O; otherwise, backoff to a lower-order
n-gram

* Interpolation: Mix the probability
estimates from multiple n-gram sizes,
weighing and combining the n-gram
counts
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Interpolation

 Linear interpolation
* P(wplwpowpn_q) = 2 P(Wy|wp_owpn_q) + ,P(Wy|wy_q) + 43P (Wy)
« Where },;1; =1

 Conditional interpolation

@ (Wnlwp_owp_1) + /1

* P'(wplwp_owpn_q) = A4

Context-conditioned weights
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Backoff

* If the n-gram we need has zero
counts, approximate it by backing
off to the (n-1)-gram

» Continue backing off until we
reach a size that has non-zero
counts

 Just like with smoothing, some
probability mass from higher-
order n-grams needs to be
redistributed to lower-order n-
grams




Katz Backoff

 [ncorporate a function a to distribute probability mass to lower-order n-
grams

* Rely on a discounted probability P* if the n-gram has non-zero counts
« Otherwise, recursively back off to the Katz probability for the (n-1)-gram

P*(Wn |WhZnit1), if c(Wp_n41) >0

* Ppo(Wn|WiThsr) = -
\a(w “N+1)Ppo(Wn|WiTni2),  otherwise




Kneser-Ney Smoothing

* One of the most commonly used and best-performing n-gram smoothing methods

* |Incorporates absolute discounting
e Subtracts an absolute discount d from each count

« Simple absolute discounting:

) PAbsoluteDiscounting(Wi|Wi—1) —

C(wi—yw;i)—d
Zv C(Wi—lv)

+ A(w;_1)P(w;)
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Kneser-Ney Smoothing

One of the most commonly used and best-performing n-gram smoothing methods

Incorporates absolute discounting
e Subtracts an absolute discount d from each count

Simple absolute discounting:

Cwi_wi)—d 4
° I " = .
PAbsoluteDiscounting(Wl |Wl_1) Ev C(Wi_1V) + A(Wl—l

Kneser-Ney smoothing comes up with a more sophisticated way to handle the
lower-order n-gram distribution




Kneser-Ney Smoothing

* Obijective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

« tall nonfat decaf peppermint

« “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135
million results on Google), but it's mainly frequent when it follows the word

(13 th

new

» Creates a unigram model that estimates the probability of seeing the word w as a
novel continuation, in a new unseen context
« Based on the number of different contexts in which w has already appeared
. P (W) _ [{v:C(vw)>0}|

Continuation {(u' ,wr):C(u'wr)>0}|
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Kneser-Ney Smoothing

maX(CKN (Wz. n+1) 0)

P wi |[wi =
( ll l— n+1) ZvCKN(Wl n+1v)

+/1(Wl n+1)P (Wllwl n+2

1/16/20 Natalie Parde - UIC CS 521

69



Kneser-Ney Smoothing

max(cKN(Wii n+1) —d, 0) @
w; |w} = w;|w
( l| l— TL+1) Zv CKN(WL n+1v) KN( ll

Normalizing constant to distribute the probability mass that’s been discounted
Alwi_q) =

S CwiaD) [{tw : c(w;—1w) > 0}
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Kneser-Ney Smoothing

max(cKN(Wii n+1) —d, 0) @
w; |w} = w;|w
( l| l— TL+1) Zv CKN(WL n+1v) KN( ll

Normalizing constant to distribute at’'s been discounted

A(w;_1)

Normalized discount Number of word types that can follow w;_;

1/16/20 Natalie Parde - UIC CS 521

-1
I—n+2

71



Kneser-Ney Smoothing

Wi_nt1) —d, 0)
(Wllwl n+1) — 2 @ Wl—l U) (Wllwl n+2
I—n+1

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams
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Kneser-Ney Smoothing

S LD
(Wllwl n+1) — 2 @ Wii—_%+1v) (Wllwl n+2)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

-
At termination of recursion, unigrams are interpolated with the uniform distribution (e = empty string)

max(cgy(w) — d, 0) 1

Pry(w) = + A(e) =
KN Xwr Ckn (W) (£) 4
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Stupid Backoff

 Gives up the idea of trying to make the language model a true
probability distribution &

* No discounting of higher-order probabilities

* If a higher-order n-gram has a zero count, simply backoff to a lower-
order n-gram, weighted by a fixed weight

C(Wil:—k+1)
* S(wi|wiZesr) = § Tk
\/15 (wi|wiZgs2) otherwise

« Terminates in the unigram, which has the probability:

. Sw) = L2

if c(W_g41) > 0




Stupid Backoff

 Gives up the idea of trying to make the language model a true
probability distribution &

* No discounting of higher-order probabilities

* If a higher-order n-gram has a zero count, simply backoff to a lower-
order n-gram, weighted by a fixed weight

C(Wii—k+1) . i
° S(Wl‘wll—_l%+1) = C(Wii:l%_l_l) lfC(Wl—k+1) >0

w; |(wizd otherwise
( | l k+2)

Cerminates In the unigram, which has the probability:
. S(w) = <

N

Generally, 0.4 works well (Brants et al., 2007)



Summary: Language Modeling

1/16/20

Language models are statistical models that predict the likelihood of word or character sequences
in a language

N-gram language models are based on n-gram frequencies

* N-Gram: An n-length sequence of words or characters
Maximum likelihood estimation is often used to compute n-gram probabilities
Language models can be evaluated intrinsically using perplexity

Unknown words and words in unseen contexts need to be handled to avoid issues stemming from
n-gram sparsity
N-gram language models can be improved using a variety of smoothing techniques

+ Laplace smoothing

+ Add-K smoothing

* Interpolation

+ Katz backoff

* Kneser-Ney smoothing

» Stupid backoff
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