
Recurrent Neural
Networks

Natalie Parde, Ph.D.
Department of Computer Science

University of Illinois at Chicago

CS 521: Statistical Natural Language
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/

What are
recurrent

neural
networks?

• Neural networks that exploit the temporal
nature of language!

• Also allow variable-length inputs

My project proposal is cooler than yours.

cooler yours. is proposal My than project

2/11/20 Natalie Parde - UIC CS 521 2

Language is
inherently
temporal.

• Continuous input streams of indefinite
length that unfold over time

• Even clear from the metaphors we use to
describe language:

• Conversation flow
• News feed
• Twitter stream

2/11/20 Natalie Parde - UIC CS 521 3

To capture this
phenomenon
computationally,
we can use
recurrent neural
networks to
perform sequence
processing.

• Sequence Processing: Automated
processing of sequential items (e.g.,
words in a sentence) while taking into
account temporal information (e.g., w1
occurs before w2)

2/11/20 Natalie Parde - UIC CS 521 4

Sequence processing is particularly
useful for some tasks!

• Syntactic parsing
• Part of speech tagging
• Language modeling

Natalie did not like social events so
she politely declined the party
invitation.

verb? noun? adjective?

Natalie’s tweet had a like within thirty
seconds of posting it.

verb? noun? adjective?

2/11/20 Natalie Parde - UIC CS 521 5

Aren’t other neural network models (e.g.,
feedforward networks) already able to
capture temporal information?

• In a sense, yes
• How?

• Sliding window approach

2/11/20 Natalie Parde - UIC CS 521 6

Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤$ = “write”|𝑤$./ = “to”, 𝑤$.2 = “down”, 𝑤$.5 = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over
all words in the
vocabulary

2/11/20 Natalie Parde - UIC CS 521 7

Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤$ = “the”|𝑤$./ = “write”, 𝑤$.2 = “to”, 𝑤$.5 = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over
all words in the
vocabulary

2/11/20 Natalie Parde - UIC CS 521 8

Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤$ = “exam”|𝑤$./ = “the”, 𝑤$.2 = “write”, 𝑤$.5 = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax
distribution over
all words in the
vocabulary

2/11/20 Natalie Parde - UIC CS 521 9

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. Positive 🤷

2/11/20 Natalie Parde - UIC CS 521 10

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.

2/11/20 Natalie Parde - UIC CS 521 11

Recurrent neural
networks (RNNs) are
designed to overcome
these limitations.

• Built-in capacity to handle
temporal information

• Can accept variable length
inputs without the use of fixed-
size windows

2/11/20 Natalie Parde - UIC CS 521 12

Recurrent
Neural Networks

• Contain cycles within their connections
• The value of a unit is dependent

upon outputs from previous
timesteps

• Many varieties exist
• “Vanilla” RNNs
• Long short-term memory networks

(LSTMs)
• Gated recurrent units (GRUs)

2/11/20 Natalie Parde - UIC CS 521 13

How do RNNs differ from standard
feedforward neural networks?

• Memory!
• Loops in the network allow information to persist over time
• Information is stored between timesteps using an internal hidden state, and

fed back into the model the next time it reads an input
• New hidden states are determined as a function of the existing hidden state and

the new input at the current timestep

2/11/20 Natalie Parde - UIC CS 521 14

Vanilla RNN Layer

xt

Current input

2/11/20 Natalie Parde - UIC CS 521 15

Vanilla RNN Layer

xt ht

Current input
Information from xt

2/11/20 Natalie Parde - UIC CS 521 16

Vanilla RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation
value from previous input)

2/11/20 Natalie Parde - UIC CS 521 17

Vanilla RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

2/11/20 Natalie Parde - UIC CS 521 18

Thus, hidden layers in RNNs are more
complex than in feedforward networks.
Outputs from earlier timesteps serve as additional context

Makes decisions based on both current input and outputs from
prior timesteps

Can include information extending all the way back to the
beginning of the sequence

2/11/20 Natalie Parde - UIC CS 521 19

However, computation units still
perform the same core actions.

Given:

• Input vector
• (New!) activation

values for the hidden
layer from the
previous timestep

Compute:

• Weighted sum of
inputs

2/11/20 Natalie Parde - UIC CS 521 20

Most
Significant
Change

• New set of weights, U, that connect the
hidden layer from the previous timestep to
the current hidden layer

• These weights determine how the network
should make use of prior context

2/11/20 Natalie Parde - UIC CS 521 21

Formal
Equations

• Similar to what we’ve seen with
feedforward networks

• Recall the basic set of equations for a
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

2/11/20 Natalie Parde - UIC CS 521 22

Formal
Equations

• Just add (weights X activation values from
previous timestep) product to the current
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• W, U, and V are shared across all
timesteps

2/11/20 Natalie Parde - UIC CS 521 23

xt ht yt

ht-1
U

W V
xt ht yt

W

U

V

What does this look like
when unrolled?

Recurrent View Unrolled View

2/11/20 Natalie Parde - UIC CS 521 24

Formal Algorithm
h0 ← 0 # Initialize activations from the hidden layer to 0

Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b) # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!

2/11/20 Natalie Parde - UIC CS 521 25

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1

2/11/20 Natalie Parde - UIC CS 521 26

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2

2/11/20 Natalie Parde - UIC CS 521 27

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3

2/11/20 Natalie Parde - UIC CS 521 28

Training
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden

layer at t

2/11/20 Natalie Parde - UIC CS 521 29

Forward Inference
• Compute ht and yt at each step in time
• Compute the loss at each step in time

Updated from feedforward networks!

2/11/20 Natalie Parde - UIC CS 521 30

Forward Pass

h0 x1

y1

t1

h1

2/11/20 Natalie Parde - UIC CS 521 31

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

2/11/20 Natalie Parde - UIC CS 521 32

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

2/11/20 Natalie Parde - UIC CS 521 33

Backpropagation Through Time

• Process the sequence in reverse
• Compute the required error

gradients at each step backward in
time

Updated from feedforward networks!

2/11/20 Natalie Parde - UIC CS 521 34

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

2/11/20 Natalie Parde - UIC CS 521 35

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

2/11/20 Natalie Parde - UIC CS 521 36

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

2/11/20 Natalie Parde - UIC CS 521 37

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W

2/11/20 Natalie Parde - UIC CS 521 38

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U

2/11/20 Natalie Parde - UIC CS 521 39

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V

2/11/20 Natalie Parde - UIC CS 521 40

Updating the
weights for V
works no
differently from
feedforward
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Chain rule

2/11/20 Natalie Parde - UIC CS 521 41

Updating the
weights for V
works no
differently from
feedforward
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Reduce the first
two terms to an
error term,𝛿$

Activation
value of the
hidden layer at
the current
timestep, ℎ$

2/11/20 Natalie Parde - UIC CS 521 42

Updating the
weights for V
works no
differently from
feedforward
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

𝜕𝐿
𝜕𝑉

= 𝛿$ℎ$

2/11/20 Natalie Parde - UIC CS 521 43

Updating the
weights for W
and U works a
little bit
differently.

• Error term for a hidden layer, 𝛿M,
must be the sum of the error term
from the current output and the
error term from the next timestep

• 𝛿M = 𝑔O 𝑧 𝑉𝛿$ + 𝛿$P/

2/11/20 Natalie Parde - UIC CS 521 44

Once we have
this updated error

term for the
hidden layer, we
can proceed as

usual to compute
the gradients for

U and W.

• QR
QS

= QR
QT

QT
QU

QU
QS

= 𝛿M𝑥$

• QR
QW
= QR

QT
QT
QU

QU
QW
= 𝛿Mℎ$./

2/11/20 Natalie Parde - UIC CS 521 45

One remaining
step….

• Backpropagate the error
from 𝛿M to ℎ$./ based on
the weights in U

• 𝛿$P/ = 𝑔O 𝑧 𝑈𝛿M
• At this point, we have all of

the necessary gradients to
update U, V, and W!

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

2/11/20 Natalie Parde - UIC CS 521 46

Applications
of Recurrent
Neural
Networks

• Language modeling
• Part-of-speech tagging
• Sequence classification tasks

2/11/20 Natalie Parde - UIC CS 521 47

At this point,
we’ve seen a
few types of
language
models.

• N-gram language models
• Feedforward neural network

language models
• In our earlier example today, a

sliding window variation of this

2/11/20 Natalie Parde - UIC CS 521 48

These models
attempt to
predict the

next word in a
sequence

given a prior
context of

fixed length.

• What’s challenging about this approach?
• Model quality is dependent on context

size
• Anything outside the fixed context

window has no impact on the model’s
decision

2/11/20 Natalie Parde - UIC CS 521 49

Recurrent Neural Language Models
• Recurrent neural language models process sequences one word at a time,

as seen in the previous slides
• This means that they avoid constraining the context size
• The hidden state embodies information about all of the preceding

words, all the way back to the beginning of the sequence

2/11/20 Natalie Parde - UIC CS 521 50

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

2/11/20 Natalie Parde - UIC CS 521 51

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

2/11/20 Natalie Parde - UIC CS 521 52

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

2/11/20 Natalie Parde - UIC CS 521 53

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

2/11/20 Natalie Parde - UIC CS 521 54

How can we generate text with neural
language models?
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley,
with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were
so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example,
that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there
before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human
civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But
they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.

2/11/20 Natalie Parde - UIC CS 521 55

Generation
with Neural
Language
Models

1. Sample the first word in the output from the
softmax distribution that results from using
the beginning of sentence marker (<s>)
as input

2. Get the embedding for that word
3. Use it as input to the network at the next

time step, and sample the following word
as in (1)

4. Repeat until the end of sentence marker
(</s>) is sampled, or a fixed length limit is
reached

2/11/20 Natalie Parde - UIC CS 521 56

Autoregressive
Generation

• This technique is referred to as
autoregressive generation

• Word generated at each timestep is
conditioned on the word generated
previously by the model

2/11/20 Natalie Parde - UIC CS 521 57

Autoregressive Generation

<s> RNN

softmax

recurrent

2/11/20 Natalie Parde - UIC CS 521 58

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

2/11/20 Natalie Parde - UIC CS 521 59

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

2/11/20 Natalie Parde - UIC CS 521 60

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful
autoregressive
generation?

Prime the generation
component with appropriate
context (e.g., something more
useful than <s>)

2/11/20 Natalie Parde - UIC CS 521 61

RNNs are
also highly

useful for
sequence

labeling.

• Task: Given a fixed set of labels, assign a
label to each element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated by

the softmax (or other activation) function
over the set of all labels

2/11/20 Natalie Parde - UIC CS 521 62

Sequence Labeling

h0 a

determiner

t1

h1

2/11/20 Natalie Parde - UIC CS 521 63

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective

2/11/20 Natalie Parde - UIC CS 521 64

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun

2/11/20 Natalie Parde - UIC CS 521 65

They’re also
useful for
sequence
classification!

• Task: Given an input sequence, assign
the entire sequence to a class (rather
than the individual tokens within it)

2/11/20 Natalie Parde - UIC CS 521 66

How to use RNNs for sequence
classification?

1

Pass the sequence
through an RNN one
word at a time, as usual

2

Assume that the hidden
layer for the final word,
hn, acts as a
compressed
representation of the
entire sequence

3

Use hn as input to a
subsequent feedforward
neural network

4

Choose a class via
softmax over all the
possible classes

2/11/20 Natalie Parde - UIC CS 521 67

Sequence Classification

recurrent RNN

neural RNN

network RNN

2/11/20 Natalie Parde - UIC CS 521 68

Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING

2/11/20 Natalie Parde - UIC CS 521 69

Notes about
Sequence

Classification

• No loss associated with intermediate
outputs

• Loss function is based entirely on the final
classification task!

• Errors are still backpropagated all the way
through the RNN

• The process of adjusting weights the entire
way through the network based on the loss
from a downstream application is often
referred to as end-to-end training

2/11/20 Natalie Parde - UIC CS 521 70

Where do
we go
from
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

2/11/20 Natalie Parde - UIC CS 521 71

Where do
we go
from
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN

2/11/20 Natalie Parde - UIC CS 521 72

Stacked
RNNs

• Use the entire sequence of outputs from one
RNN as the input sequence to another

• Capable of outperforming single-layer networks
• Why?

• Having more layers allows the network to
learn representations at differing levels of
abstraction across layers

• Early layers → more fundamental
properties

• Later layers → more meaningful
groups of fundamental properties

2/11/20 Natalie Parde - UIC CS 521 73

Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs

2/11/20 Natalie Parde - UIC CS 521 74

Bidirectional
RNNs

• Simple RNNs only consider the information
in a sequence leading up to the current
timestep

• ℎ$
X = 𝑅𝑁𝑁X[\]U\^(𝑥/$)
• ℎ$

X corresponds to the normal hidden
state at time t

• This could be visualized as the context to
the left of the current time

Natalie ran to TBH 180B

2/11/20 Natalie Parde - UIC CS 521 75

Bidirectional
RNNs

• However, in many cases the context after
the current timestep (to the right of the
current time) could be useful as well!

• In many applications we have access to the
entire input sequence at once anyway

Natalie ran to TBH 180B

Natalie ran her code again

2/11/20 Natalie Parde - UIC CS 521 76

Ran (Sense #1)

Ran (Sense #2)

Bidirectional
RNNs

• How can we make use of information
from both sides of the current timestep?

• Simple solution:
• Train an RNN on an input sequence in

reverse
• ℎ$_ = 𝑅𝑁𝑁_U`a]U\^(𝑥$b)

• ℎ$_ corresponds to information from the current
timestep to the end of the sequence

• Combine the forward and backward
networks

2/11/20 Natalie Parde - UIC CS 521 77

Bidirectional
RNNs

• Two independent RNNs
• One where the input is processed from start

to end
• One where the input is processed from end

to start
• Outputs combined into a single representation

that captures both the left and right contexts of
an input at each timestep

• ℎ$ = ℎ$
X⨁ℎ$_

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.

2/11/20 Natalie Parde - UIC CS 521 78

Bidirectional RNNs

RNNNatalie ran to TBH 180B

2/11/20 Natalie Parde - UIC CS 521 79

Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180B

180B TBH to ran Natalie

2/11/20 Natalie Parde - UIC CS 521 80

Bidirectional RNNs

RNN

RNN

Natalie ran to TBH 180B

180B TBH to ran Natalie

+
ℎ$

ℎ$
X

ℎ$_

2/11/20 Natalie Parde - UIC CS 521 81

Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+

2/11/20 Natalie Parde - UIC CS 521 82

More
advanced
variations to
come….

• Additional ways to combine RNNs
• Architectural modifications to allow

better context management

2/11/20 Natalie Parde - UIC CS 521 83

Summary:
Recurrent

Neural
Networks

• Recurrent neural networks (RNNs) are designed
to make use of temporal information from input
sequences

• Bonus: Can accept inputs of variable length!
• RNNs base their decisions on both current input

and activation values from the previous timestep
• RNNs are particularly useful for language

modeling, text generation, sequence labeling,
and (when combined with a feedforward network)
sequence classification

• More complex varieties of RNNs include:
• Stacked RNNs
• Bidirectional RNNs

2/11/20 Natalie Parde - UIC CS 521 84

