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Review: Neural Networks Basics

1943: First 1971: Implementation 1982: First |
mathematical of feedforward network recurrent neural
NN model’ with 8 layers?® network®

1982: First

convolutional
neural network*

perceptron is
proposed?

1957: The ‘
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Feedforward
Neural
Networks

Earliest and simplest form of neural network

Data is fed forward from one layer to the next

Each layer:
* One or more units

* A unitin layer n receives input from all
units in layer n-1 and sends output to all
units in layer n+1

* Aunitin layer n does not communicate
with any other units in layer n

The outputs of all units except for those in the
last layer are hidden from external viewers
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Feedforward Neural Networks

o

Feature vector (e.g., 300-
; |dimensional word embedding)

Predicts a class label or output value
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Feedforward Neural Networks
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Feedforward Neural Networks
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Data is fed forward > ( \
from input to the
first hidden layer
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Feedforward Neural Networks

om T mm oy o ImE Emm o Ny

Data is fed forward from ( \ [ \
the first hidden layer to I
the second hidden layer
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Feedforward Neural Networks
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Data is fed forward from ( \ ( \
the second hidden layer
to the output unit
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Feedforward Neural Networks

— >| Class label
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o

Neural
networks tend
to be more

powerful than

traditional
classification
algorithms.
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 Traditional classification algorithms

usually assume that data is linearly
separable

* |[n contrast, neural networks learn

nonlinear functions
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» At their core, neural networks are
comprised of computational units

Bu | Id | ng « Computational units:

1. Take a set of real-valued numbers as
Blocks for nput
. Perform some computation on them
Neural 2. Perf tati th

3. Produce a single output

Networks
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* The computation performed by each unit is
a weighted sum of inputs

» Assign a weight to each input
 Add one additional bias term

Computational

Units  More formally, given a set of inputs

X1, -, Xy, @ UNit has a set of corresponding
weights wy, ..., w,,; and a bias b, so the
weighted sum z can be represented as:

® Z=b+ Ziwixi
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* The weighted sum of inputs computes a
linear function of x

» As we already saw, neural networks
learn nonlinear functions

Computational

» These nonlinear functions are

U nltS commonly referred to as activations

* The output of a computation unit is thus
the activation value for the unit, y

*y=f(@)=f(w-x+b)




There are many different activation
functions!

softplus
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hyperbolic tangent (tanh)
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Computational Unit with Sigmoid
Activation

—]

R



Example: Computational Unit with
Sigmoid Activation

—]

R

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

R

Compute vector (e.g.,

averaged Word2Vec [0.5, 0.6]

Input: “beautiful brutalist architecture” = embeddings for “beautiful”

- “brutalist,” and “architecture”)
Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

/
:
I 0
= Q
! |
| w 6*0.3=0. Z a
| , *( Yl
- Y 5 6
Is :
|
I
= Compute vector (e.g.,
- . , , . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
- “brutalist,” and “architecture”)
Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.9]

Bias: 1.0

Natalie Parde - UIC CS 521




Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

0&!

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]
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Example: Computational Unit with
Sigmoid Activation

0.1+0.18+0.5=0.78

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

7= 0.78_0 a E’

R

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]
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Example: Computational Unit with
Sigmoid Activation

R

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

—]

R

Compute vector (e.g.,

T : . ; . averaged Word2Vec
Input: “beautiful brutalist architecture” p—> embeddings for “beautiful,” —>| [0.5, 0.6]
“pbrutalist,” and “architecture”)

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0 .
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Example: Computational Unit with
Sigmoid Activation

0.686

—]

7 = 0.78_& = 0.686 ‘ y | 5 e

Input: “beautiful brutalist architecture” |

Weights (Input): [0.2, 0.3]
| Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

—{ [05, 0.6]
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Activation:
tanh

 Variant of sigmoid that ranges from -1 to +1

. __ er—e™?
Y = eZ+e—2

* Once again differentiable

 Larger derivatives — generally faster
convergence

Natalie Parde - UIC CS 521
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Activation:
RelLU

« Ranges from 0 to o«
« Simplest activation function:
* y = max(z, 0)
 Very close to a linear function!
* Quick and easy to compute

Natalie Parde - UIC CS 521
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Why does this work?

* When computational units are combined, the outputs from each

successive layer provide new representations for the input
* These new representations are linearly separable

X2

o
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Why does this work?

* When computational units are combined, the outputs from each
successive layer provide new representations for the input

* These new representations are linearly separable
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Feedforward
Network

* Formal equations:
*h= oc(Wx+Db)
 z="Uh
* y = softmax(z)
* This represents a two-layer feedforward
neural network

 When numbering layers, count the
hidden and output layers but not the
iInput layer

Natalie Parde - UIC CS 521
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What if we
want our
hetwork to

have more
than two
layers?

« Let W' be the weight matrix for layer n, bl
be the bias vector for layer n, and so forth
* Let g(-) be an activation function
 RelLU
* tanh
 softmax
* Etc.

« Let al"l be the output from layer n, and zl"]
be the combination of weights and biases
Winl gln-11+ plnl

* Let the input layer be al’l
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What if we
want our
hetwork to

have more
than two
layers?

« With this representation, a two-layer network
becomes:

« With this notation, we can easily generalize to
networks with more layers:

e Foriin1..n
o 7t = Wlilgli-11 4 plil
o glil = g[i](z[i])
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Does every
layer use
the same

activation
function?

* The activation function g(-) generally differs
for the final layer

 Earlier layers will more commonly be RelLU
or tanh

 Final layers will more commonly be softmax
(for multinomial classification) or sigmoid (for
binary classification)



How do we train neural
networks?

QLoss function
L Optimization algorithm

OdSome way to compute the gradient across all of the
network’s intermediate layers

Natalie Parde - UIC CS 521
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How do we train neural
networks?

vLoss function*=~ ~ "~ "~~~ T T~.

QOptimization algorithm AN
dSome way to compute the gradient across all of the \\
network’s intermediate layers l
/

/
7’
- - g

Cross-entropy loss
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How do we train neural
networks?

v’ Loss function
v’ Optimization algorithm “ ~

OdSome way to compute the gradient across all of the
network’s intermediate layers

Gradient descentp= = — =
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How do we train neural
networks?

v’ Loss function
v’ Optimization algorithm

Some way to compute the gradient across all of the «
network’s intermediate layers S
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« A method for propagating loss values all the
way back to the beginning of a deep neural
network, even though it's only computed at
the end of the network

Backpropagation

Natalie Parde - UIC CS 521



* For a “neural network™ with just one weight
layer containing a single computation unit +
sigmoid activation (i.e., a logistic regression
classifier), we can compute the gradient of

our loss function by just taking its derivative:

. aLCE(Wib)
6wj

=@ -y)xj=(Ww-x+b)—y)x

Natalie Parde - UIC CS 521
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* For a “neural network™ with just one weight
layer containing a single computation unit +
sigmoid activation (i.e., a logistic regression
classifier), we can compute the gradient of
our loss function by just taking its derivative:

g y)xj = (c(w-x+b) —y)x;

6wj

L _ J
—
Difference between t—r7ue and estimated y

Corresponding input
observation

Natalie Parde - UIC CS 521 48



However, we

can’t do that
with a neural

A EIW ) S UETIER
multiple weight
layers (“hidden”
layers).

* Why"?
« Simply taking the derivative like we did for

logistic regression only provides the gradient
for the most recent (i.e., last) weight layer

 What we need is a way to:

« Compute the derivative with respect to weight
parameters occurring earlier in the network as well

« Even though we can only compute loss at a single
point (the end of the network)



We do this
using

backward
differentiation.

« Usually referred to as backpropagation
(“backprop” for short) in the context of
neural networks

 Frames neural networks as
computation graphs

Natalie Parde - UIC CS 521
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* Representations of interconnected
mathematical operations

 Nodes = Operations

* Directed edges = connections between
output/input of nodes

What are ‘

computation
graphs?




There are
two different - Forward pass

ways that we « Apply operations in the direction of the
arrows
Fan pass: » Pass the output of one computation as the
information input to the next
through our - Backward pass
neural - Compute partial derivatives in the opposite
direction of the arrows
network « Multiply them by the partial derivatives '
cgmputation passed down from the previous step
graphs. /

> 4
S
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Example: Forward Pass

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Example: Forward Pass

O
O

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Example: Forward Pass

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Forward Pass

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Forward Pass

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Forward Pass

P A
I, ‘—\-\‘.
1 |Jd+a=5
[

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Forward Pass

P A
I, ‘—\-\‘.
1 |Jd+a=5
[

Goal: Represent L(a, b, c) =c(a + 2bﬂ
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Backward Pass

P A
I, ‘—\-\‘.
1 Jd+a=5
[

Goal: Compute the derivative of L with
respectto a, b, and c
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 Chain rule!
* Given a function f(x) = u(v(x)):

How do we » Find the derivative of u(x) with respect
to v(x)

get from L * Find the derivative of v(x) with respect
to x

all the way

* Multiply the two together

.df_du*dv
dx dv dx

back to a,
b, and c?

Derivatives of popular activation functions:

g o %) _ 1 _ tanh? (2)

dRelLU(z) {O forz <0

0z 1forz=>0
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- Backward Pass

d+a=5

Goal: Compute the derivative of L with

respect to a, b, and c

L _ 5
da
oL_,
dob
oL _
ac

Natalie Parde - UIC CS 521
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- Backward Pass

P A
,/ ‘—:\‘.
1 Jd+a=5

Goal: Compute the derivative of L with

respect to a, b, and c

L _ 5
da
oL_,
dob
oL _
ac
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Example: Backward Pass

I’ _Er— — — ~ _
- \--__ \ l,—:‘-‘-
———ad \
A}

\
‘| Goal: Compute the derivative of L with
I / respecttoa, b, and c
! oL
L=c*e=c*(d+a) Pl
So.... ﬂ _ 5
ob
dL OJL de . .
- = = * =
da deda ¢ ¢ —=e
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Example: Backward Pass

/4

Goal: Compute the derivative of L with

\\ / respectto a, b, and c
1

i d
L=c*e=c*((2"b)+a) £:C
So.... ﬂ_f)

ob
0L 0L de dd L2 =2 o
_— —— = * *k == *
ob _ deddab °© ¢ —=e
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- Backward Pass

P A
I, ‘—\-\‘.
1 Jd+a=5

Goal: Compute the derivative of L with
respect to a, b, and c

oL _

aa_c
oL
ab—Zc
6_L_e
dc
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- Backward Pass

1 |d+ta=5

Goal: Compute the derivative of L with
respect to a, b, and c

oL _

aa_C:_Z

oL
£—2C—2*—2——4
oL

5—8—5
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Computation
graphs for
neural
networks are

a bit more
complex than
the previous
example.

* More operations:
* Products (input * weight)
« Summations (of weighted inputs)
« Activation functions



What would a computation graph look
like for a simple neural network?




What would a computation graph look
like for a simple neural network?

WN o ™ = mm ===

————————————

——————————— ' = \ L I I e e e .
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What would a computation graph look
like for a simple neural network?

" —---~..~~ W -~~\
W i ~~~\ W - >I<\\
& ~ S ~ N
w ———-.~..~~ N~~~ \FQGKU w ~~~\ \\\ RelLU
* Y PN L Se *Ng \\\ Y,
Sso \\\\\ ANANY
% \ *\|
\
w ————--—--- R~eLU \ w ~~¢ RelU Output L
L ~~
il g * -_-E--~~~ NN‘\\\\ - <-~.* \\ Z
- FARR A D A4 Y
* NSSS *
* ‘\\\\\Q@\* .
ek SSSSssSass s ey Y All of these weights
e e - -
At m === P AL i e using backpropagation!
- _——” W v ’,
. _——_———_—_ *—_"
\"Yj - - W  \G
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* Neural networks that incorporate one or

i more convolutional layers
Convolutional  Designed to reflect the inner workings of the
Neural visual cortex system

Networks * CNNs require that fewer parameters are
learned relative to standard feedforward
networks for equivalent input data




 Sliding windows that perform matrix
operations on subsets of the input

Wh at are « Compute products between those subsets
convolutional

of input and a corresponding weight matrix

layers?
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* First layer(s): low-level features
 Color, gradient orientation
* N-grams

 Higher layer(s): high-level features
* Objects
* Phrases

Convolutional Layers



In NLP, convolutions are typically performed on

entire rows of an input matrix, where each row
corresponds to a word.

. '
- I |, -
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early early ! early 1
| | |
for | for I for I
cs '\ ¢s | cs J
\ / /
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\ / _ -
\ V4 —-
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In NLP, convolutions are typically performed on

entire rows of an input matrix, where each row
corresponds to a word.

d | | |
- . |, - e
\
v v I |
up ' - HIHEEE
earl ‘ earl \
y l y |
for | for l
CS ' ¢s I
\ / |
521 \ 921 / 521 /
~
\ V4 - -
\ / - —
N\ P -

Stridesize=2 2 ======—"7"




After applying a convolution with specific

region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

Kernel size = 2x5
Stride size = 2

|
o<

waking -

up

_———_—_—__—_—-——____
_— e o
= e
—_—

early
for

CS

= Feature Map
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After applying a convolution with specific

|
o<

waking
up
early
for
CS
521

Kernel size = 2x5
Stride size = 2

love

vakno | I
-

early
for
CS
521

region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

Feature Map




After applying a convolution with specific

region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

e —

)Kernel size = 2x5

Stride size = 2

IEEEE '

love ..... love love
waking waking -
up up -
early early early ..... _ - -

——
for for for .....
CS CS CS

501 501 o Feature Map




After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

)Kernel size = 2x5

Stride size = 2
A ' '
love .....ve love love
waking waking .....lng waking -
. q | F —
early early early ..... early -
for for for ..... for -
CS o o csINIRIEE| _-
521 521 521 521 .-.-.

Feature Map




Kernel size = 2x5 Kernel size = 2x5
Stride size =2 Stride size =2

| | | K | ! [ [ K | |

love .---'ve love love love .....:ve love love
waking waking .---.ing waking - waking waking .....(ing waking -
iz - IR - = | & - I - v []
early early early .---- early - early early early ..... early -
for for for ..... for for for for ..... for

cs cs cs cs .---- cs cs cs cs .....

- - - -
- -
Feature Map Feature Map

It’s common to extract multiple different O
feature maps from the same input.
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* Pooling layers: Layers that reduce the

After extracting dimensionality of input feature maps by
feature maps pooling all of the values in a given region

from the m_p_Ut’ » Why use pooling layers?
CNNs utilize * Further increase efficiency

pooling layers. » Improve the model’s ability to be
invariant to small changes

Natalie Parde - UIC CS 521 82



Pooling Layers

Kernel size = 2x5 Kernel size = 2x5
Stride size = 2 Stride size = 2

| | | K | | | | | K | |
love ---.ave love love love .....xve love love
waking waking ---.ing waking waking waking .....ing waking -
up » I - " \ o - [ L
early early early .... early early early early ..... early -
EEEEE m
-

o for o TNHEE -~ - \ o o - for

= cs = -ENEEE] " o = = o | | | \
-

= i & = . ¢ & -
Feature Map ‘




Common
Techniques

for Pooling

ax pooling
» Take the maximum of all values computed in
a given window

« Take the average of all values computed in a
given window
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Common
Techniques

for Pooling

* Max pooling
» Take the maximum of all values computed in
a given
rage pooling
« Take the average of all values computed IN a
given window

S 25

1
el
2
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The output from pooling layers is typically
then passed along as input to one or more
feedforward layers.

\ |
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Convolutional neural
network architectures
can vary greatly!

« Additional hyperparameters:
» Kernel size
« Padding
 Stride size

« Number of channels
* Pooling technique

QO
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« Add empty vectors to the beginning and
end of your text input

. Why do this?

 Allows you to apply a filter to every
element of the input matrix

love

Padding? e
-

waking waking
up . up
early early
for for

CS CS

521 521



For images, generally

corresponds to color channels
* Red, green, blue

mm [Or text, can mean:

« Different types of word embeddings
« Word2Vec, GloVe, etc.

« Other feature types

« POS tags, word length, etc.
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The big

* Traditionally for image classification!

question - However, offer unique advantages for
NLP tasks:
...why use
y  CNNs inherently extract meaningful local
CNNs at structures from input
a"? * In NLP — implicitly-learned, useful n-grams!

I

/
_
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« Continuous input streams of indefinite
length that unfold over time

!'anguage IS * Even clear from the metaphors we use to
mherently describe language:

tem po ral  Conversation flow

 News feed
o Twitter stream

Natalie Parde - UIC CS 521 91



What are
recurrent
heural
networks?

* Neural networks that exploit the temporal
nature of language!

 Also allow variable-length inputs

My project proposal is cooler than yours.

—

X

4 cooler yours. is proposal My than project

\-—’

Natalie Parde - UIC CS 521
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This_ makes RNNs  Sequence Processing: Automated
particularly useful processing of sequential items (e.g.,
for performing words in a sentence) while taking into

seqguence account temporal information (e.g., w;
processing. occurs before w,)
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Sequence processing is particularly
useful for some tasks!

Natalie |did not like social events|so
- Syntactic parsing she politely de
_ Invitation.
 Part of speech tagging |
verb? noun? adjective?

« Language modeling

Natalie’s tweetlhad a like within thirt

seconds of pW\_-

verb? noun? adjective?

Natalie Parde - UIC CS 521
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Aren’t other neural network models (e.g.,
feedforward networks) already able to
capture temporal information?

* In a sense, yes

 How?
« Sliding window approach

Natalie Parde - UIC CS 521
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Sliding Window Approach

Natalie w4 /
/

sat Wi.3

down Wiy =~——y softmax

to Wi 1 \ distribution over
: 1 all words in the

write W, | vocabulary

the Wi+ 1

exam Wiio

P(w; = “write”|w,_; = “to”, w;_, = “down”, w;_3 = “sat”)
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Sliding Window Approach

Natalie Wi
sat Wi

softmax

\ distribution over

1 all words in the
| vocabulary

down Wi.3
to Wi

write Wi.1
the Wi \
7/

exam Wi 1

P(w; = “the”|w;_; = “write”, w;_, = “to”, w;_3 = “down”)

—
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Sliding Window Approach

Natalie wg
sat Wi

softmax

\ distribution over

1 all words in the
| vocabulary

down W4

to Wi3 /
write Wi.o

the Wi 4
exam Wi

P(w; = “exam”|w;_; = “the”, w;_, = “write”, w;_3; = “t0”)
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However, this method has some
[imitations.

 Constrains the context from which information can be

extracted
* Only items within the predetermined context window can impact the
model’s decision

» Makes it difficult to learn systematic patterns

 Particularly problematic when learning grammatical information (e.g.,
constituent parses)

’—_

— iy

~y
N

\

)
‘lLI can't sa}i | loved this movieJ] S o { Positive W
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However, this method has some
[imitations.

 Constrains the context from which information can be
extracted

* Only items within the predetermined context window can impact the
model’s decision
* Makes it difficult to learn systematic patterns

 Particularly problematic when learning grammatical information (e.g.,
constituent parses)

— — ==
‘ILI can’t'say | loved|this movie. ‘ILI can't sayII loved this’movie. ‘ILI can't say?loved this movigl
- ot — 7 | N —
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Recurrent neural
networks (RNNs) are OO

designhed to overcome
these limitations.

 Built-in capacity to handle
temporal information

« Can accept variable length
inputs without the use of fixed-

size windows
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Recurrent
Neural Networks

« Contain cycles within their connections

* The value of a unit is dependent
upon outputs from previous
timesteps

* Many varieties exist

» “Vanilla” RNNs

* Long short-term memory networks
(LSTMSs)

« Gated recurrent units (GRUSs)

OO
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Vanilla RNN Layer

—

Current input
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Vanilla RNN Layer

- : Information from x;
Current input /
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Vanilla RNN Layer

- : Information from x;
Current input

Information from x4 (activation
value from previous input)

L—1
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Vanilla RNN Layer

- : Information from x;
Current input

,i)utput-for current input

Information from x4 (activation
value from previous input)

L—

Natalie Parde - UIC CS 521 106



Thus, hidden layers iIn RNNs are more
complex than in feedforward networks.

Outputs from earlier timesteps serve as additional context

Makes decisions based on both current input and outputs from
prior timesteps

Can include information extending all the way back to the
beginning of the sequence
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However, computation units still
perform the same core actions.

* [nput vector * Weighted sum of
» (New!) activation Inputs
values for the hidden

layer from the
previous timestep




M t * New set of weights that connect the hidden
OS layer from the previous timestep to the
current hidden layer

S I g n Ifl Ca nt * These weights determine how the network
should make use of prior context
Change
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* Similar to what we’ve seen with
feedforward networks

I I I F O rm a I  Recall the basic set of equations for a

feedforward neural network:

Equations b= owx+b)

* y = softmax(z)
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Formal
Equations

» Just add (weights X activation values from

previous timestep) product to the current
(weights X inputs) product

* h= oc(Wx,+ Uh,_; +b)
« z=1Vh,
e y = softmax(z)

« W, U, and V are shared across all
timesteps
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U

Recurrent View

What does this look like
when unrolled?

Unrolled View




Formal Algorithm

hy « 0 # Initialize activations from the hidden layer to 0

# Iterate through each input element in temporal order

for 1 <« 1 to length(x) do:

r-) h; <« g(Uh;_; + Wx; + b) # Bias vector is optional
yi < £(Vh;)

New values for h and y are calculated with each time step!
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

Natalie Parde - UIC CS 521
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Earlier Example: RNN Edition

h;
~—
§§ )

N\ —=

/AT "Yaay
72NV
sat o . %

down — hg ’/,/,/;

to

Natalie

write
the
exam
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Earlier Example: RNN Edition




« Same core elements:
 Loss function
Training » Optimization function
« Backpropagation
RN NS * One extra set of weights to update

» Hidden layer from t-7 to current hidden
layer at t
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Forward Inference

 Compute h; and y; at each step intime “«~ "~ >
» Compute the loss at each step in time«+ - _ Y
\\\ \\
\
\

Updated from feedforward networks!
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Forward Pass

119
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Forward Pass

120
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Forward Pass

Y3

L

o

2N

/

/

121
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Backpropagation Through Time

L

* Process the sequence in reverse t
« Compute the required error
gradients at each step backward in ® ®
time \
\
1 @

]
Updated from feedforward networks!
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Backward Pass

123
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Backward Pass

Y3

lhﬁc‘u

\

5

|
\

A

b

7

///y

)

W

1

%
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Backward Pass

Y3
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OO
Updated

Backpropagation
Equations

* Now we have three sets of weights
we need to Undaiamme

7. the weights from the input
layer to the hidden layeLs

U, the weights from the
previous hidden layer to the
current hidden layer

V, the weights from the
hidden layer to the output
layer




OO
Updated

Backpropagation
Equations

* Now we have three sets of weights
we need to update:

, the welght from the \
previous hidden layer to the
current hidden layer

V, the weignts from the
hidden layer to the output
layer




OO
Updated

Backpropagation
Equations

* Now we have three sets of weights
we need to update:

» W, the weights from the input
layer to the hidden layer

» U, the weights from the
previous hidden layer to the

, the weights from the
hidden layer to the output
layer




Updating the
weights for V
works no

differently from
feedforward
networks.

0L 0L da 0z
oV dadzadV

v

y
al -
Chain rula— -

\
!
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Updating the
weights for W
and U works a
little bit

differently.

 Error term for a hidden layer, 63,

must be the sum of the error term
from the current output and the
error term from the next timestep

* 0p = g (@)V6; + 6t41




Once we have
this updated error
term for the
hidden layer, we
can proceed as
usual to compute
the gradients for
Uand W.




to
)

Wl |
-\

ining
_1 based on

to
* 8¢41 =9 ' (2)Uby

At this point, we have all of

()

the weights in U
the necessary gradients to
update U, V, and W

« Backpropagate the error
from 6, to h;

)
£
QO -
-,
0
c

Ow




At this point,
we’ve seen a
few types of
language
models.

« N-gram language models

» Feedforward neural network
language models




These models
attempt to
predict the
next word in a
sequence
given a prior
context of
fixed length.

« What's challenging about this approach?
* Model quality is dependent on context
size
« Anything outside the fixed context

window has no impact on the model’s
decision
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Recurrent Neural Language Models

* Recurrent neural language models process sequences one word at a time
* This means that they avoid constraining the context size

 The hidden state embodies information about all of the preceding
words, all the way back to the beginning of the sequence



Retrieve an embedding for the current
input word

Recu re nt . Combine the weighted sums of (a) the

input embedding values and (b) the

N eu ral activations of the hidden layer from the
previous step, to compute a new set of

Lang uage activation values from the hidden layer

Generate a set of outputs based on the

MOde|S | activations from the hidden layer

Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary
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» At each timestep:

1. Retrieve an embedding for the current
laput word

Recu re nt . Combine the weighted sums of (a) the

input embedding values and (b) the
Neu ral activations of the hidden layer from the
previous step, to compute a new set of

Lang uage qctivation values from the hidden layer
. Generate a set of outputs based on the
Models

activations from the hidden layer

Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521



» At each timestep:

1. Retrieve an embedding for the current
input word

Recu re nt 2. Combine the weighted sums of (a) the

input embedding values and (b) the
Neu ral activations of the hidden layer from the
previous step, to compute a new set of

Language activation values from the-hidden-ls
3. Generate a set of outputs based on the
MOde|S activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary
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» At each timestep:

1. Retrieve an embedding for the current
input word

Recu re nt 2. Combine the weighted sums of (a) the

input embedding values and (b) the

N eu ral activations of the hidden layer from the
previous step, to compute a new set of

Lang uage activation values from the hidden layer

Generate a set of outputs based on the

MOdElS | activations from the hidden 3

Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary
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How can we generate text with neural
language models?

Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley,
with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them — they were
so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example,
that they have a common ‘language,” something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there
before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human
civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But
they seem to be able to communicate in English quite well, which | believe is a sign of evolution, or at least a change in social organization,” said the scientist.
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Generation
with Neural

Language
Models

Sample the first word in the output from the
softmax distribution that results from using
the beginning of sentence marker (<s>)
as input

Get the embedding for that word
Use it as input to the network at the next

time step, and sample the following word
asin (1)

Repeat until the end of sentence marker
(</s>) is sampled, or a fixed length limit is
reached



Autoregressive « This technique is referred to as

Generation autoregressive generation

» Word generated at each timestep is
conditioned on the word generated
previously by the model




Autoregressive Generation

softmax
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Autoregressive Generation

\ - recurrent

softmax

IIII\ —> neural

softmax

C

recurrent —»




Autoregressive Generation

<S> =p

C

recurrent —»

C 1

neural =—>

IIII\ —> recurrent

softmax

/

-

gt
/
|

\

softmax

IIII\ — network

softmax
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Autoregressive Generation

<S> =p

C.e

recurrent —»

C 1

neural =—>

IIII\ —> recurrent

softmax

/

-

e
/
|

\

IIII\ —> neural

softmax

IIII\ — network

softmax
Natalie Parde - UIC CS 521

Key to successful
autoregressive
generation?

Prime the generation
component with appropriate
context (e.g., something more
useful than <s>)
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RNNs are
also highly
useful for

sequence
labeling.

» Task: Given a fixed set of labels, assign a
label to each element of a sequence

« Example: Part-of-speech tagging
* Inputs — word embeddings

« Outputs — label probabilities generated by
the softmax (or other activation) function
over the set of all labels
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Sequence Labeling

determiner




Sequence Labeling

adjective

determiner

\\\//t,,/,////

/
/

\

delicious
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Sequence Labeling

noun

adjective

determiner

delicious

150
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They’re also

useful for  Task: Given an input sequence, assign
the entire sequence to a class (rather
sequence than the individual tokens within it)
classification!
4
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How to use RNNs for sequence
classification?

Pass the sequence Assume that the hidden Use h,, as input to a Choose a class via
through an RNN one layer for the final word, subsequent feedforward softmax over all the
word at a time, as usual h,, acts as a neural network possible classes

compressed
representation of the
entire sequence
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Sequence Classification

recurrent = M

-
-
-

/
(

\

neural =—»

- =

7
/
\

network =—»
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Sequence Classification

recurrent =» w_‘

neural =—»

network =—»

o
[

MACHINE_LEARNING

-

Natalie Parde - UIC CS 521
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 No loss associated with intermediate
outputs

 Loss function is based entirely on the final

Notes about classification task!

 Errors are still backpropagated all the way
Seq uence through the RNN

Classification » The process of adjusting weights the entire

way through the network based on the loss
from a downstream application is often
referred to as end-to-end training
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e So far, we’ve discussed “vanilla” RNNs

« Many additional varieties exist!

Where do
we go

from
here?




« Use the entire sequence of outputs from one
RNN as the input sequence to another

« Capable of outperforming single-layer networks

« Why?
StaCKEd « Having more layers allows the network to
RN N learn representations at differing levels of
S abstraction across layers

 Early layers — more fundamental
properties

 Later layers — more meaningful
groups of fundamental properties

Natalie Parde - UIC CS 521 157



888 4

« Optimal number of RNNs to stack together?

StaCked RN NS « Depends on application and training set

« More RNNs in the stack — increased training costs
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« Simple RNNs only consider the information
In a sequence leading up to the current
timestep

° h[ — RNNforward(xD
Bidirectiona' . h[ corresponds to the normal hidden
RN NS state at time t

 This could be visualized as the context to
the left of the current time

_ Natalie | ran | _to | TH | 216 _
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 However, in many cases the context after
the current timestep (to the right of the
current time) could be useful as well!

 In many applications we have access to the
entire input sequence at once anyway

Bidirectional

RNNs mmn—m
\/W

Ran (Sense #2)

mmmmm
N
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 How can we make use of information
from both sides of the current timestep?

» Simple solution:
Bidirectiona' * Train an RNN on an input sequence in

reverse
¢ h? — RNNbackward(x?)

« hP corresponds to information from the current
timestep to the end of the sequence

« Combine the forward and backward
networks

RNNs
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« Two independent RNNs

* One where the input is processed from start
to end

* One where the input is processed from end
to start

Bld [ reCtlonaI » Outputs combined into a single representation
RN NS that captures both the left and right contexts of

an input at each timestep
* hy = hl ®h!
* How to combine the contexts?

« Concatenation
» Element-wise addition, multiplication, etc.

Natalie Parde - UIC CS 521



Bidirectional RNNs

mmnmw ;
\ /
~ —_— gy = -~
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Bidirectional RNNs
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Bidirectional RNNs
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Sequence Classification with a Bidirectional RNN

network —> \E
recurrent =» \ﬂ
P -7
/ neural —> —I—’

|
\

MACHINE LEARNING

neural =—»

recurrent =

network =—» \.ﬂ

9.
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More
advanced

Varlatlons to * Additional ways to combine RNNs

come.... » Architectural modifications to allow
better context management



“Vanilla” RNNs hold many
advantages over feedforward
networks for NLP tasks.

« Temporal context
« Variable-length input

« However ...they’re not perfect (no
networks are!)

Natalie Parde - UIC CS 521
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In particular, RNNs
may struggle with
managing context.

* |[n a simple RNN, the final state tends to
reflect more information about recent items
than those at the beginning of the sequence

* Distant timesteps — less information

Natalie Parde - UIC CS 521
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to t1 to t3 t4 t5 t6 t7 tg to tyo tiy ti2 tiz tis tyis tie t47 tig tig top tor too toz tos tos tos to7 tog tag t3g

— ,_/ —

This long-distance information
can be critical to many tasks!




Why is it so hard (O
to maintain long- O

distance context?

» Hidden layers must perform two tasks
simultaneously:

* Provide information useful for the
current decision (input at f)

» Update and carry forward
information required for future
decisions (input at time t+1 and
beyond)

« These tasks may not always be
perfectly aligned with one another
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There’s also the issue of

“vanishing gradients™....

 When small derivatives are repeatedly
multiplied together, the products can
become extremely small

* This means that when backpropagating
through time for a long sequence,
gradients can become so close to zero
that they are no longer effective for
model training!




How can we address
this?

» Design more complex RNNs that learn to:

* Forget information that is no longer
needed

 Remember information still required
for future decisions
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Long Short-Term Memory
Networks (LSTMs)

 Remove information no longer needed
from the context, and add information
likely to be needed later

* Do this by:
« Adding an explicit context layer to the
architecture

» This layer controls the flow of
information into and out of network

layers using specialized neural units
called gates
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» Feedforward layer + sigmoid

activation + pointwise
LST M G ates multiplication with the layer

being gated

« Combination of sigmoid
activation and pointwise
multiplication essentially
creates a binary mask

« Values near 1 in the mask
are passed through
nearly unchanged

‘ ' * Values near 0 are nearly
erased

A\ | @ L4
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* Three main gates:

* Forget gate: Should we erase this
existing information from the context?

« Add gate: Should we write this new
information to the context?

* Output gate: What information should be
leveraged for the current hidden state?




e Goal: Delete information from the context
that is no longer needed

¢ ft — O-(|£]fht—1 + foi-p
* ky = Ct—1®ftT

|
Weighted sum of: I
- Hidden layer at the previous timestep 7’
e Current input




e Goal: Delete information from the context
that is no longer needed

* ft = 0(Ught—q + Wrxy)

* ki =1 Of:

————
—
L]
—y

Context vector from the previous timestep




e Goal: Select the information to add to the
current context

* g; zltanh(Ught_l + Wyxe)
* i = o(Uihe— j|‘1V|/'ixt)

Add Gate cjo=g:@i

, \
*Cr=jrt ke N
|

/

Regular RNN computation V¥

S




e Goal: Select the information to add to the
current context

* gt = tanh(Ught_q + Wyxt)
¢ it = O-QUiht—l + Wixip

Add Gate cje =90 |

* ¢t =J; t k¢ ‘\

Weighted sum of: /
- Hidden layer at the previous timestep ¥
e Current input




e Goal: Select the information to add to the
current context

* gt = tanh(Ught_q + Wyxt)
* it = o(Uihy—1 + Wixe)

Add Gate + ji =,9:Oi;

* Ct = Jra k¢

New information to be added




e Goal: Select the information to add to the
current context

* g; —tanh(U he_q +Wxt)
ltZU(Uht 1+Wxt)

Add Gate + ji = 9:Oi;

* C¢ =|]t+k£,

_—
~-————-~

~~

Updated context vector contains:

* New information to be added

 Existing information from context vector that was
not removed by the forget gate




« Goal: Decide what information is required for
the current hidden state

* 0 = U(LUoht—1 i WO@)
¢ h’t — OtG)tanhE)
\

Weighted sum of: !
« Hidden layer at the previous timestep |”
e Current input




« Goal: Decide what information is required for
the current hidden state
* 0t = 0(Upht—1 + Woxe)
* hy = o,Otanh(c;)
L [ J

\
N~ -
~

)

Updated hidden layer output




What does this process look like in a
single LSTM unit?




What does this process look like in a
single LSTM unit?

=)




What does this process look like in a
single LSTM unit?

| Forget l\
ht—l I ' ‘\




What does this process look like in a
single LSTM unit?

Forget l\ y—
ht—l | ' “ Add

,/




What does this process look like in a
single LSTM unit?

=)

.’\

| Forget l\“

’ Output
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What does this process look like in a
single LSTM unit?

| Forget l\ . e
| he—a | \ > Add

\ - \‘ ,¢’—
AEE— o -
40 > h;

tanh

i

Gl

‘v‘ T g KA

e

tanh
Ct—1 ~




« LSTMs thus accept as input:
« Context layer

LOng Short- - Hidden outputs from previous timestep
* Current input vector
Term g
* They return as output:

MemOry « Context layer

Networks * Hidden outputs from the current

timestep

(LSTMS) * The output of the hidden layer can be used
as input to subsequent layers in a stacked

RNN, or to the network’s output layer
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» Also manage the context that is passed
through to the next timestep, but do so by
utilizing a simpler architecture than LSTMs

* No separate context vector
Gated * Only two gates
Recurrent et galie

U . * Update gate
n Its » Gates still use a similar design to that seen

(GRUS) in LSTMs

* Feedforward layer + sigmoid
activation + pointwise multiplication
with the layer being gated, resulting in a
binary-like mask
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Reset Gate context
* 1 = oUrhi_1 + Wixy)

\

N
~

Weighted sum of: B
« Hidden layer at the previous timestep
e Current input

» Goal: Decide which aspects of the previous
hidden state are relevant to the current

+ iy = tanh(U(RA@he_y) + Wxy)
\

N

!

"4




» Goal: Decide which aspects of the previous
hidden state are relevant to the current

Reset Gate context

" T = o(Uphi—q + Wrxy)
°th — tanh(U(rtG)ht_il) + Wxy),

\_~

~

!

Intermediate representation for h,




» Goal: Decide which aspects of the
Intermediate hidden state and which aspects
of the previous hidden state need to be
preserved for future use

* Zg = 0(Ughe—y + Woxyy
*hy =(1— Zt)z{—l + zehy

N

—-~

~

Weighted sum of: |
« Hidden layer at the previous timestep ¥
e Current input




» Goal: Decide which aspects of the
Intermediate hidden state and which aspects
of the previous hidden state need to be
preserved for future use

* zy = 0(Uzheq + szt)~
* he =1 =2z )heq + 2zhy,

NS

)

Updated hidden layer output




What does this process look like in a
single GRU unit?




What does this process look like in a
single GRU unit?

=)




What does this process look like in a
single GRU unit?

Reset

=)




What does this process look like in a
single GRU unit?

Reset Update

hi_q |

.’\




What does this process look like in a
single GRU unit?

Reset Update
| \ I
Re_q

) Ml S | N\
-~y

tanh




Overall, comparing inputs and outputs for
some different types of neural units....

o000

Ctq1 hiq

Feedforward RNN LSTM GRU




When to use LSTMs vs. GRUs?

Why use GRUs instead of LSTMs?

« Computational efficiency: Good for scenarios in which
you need to train your model quickly and don't have
access to high-performance computing resources

Why use LSTMs instead of GRUs?

* Performance: LSTMs generally outperform GRUs at the
same tasks
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Advanced RNNs are a powerful tool,
but they are not without their
limitations.

* Remaining challenges:

« Even with sophisticated architectures, processing
long-distance dependencies through many
recurrences can eventually lead to loss of valuable
information

» Sequential processing models cannot productively
leverage parallel resources
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Transformers

 Get rid of recurrences entirely
e Closer to feedforward neural networks

205



How do « Stacks of:
Transformers » Linear layers
work? - Feedforward layers

« Self-attention layers

» Goal: Map sequences of input (x4, ..., x,,)
to sequences of output (y4, ..., y,) of the
same length
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Self-Attention

 Allows us to consider context in absence of recurrent connections
* For a given element in a sequence, determines which other element(s) up to that point are
most relevant to it
« Each computation is independent of other computations — easy parallelization
« Each computation only considers elements up to that point in the sequence — easy
language modeling

» Ultimately maps a sequence of inputs to an equal-length sequence of outputs

Natalie Parde - UIC CS 521
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Self-Attention
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Computing Self-Attention

« Simplest method:
» Take the dot product between a given input element x; and each input element
(x4, ..., x;) up until that point
° SCOFE(Xi, x]) = X Xj
* Apply softmax normalization to create a vector of weights, «;, indicating proportional
relevance of each sequence element to the current focus of attention, x;

score(xi,xj)

* @;; = softmax (score(xi,xj)) Vi<i= Vi<i

Z;.c=1 escore(XjXxy)
» Take the sum of inputs thus far weighted by «a; to produce an output y;
* Vi = Xj<i XijXj
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How do Transformers learn?

« Continually updating weight matrices applied to inputs

« Weight matrices are learned for each of three roles when computing self-attention:
* Query: The focus of attention when it is being compared to inputs up until that
point, W ¢
 Key: An input that is being compared to the focus of attention, WX

« Value: A value being used to compute the output for the current focus of
attention, WV



« Weight matrices are applied to inputs in the context of
their respective roles

g = WCx;
i, y e ki = WKXL'
Training ¢ v =Wy,
* Then, we can update our equations for computing self-
TranSfo rmers attention so that these roles are reflected in them:

. score(xi,xj) = q; * k;
* @;; = softmax (score(xi,xj)) Vi<i

* Vi = dj<i AijV
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« Combining a dot product with an exponential (as in
softmax) may lead to arbitrarily large values

* It is common to scale the scoring function based on the
dimensionality of the key (and query) vectors, d,

° score(xl-,xj) — C\I/ldij
k

« Each y; is computed independently, so we can parallelize
computations using efficient matrix multiplication routines

PraCticaI where X is a matrix containing all input embeddings
. . . — e
Considerations WX
« K=W"X
«c V=W'X
 SelfAttention(Q, K,V) = softmax (QTZ:) |4

« Zero out the upper triangular portion of the
comparison matrix in a language modeling
setting to avoid including knowledge of future
words!




Transformer Blocks

« Self-attention is the central component of a Transformer block, which also

includes: RN
« Feedforward layers RN
« Residual connections \\
* Normalizing layers \
« Transformer blocks can be stacked, just like RNN layers \‘
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Multihead Attention

« Each self-attention layer represents a single attention
head

 However, words can relate to one another in many
different ways!

* Multihead attention places multiple attention heads in
parallel in the Transformer model

« Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction
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Computing Multihead Attention

« Each head in the self-attention layer is parameterized with its own weights

'Q=Wl-QX
- K =W£X
- V=Ww'X

* The output of a multihead attention layer with n heads comprises n vectors
of equal length

* These heads are concatenated and then reduced to the original input/output
dimensionality

* head; = SelfAttention(WiQX, wrXx, W) x)
e MultiheadAttention(Q, K,V) = W9 (head;®head, @... ®head,,)
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Multihead Attention
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Positional Embeddings

« Since Transformers don’t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

« Randomly initialize an embedding for each input position

« Update weights during the training process

 Input embedding with positional information = word embedding + positional
embedding

« Static functions mapping positions to vectors can be used as an alternative
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Transformers as Autoregressive
Language Models
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Summary:
Deep Learning
Architectures
for Sequence

Processing

Review: Feedforward neural networks are
comprised of interconnected layers of computing units

Neural networks are trained used backpropagation

Convolutional neural networks were originally
designed for image processing, but can be useful for
learning phrases and fundamental structural
components

Recurrent neural networks consider temporal
sequence

« LSTMs, GRUs, and BiLSTMs are all variations of
the “vanilla” RNN model

Transformers use self-attention to learn which
components of an input are important for processing
one another



