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What are 
recurrent 

neural 
networks?

• Neural networks that exploit the temporal
nature of language!

• Also allow variable-length inputs

My project proposal is cooler than yours.

cooler yours. is proposal My than project
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Language is 
inherently 
temporal.

• Continuous input streams of indefinite 
length that unfold over time

• Even clear from the metaphors we use to 
describe language:

• Conversation flow
• News feed
• Twitter stream
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To capture this 
phenomenon 
computationally, 
we can use 
recurrent neural 
networks to 
perform sequence 
processing.

• Sequence Processing: Automated 
processing of sequential items (e.g., 
words in a sentence) while taking into 
account temporal information (e.g., w1
occurs before w2)
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Sequence processing is particularly 
useful for some tasks!

• Syntactic parsing
• Part of speech tagging
• Language modeling

Natalie did not like social events so 
she politely declined the party 
invitation.

verb? noun? adjective?

Natalie’s tweet had a like within thirty 
seconds of posting it.

verb? noun? adjective?
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Aren’t other neural network models (e.g., 
feedforward networks) already able to 
capture temporal information?

• In a sense, yes
• How?

• Sliding window approach
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Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤$ = “write”|𝑤$./ = “to”, 𝑤$.2 = “down”, 𝑤$.5 = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤$ = “the”|𝑤$./ = “write”, 𝑤$.2 = “to”, 𝑤$.5 = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤$ = “exam”|𝑤$./ = “the”, 𝑤$.2 = “write”, 𝑤$.5 = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. Positive 🤷
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.
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Recurrent neural 
networks (RNNs) are 
designed to overcome 
these limitations.

• Built-in capacity to handle 
temporal information

• Can accept variable length 
inputs without the use of fixed-
size windows
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Recurrent 
Neural Networks

• Contain cycles within their connections
• The value of a unit is dependent 

upon outputs from previous 
timesteps

• Many varieties exist
• “Vanilla” RNNs
• Long short-term memory networks 

(LSTMs)
• Gated recurrent units (GRUs)
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How do RNNs differ from standard 
feedforward neural networks?

• Memory!
• Loops in the network allow information to persist over time
• Information is stored between timesteps using an internal hidden state, and 

fed back into the model the next time it reads an input
• New hidden states are determined as a function of the existing hidden state and 

the new input at the current timestep
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Vanilla RNN Layer

xt

Current input
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Vanilla RNN Layer

xt ht

Current input
Information from xt
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Vanilla RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Vanilla RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Thus, hidden layers in RNNs are more 
complex than in feedforward networks.
Outputs from earlier timesteps serve as additional context

Makes decisions based on both current input and outputs from 
prior timesteps

Can include information extending all the way back to the 
beginning of the sequence
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However, computation units still 
perform the same core actions.

Given:

• Input vector
• (New!) activation 

values for the hidden 
layer from the 
previous timestep

Compute:

• Weighted sum of 
inputs

2/11/20 Natalie Parde - UIC CS 521 20



Most 
Significant 
Change

• New set of weights, U, that connect the 
hidden layer from the previous timestep to 
the current hidden layer

• These weights determine how the network 
should make use of prior context
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Formal 
Equations

• Similar to what we’ve seen with 
feedforward networks

• Recall the basic set of equations for a 
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)
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Formal 
Equations

• Just add (weights X activation values from 
previous timestep) product to the current 
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• W, U, and V are shared across all 
timesteps
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xt ht yt

ht-1
U

W V
xt ht yt

W

U

V

What does this look like 
when unrolled?

Recurrent View Unrolled View
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Formal Algorithm
h0 ← 0  # Initialize activations from the hidden layer to 0

# Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b)  # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3
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Training 
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden 

layer at t
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Forward Inference
• Compute ht and yt at each step in time
• Compute the loss at each step in time

Updated from feedforward networks!
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Forward Pass

h0 x1

y1

t1

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backpropagation Through Time

• Process the sequence in reverse
• Compute the required error 

gradients at each step backward in 
time

Updated from feedforward networks!
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V
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Updating the 
weights for V
works no 
differently from 
feedforward 
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Chain rule
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Updating the 
weights for V
works no 
differently from 
feedforward 
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Reduce the first 
two terms to an 
error term,𝛿$

Activation 
value of the 
hidden layer at 
the current 
timestep, ℎ$

2/11/20 Natalie Parde - UIC CS 521 42



Updating the 
weights for V
works no 
differently from 
feedforward 
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

𝜕𝐿
𝜕𝑉

= 𝛿$ℎ$
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Updating the 
weights for W
and U works a 
little bit 
differently.

• Error term for a hidden layer, 𝛿M, 
must be the sum of the error term 
from the current output and the 
error term from the next timestep

• 𝛿M = 𝑔O 𝑧 𝑉𝛿$ + 𝛿$P/

2/11/20 Natalie Parde - UIC CS 521 44



Once we have 
this updated error 

term for the 
hidden layer, we 
can proceed as 

usual to compute 
the gradients for 

U and W.

• QR
QS

= QR
QT

QT
QU

QU
QS

= 𝛿M𝑥$

• QR
QW
= QR

QT
QT
QU

QU
QW
= 𝛿Mℎ$./
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One remaining 
step….

• Backpropagate the error 
from 𝛿M to ℎ$./ based on 
the weights in U

• 𝛿$P/ = 𝑔O 𝑧 𝑈𝛿M
• At this point, we have all of 

the necessary gradients to 
update U, V, and W!

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3
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Applications 
of Recurrent 
Neural 
Networks

• Language modeling
• Part-of-speech tagging
• Sequence classification tasks
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At this point, 
we’ve seen a 
few types of 
language 
models.

• N-gram language models
• Feedforward neural network 

language models
• In our earlier example today, a 

sliding window variation of this
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These models 
attempt to 
predict the 

next word in a 
sequence 

given a prior 
context of 

fixed length.

• What’s challenging about this approach?
• Model quality is dependent on context 

size
• Anything outside the fixed context 

window has no impact on the model’s 
decision
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Recurrent Neural Language Models
• Recurrent neural language models process sequences one word at a time, 

as seen in the previous slides
• This means that they avoid constraining the context size
• The hidden state embodies information about all of the preceding 

words, all the way back to the beginning of the sequence

2/11/20 Natalie Parde - UIC CS 521 50



Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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How can we generate text with neural 
language models?
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white 
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, 
with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were 
so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example, 
that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there 
before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human 
civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But 
they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.
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Generation 
with Neural 
Language 
Models

1. Sample the first word in the output from the 
softmax distribution that results from using 
the beginning of sentence marker (<s>) 
as input

2. Get the embedding for that word
3. Use it as input to the network at the next 

time step, and sample the following word 
as in (1)

4. Repeat until the end of sentence marker 
(</s>) is sampled, or a fixed length limit is 
reached
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Autoregressive 
Generation

• This technique is referred to as 
autoregressive generation

• Word generated at each timestep is 
conditioned on the word generated 
previously by the model
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Autoregressive Generation

<s> RNN

softmax

recurrent
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

2/11/20 Natalie Parde - UIC CS 521 59



Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful 
autoregressive 
generation?

Prime the generation 
component with appropriate 
context (e.g., something more 
useful than <s>)
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RNNs are 
also highly 

useful for 
sequence 

labeling.

• Task: Given a fixed set of labels, assign a 
label to each element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated by 

the softmax (or other activation) function 
over the set of all labels
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Sequence Labeling

h0 a

determiner

t1

h1
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun
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They’re also 
useful for 
sequence 
classification!

• Task: Given an input sequence, assign 
the entire sequence to a class (rather 
than the individual tokens within it)
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How to use RNNs for sequence 
classification?

1

Pass the sequence 
through an RNN one 
word at a time, as usual

2

Assume that the hidden 
layer for the final word, 
hn, acts as a 
compressed 
representation of the 
entire sequence

3

Use hn as input to a 
subsequent feedforward 
neural network

4

Choose a class via 
softmax over all the 
possible classes
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Sequence Classification

recurrent RNN

neural RNN

network RNN

2/11/20 Natalie Parde - UIC CS 521 68



Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING
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Notes about 
Sequence 

Classification

• No loss associated with intermediate 
outputs

• Loss function is based entirely on the final 
classification task!

• Errors are still backpropagated all the way 
through the RNN

• The process of adjusting weights the entire 
way through the network based on the loss 
from a downstream application is often 
referred to as end-to-end training
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Where do 
we go 
from 
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs
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Where do 
we go 
from 
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN
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Stacked 
RNNs

• Use the entire sequence of outputs from one 
RNN as the input sequence to another

• Capable of outperforming single-layer networks
• Why?

• Having more layers allows the network to 
learn representations at differing levels of 
abstraction across layers

• Early layers → more fundamental 
properties

• Later layers → more meaningful 
groups of fundamental properties
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Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs
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Bidirectional 
RNNs

• Simple RNNs only consider the information 
in a sequence leading up to the current 
timestep

• ℎ$
X = 𝑅𝑁𝑁X[\]U\^(𝑥/$)
• ℎ$

X corresponds to the normal hidden 
state at time t

• This could be visualized as the context to 
the left of the current time

Natalie ran to TBH 180B
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Bidirectional 
RNNs

• However, in many cases the context after 
the current timestep (to the right of the 
current time) could be useful as well!

• In many applications we have access to the 
entire input sequence at once anyway

Natalie ran to TBH 180B

Natalie ran her code again
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Bidirectional 
RNNs

• How can we make use of information 
from both sides of the current timestep?

• Simple solution:
• Train an RNN on an input sequence in 

reverse
• ℎ$_ = 𝑅𝑁𝑁_U`a]U\^(𝑥$b)

• ℎ$_ corresponds to information from the current 
timestep to the end of the sequence

• Combine the forward and backward 
networks
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Bidirectional 
RNNs

• Two independent RNNs
• One where the input is processed from start 

to end
• One where the input is processed from end 

to start
• Outputs combined into a single representation 

that captures both the left and right contexts of 
an input at each timestep

• ℎ$ = ℎ$
X⨁ℎ$_

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.

2/11/20 Natalie Parde - UIC CS 521 78



Bidirectional RNNs

RNNNatalie ran to TBH 180B
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Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180B

180B TBH to ran Natalie
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Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180B

180B TBH to ran Natalie
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Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
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More 
advanced 
variations to 
come….

• Additional ways to combine RNNs
• Architectural modifications to allow 

better context management
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Summary: 
Recurrent 

Neural 
Networks

• Recurrent neural networks (RNNs) are designed 
to make use of temporal information from input 
sequences

• Bonus: Can accept inputs of variable length!
• RNNs base their decisions on both current input 

and activation values from the previous timestep
• RNNs are particularly useful for language 

modeling, text generation, sequence labeling, 
and (when combined with a feedforward network) 
sequence classification

• More complex varieties of RNNs include:
• Stacked RNNs
• Bidirectional RNNs
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