
Deep Learning
Architectures
for Sequence
Processing
Natalie Parde
UIC CS 521

Review: Neural Networks Basics

Natalie Parde - UIC CS 521

2

Feedforward
Neural

Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in the
last layer are hidden from external viewers

Natalie Parde - UIC CS 521 3

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 521 4

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 521 5

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

Natalie Parde - UIC CS 521 6

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

Natalie Parde - UIC CS 521 7

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

Natalie Parde - UIC CS 521 8

Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 521 9

How many layers is “deep?”

Input Output

Natalie Parde - UIC CS 521

🧐

10

Neural
networks tend
to be more
powerful than
traditional
classification
algorithms.

• Traditional classification algorithms
usually assume that data is linearly
separable

• In contrast, neural networks learn
nonlinear functions

11

Building
Blocks for

Neural
Networks

• At their core, neural networks are
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

Natalie Parde - UIC CS 521 12

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥!, … , 𝑥", a unit has a set of corresponding
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑#𝑤#𝑥#

Natalie Parde - UIC CS 521 13

Computational
Units

• The weighted sum of inputs computes a
linear function of 𝑥

• As we already saw, neural networks
learn nonlinear functions

• These nonlinear functions are
commonly referred to as activations

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

Natalie Parde - UIC CS 521 14

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 521 15

Computational Unit with Sigmoid
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Natalie Parde - UIC CS 521 16

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
Natalie Parde - UIC CS 521 17

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 18

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 19

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 20

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 21

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 22

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 23

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 24

Activation:
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = ,!-,"!

,!.,"!

• Once again differentiable
• Larger derivatives → generally faster

convergence

Natalie Parde - UIC CS 521 25

Activation:
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

Natalie Parde - UIC CS 521 26

Comparing
sigmoid,
tanh, and
ReLU

Natalie Parde - UIC CS 521 27

Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 28

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 29

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 30

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 31

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 32

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 33

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 34

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 35

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 36

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 37

Feedforward
Network

• Formal equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward
neural network

• When numbering layers, count the
hidden and output layers but not the
input layer

Natalie Parde - UIC CS 521 38

What if we
want our

network to
have more

than two
layers?

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(-) be an activation function
• ReLU
• tanh
• softmax
• Etc.

• Let a[n] be the output from layer n, and z[n]
be the combination of weights and biases
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

Natalie Parde - UIC CS 521 39

What if we
want our
network to
have more
than two
layers?

• With this representation, a two-layer network
becomes:

• 𝑧[!] = 𝑊[!]𝑎[9] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[:] = 𝑊[:]𝑎[!] + 𝑏[:]

• 𝑎[:] = 𝑔 : (𝑧 :)
• 𝑦; = 𝑎[:]

• With this notation, we can easily generalize to
networks with more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#-!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 #)
• 𝑦; = 𝑎["]

Natalie Parde - UIC CS 521 40

Does every
layer use
the same
activation
function?

• The activation function 𝑔(-) generally differs
for the final layer

• Earlier layers will more commonly be ReLU
or tanh

• Final layers will more commonly be softmax
(for multinomial classification) or sigmoid (for
binary classification)

Natalie Parde - UIC CS 521 41

How do we train neural
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Natalie Parde - UIC CS 521 42

How do we train neural
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Cross-entropy loss

Natalie Parde - UIC CS 521 43

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Gradient descent

Natalie Parde - UIC CS 521 44

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

???

Natalie Parde - UIC CS 521 45

Backpropagation
• A method for propagating loss values all the

way back to the beginning of a deep neural
network, even though it’s only computed at
the end of the network

Natalie Parde - UIC CS 521 46

Recall…. • For a “neural network” with just one weight
layer containing a single computation unit +
sigmoid activation (i.e., a logistic regression
classifier), we can compute the gradient of
our loss function by just taking its derivative:

• <=#$(>,?)
<>%

= @𝑦 − 𝑦 𝑥@ = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥@

Natalie Parde - UIC CS 521 47

Recall…. • For a “neural network” with just one weight
layer containing a single computation unit +
sigmoid activation (i.e., a logistic regression
classifier), we can compute the gradient of
our loss function by just taking its derivative:

• <=#$(>,?)
<>%

= @𝑦 − 𝑦 𝑥@ = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥@

Natalie Parde - UIC CS 521

Difference between true and estimated y
Corresponding input
observation

48

However, we
can’t do that
with a neural
network that has
multiple weight
layers (“hidden”
layers).

• Why?
• Simply taking the derivative like we did for

logistic regression only provides the gradient
for the most recent (i.e., last) weight layer

• What we need is a way to:
• Compute the derivative with respect to weight

parameters occurring earlier in the network as well
• Even though we can only compute loss at a single

point (the end of the network)

Natalie Parde - UIC CS 521 49

We do this
using
backward
differentiation.

• Usually referred to as backpropagation
(“backprop” for short) in the context of
neural networks

• Frames neural networks as
computation graphs

Natalie Parde - UIC CS 521 50

What are
computation

graphs?

• Representations of interconnected
mathematical operations

• Nodes = Operations
• Directed edges = connections between

output/input of nodes

Natalie Parde - UIC CS 521 51

There are
two different
ways that we
can pass
information
through our
neural
network
computation
graphs.

• Forward pass
• Apply operations in the direction of the

arrows
• Pass the output of one computation as the

input to the next
• Backward pass

• Compute partial derivatives in the opposite
direction of the arrows

• Multiply them by the partial derivatives
passed down from the previous step

Natalie Parde - UIC CS 521 52

Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 53

Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 54

Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 55

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 56

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 57

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 58

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 59

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

Natalie Parde - UIC CS 521 60

How do we
get from L
all the way
back to a,
b, and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect
to v(x)

• Find the derivative of v(x) with respect
to x

• Multiply the two together
• AB
AC =

AD
AE ∗

AE
AC

Natalie Parde - UIC CS 521

Derivatives of popular activation functions:
!!"#$(#)

!# = 1 − tanh% 𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 40 for 𝑧 < 0

1 for 𝑧 ≥ 0

61

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

Natalie Parde - UIC CS 521 62

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐 = 𝑒

Natalie Parde - UIC CS 521 63

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎 = 𝑐 ∗ 1 = 𝑐

Natalie Parde - UIC CS 521 64

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏 = 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐

Natalie Parde - UIC CS 521 65

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= 2𝑐

&'
&*
= 𝑒

Natalie Parde - UIC CS 521 66

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐 = −2

&'
&)
= 2𝑐 = 2 ∗ −2 = −4

&'
&*
= 𝑒 = 5

Natalie Parde - UIC CS 521 67

Computation
graphs for
neural
networks are
a bit more
complex than
the previous
example.

• More operations:
• Products (input * weight)
• Summations (of weighted inputs)
• Activation functions

Natalie Parde - UIC CS 521 68

What would a computation graph look
like for a simple neural network?

Input Output

Natalie Parde - UIC CS 521 69

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

Natalie Parde - UIC CS 521 70

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

All of these weights
need to be updated
using backpropagation!

w

Natalie Parde - UIC CS 521 71

Convolutional
Neural
Networks

• Neural networks that incorporate one or
more convolutional layers

• Designed to reflect the inner workings of the
visual cortex system

• CNNs require that fewer parameters are
learned relative to standard feedforward
networks for equivalent input data

Natalie Parde - UIC CS 521 72

What are
convolutional

layers?

• Sliding windows that perform matrix
operations on subsets of the input

• Compute products between those subsets
of input and a corresponding weight matrix

Natalie Parde - UIC CS 521 73

Convolutional Layers

• First layer(s): low-level features
• Color, gradient orientation
• N-grams

• Higher layer(s): high-level features
• Objects
• Phrases

Natalie Parde - UIC CS 521 74

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 1

Natalie Parde - UIC CS 521 75

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 2

Natalie Parde - UIC CS 521 76

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Feature Map

Natalie Parde - UIC CS 521 77

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521 Feature Map

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 78

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521 Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 79

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 80

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

It’s common to extract multiple different
feature maps from the same input.

Natalie Parde - UIC CS 521 81

After extracting
feature maps

from the input,
CNNs utilize

pooling layers.

• Pooling layers: Layers that reduce the
dimensionality of input feature maps by
pooling all of the values in a given region

• Why use pooling layers?
• Further increase efficiency
• Improve the model’s ability to be

invariant to small changes

Natalie Parde - UIC CS 521 82

Pooling Layers

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 83

Common
Techniques
for Pooling

• Max pooling
• Take the maximum of all values computed in

a given window
• Average pooling

• Take the average of all values computed in a
given window

1
4
2
3

4

Natalie Parde - UIC CS 521 84

Common
Techniques
for Pooling

• Max pooling
• Take the maximum of all values computed in

a given window
• Average pooling

• Take the average of all values computed in a
given window

1
4
2
3

2.5

Natalie Parde - UIC CS 521 85

The output from pooling layers is typically
then passed along as input to one or more
feedforward layers.

Input Output
I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 86

Convolutional neural
network architectures
can vary greatly!

• Additional hyperparameters:
• Kernel size
• Padding
• Stride size
• Number of channels
• Pooling technique

Natalie Parde - UIC CS 521 87

Padding?

• Add empty vectors to the beginning and
end of your text input

• Why do this?
• Allows you to apply a filter to every

element of the input matrix

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Natalie Parde - UIC CS 521 88

Channels?

• Red, green, blue

For images, generally
corresponds to color channels

• Different types of word embeddings
• Word2Vec, GloVe, etc.

• Other feature types
• POS tags, word length, etc.

For text, can mean:

Natalie Parde - UIC CS 521 89

The big
question
…why use
CNNs at
all?

• Traditionally for image classification!
• However, offer unique advantages for

NLP tasks:
• CNNs inherently extract meaningful local

structures from input
• In NLP → implicitly-learned, useful n-grams!

Natalie Parde - UIC CS 521 90

Language is
inherently
temporal.

• Continuous input streams of indefinite
length that unfold over time

• Even clear from the metaphors we use to
describe language:

• Conversation flow
• News feed
• Twitter stream

Natalie Parde - UIC CS 521 91

What are
recurrent

neural
networks?

• Neural networks that exploit the temporal
nature of language!

• Also allow variable-length inputs

My project proposal is cooler than yours.

cooler yours. is proposal My than project

Natalie Parde - UIC CS 521 92

This makes RNNs
particularly useful
for performing
sequence
processing.

• Sequence Processing: Automated
processing of sequential items (e.g.,
words in a sentence) while taking into
account temporal information (e.g., w1
occurs before w2)

Natalie Parde - UIC CS 521 93

Sequence processing is particularly
useful for some tasks!

• Syntactic parsing
• Part of speech tagging
• Language modeling

Natalie did not like social events so
she politely declined the party
invitation.

verb? noun? adjective?

Natalie’s tweet had a like within thirty
seconds of posting it.

verb? noun? adjective?

Natalie Parde - UIC CS 521 94

Aren’t other neural network models (e.g.,
feedforward networks) already able to
capture temporal information?

• In a sense, yes
• How?

• Sliding window approach

Natalie Parde - UIC CS 521 95

Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤+ = “write”|𝑤+!, = “to”, 𝑤+!- = “down”, 𝑤+!. = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 96

Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤+ = “the”|𝑤+!, = “write”, 𝑤+!- = “to”, 𝑤+!. = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 97

Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤+ = “exam”|𝑤+!, = “the”, 𝑤+!- = “write”, 𝑤+!. = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 98

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. Positive 🤷

Natalie Parde - UIC CS 521 99

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.

Natalie Parde - UIC CS 521 100

Recurrent neural
networks (RNNs) are
designed to overcome
these limitations.

• Built-in capacity to handle
temporal information

• Can accept variable length
inputs without the use of fixed-
size windows

Natalie Parde - UIC CS 521 101

Recurrent
Neural Networks

• Contain cycles within their connections
• The value of a unit is dependent

upon outputs from previous
timesteps

• Many varieties exist
• “Vanilla” RNNs
• Long short-term memory networks

(LSTMs)
• Gated recurrent units (GRUs)

Natalie Parde - UIC CS 521 102

Vanilla RNN Layer

xt

Current input

Natalie Parde - UIC CS 521 103

Vanilla RNN Layer

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 521 104

Vanilla RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 521 105

Vanilla RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 521 106

Thus, hidden layers in RNNs are more
complex than in feedforward networks.
Outputs from earlier timesteps serve as additional context

Makes decisions based on both current input and outputs from
prior timesteps

Can include information extending all the way back to the
beginning of the sequence

Natalie Parde - UIC CS 521 107

However, computation units still
perform the same core actions.

Given:

• Input vector
• (New!) activation

values for the hidden
layer from the
previous timestep

Compute:

• Weighted sum of
inputs

Natalie Parde - UIC CS 521 108

Most
Significant
Change

• New set of weights that connect the hidden
layer from the previous timestep to the
current hidden layer

• These weights determine how the network
should make use of prior context

Natalie Parde - UIC CS 521 109

Formal
Equations

• Similar to what we’ve seen with
feedforward networks

• Recall the basic set of equations for a
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

Natalie Parde - UIC CS 521 110

Formal
Equations

• Just add (weights X activation values from
previous timestep) product to the current
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• W, U, and V are shared across all
timesteps

Natalie Parde - UIC CS 521 111

xt ht yt

ht-1
U

W V
xt ht yt

W

U

V

What does this look like
when unrolled?

Recurrent View Unrolled View

Natalie Parde - UIC CS 521 112

Formal Algorithm
h0 ← 0 # Initialize activations from the hidden layer to 0

Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b) # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!

Natalie Parde - UIC CS 521 113

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1

Natalie Parde - UIC CS 521 114

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2

Natalie Parde - UIC CS 521 115

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3

Natalie Parde - UIC CS 521 116

Training
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden

layer at t

Natalie Parde - UIC CS 521 117

Forward Inference
• Compute ht and yt at each step in time
• Compute the loss at each step in time

Updated from feedforward networks!

Natalie Parde - UIC CS 521 118

Forward Pass

h0 x1

y1

t1

h1

Natalie Parde - UIC CS 521 119

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

Natalie Parde - UIC CS 521 120

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 121

Backpropagation Through Time

• Process the sequence in reverse
• Compute the required error

gradients at each step backward in
time

Updated from feedforward networks!

Natalie Parde - UIC CS 521 122

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 123

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 124

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 125

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W

Natalie Parde - UIC CS 521 126

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U

Natalie Parde - UIC CS 521 127

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V

Natalie Parde - UIC CS 521 128

Updating the
weights for V
works no
differently from
feedforward
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Chain rule

Natalie Parde - UIC CS 521 129

Updating the
weights for W
and U works a
little bit
differently.

• Error term for a hidden layer, 𝛿a,
must be the sum of the error term
from the current output and the
error term from the next timestep

• 𝛿a = 𝑔; 𝑧 𝑉𝛿b + 𝛿b.!

Natalie Parde - UIC CS 521 130

Once we have
this updated error

term for the
hidden layer, we
can proceed as

usual to compute
the gradients for

U and W.

• 89
8:

= 89
8;

8;
8<

8<
8:

= 𝛿=𝑥>

• 89
8?
= 89

8;
8;
8<

8<
8?
= 𝛿=ℎ>@A

Natalie Parde - UIC CS 521 131

One remaining
step….

• Backpropagate the error
from 𝛿! to ℎ"#$ based on
the weights in U

• 𝛿"%$ = 𝑔& 𝑧 𝑈𝛿!
• At this point, we have all of

the necessary gradients to
update U, V, and W!

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

Natalie Parde - UIC CS 521 132

At this point,
we’ve seen a
few types of
language
models.

• N-gram language models
• Feedforward neural network

language models

Natalie Parde - UIC CS 521 133

These models
attempt to
predict the

next word in a
sequence

given a prior
context of

fixed length.

• What’s challenging about this approach?
• Model quality is dependent on context

size
• Anything outside the fixed context

window has no impact on the model’s
decision

Natalie Parde - UIC CS 521 134

Recurrent Neural Language Models
• Recurrent neural language models process sequences one word at a time
• This means that they avoid constraining the context size
• The hidden state embodies information about all of the preceding

words, all the way back to the beginning of the sequence

Natalie Parde - UIC CS 521 135

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 136

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 137

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 138

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 139

How can we generate text with neural
language models?
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley,
with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were
so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example,
that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there
before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human
civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But
they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.

Natalie Parde - UIC CS 521 140

Generation
with Neural
Language
Models

1. Sample the first word in the output from the
softmax distribution that results from using
the beginning of sentence marker (<s>)
as input

2. Get the embedding for that word
3. Use it as input to the network at the next

time step, and sample the following word
as in (1)

4. Repeat until the end of sentence marker
(</s>) is sampled, or a fixed length limit is
reached

Natalie Parde - UIC CS 521 141

Autoregressive
Generation

• This technique is referred to as
autoregressive generation

• Word generated at each timestep is
conditioned on the word generated
previously by the model

Natalie Parde - UIC CS 521 142

Autoregressive Generation

<s> RNN

softmax

recurrent

Natalie Parde - UIC CS 521 143

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

Natalie Parde - UIC CS 521 144

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Natalie Parde - UIC CS 521 145

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful
autoregressive
generation?

Prime the generation
component with appropriate
context (e.g., something more
useful than <s>)

Natalie Parde - UIC CS 521 146

RNNs are
also highly

useful for
sequence

labeling.

• Task: Given a fixed set of labels, assign a
label to each element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated by

the softmax (or other activation) function
over the set of all labels

Natalie Parde - UIC CS 521 147

Sequence Labeling

h0 a

determiner

t1

h1

Natalie Parde - UIC CS 521 148

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective

Natalie Parde - UIC CS 521 149

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun

Natalie Parde - UIC CS 521 150

They’re also
useful for
sequence
classification!

• Task: Given an input sequence, assign
the entire sequence to a class (rather
than the individual tokens within it)

Natalie Parde - UIC CS 521 151

How to use RNNs for sequence
classification?

1

Pass the sequence
through an RNN one
word at a time, as usual

2

Assume that the hidden
layer for the final word,
hn, acts as a
compressed
representation of the
entire sequence

3

Use hn as input to a
subsequent feedforward
neural network

4

Choose a class via
softmax over all the
possible classes

Natalie Parde - UIC CS 521 152

Sequence Classification

recurrent RNN

neural RNN

network RNN

Natalie Parde - UIC CS 521 153

Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING

Natalie Parde - UIC CS 521 154

Notes about
Sequence

Classification

• No loss associated with intermediate
outputs

• Loss function is based entirely on the final
classification task!

• Errors are still backpropagated all the way
through the RNN

• The process of adjusting weights the entire
way through the network based on the loss
from a downstream application is often
referred to as end-to-end training

Natalie Parde - UIC CS 521 155

Where do
we go
from
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN

Natalie Parde - UIC CS 521 156

Stacked
RNNs

• Use the entire sequence of outputs from one
RNN as the input sequence to another

• Capable of outperforming single-layer networks
• Why?

• Having more layers allows the network to
learn representations at differing levels of
abstraction across layers

• Early layers → more fundamental
properties

• Later layers → more meaningful
groups of fundamental properties

Natalie Parde - UIC CS 521 157

Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs

Natalie Parde - UIC CS 521 158

Bidirectional
RNNs

• Simple RNNs only consider the information
in a sequence leading up to the current
timestep

• ℎb
B = 𝑅𝑁𝑁Bcd>edA(𝑥!b)
• ℎb

B corresponds to the normal hidden
state at time t

• This could be visualized as the context to
the left of the current time

Natalie ran to TH 216

Natalie Parde - UIC CS 521 159

Bidirectional
RNNs

• However, in many cases the context after
the current timestep (to the right of the
current time) could be useful as well!

• In many applications we have access to the
entire input sequence at once anyway

Natalie ran to TH 216

Natalie ran her code again

Natalie Parde - UIC CS 521

Ran (Sense #1)

Ran (Sense #2)

160

Bidirectional
RNNs

• How can we make use of information
from both sides of the current timestep?

• Simple solution:
• Train an RNN on an input sequence in

reverse
• ℎ"' = 𝑅𝑁𝑁'()*+(,-(𝑥".)

• ℎ+) corresponds to information from the current
timestep to the end of the sequence

• Combine the forward and backward
networks

Natalie Parde - UIC CS 521 161

Bidirectional
RNNs

• Two independent RNNs
• One where the input is processed from start

to end
• One where the input is processed from end

to start
• Outputs combined into a single representation

that captures both the left and right contexts of
an input at each timestep

• ℎ; = ℎ;
<⨁ℎ;=

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.

Natalie Parde - UIC CS 521 162

Bidirectional RNNs

RNNNatalie ran to TH 216

Natalie Parde - UIC CS 521 163

Bidirectional RNNs

RNN

RNN

Natalie ran to TH 216

216 TH to ran Natalie

Natalie Parde - UIC CS 521 164

Bidirectional RNNs

RNN

RNN

Natalie ran to TH 216

216 TH to ran Natalie

+
ℎ+

ℎ+
2

ℎ+)

Natalie Parde - UIC CS 521 165

Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+

Natalie Parde - UIC CS 521 166

More
advanced
variations to
come….

• Additional ways to combine RNNs
• Architectural modifications to allow

better context management

Natalie Parde - UIC CS 521 167

“Vanilla” RNNs hold many
advantages over feedforward
networks for NLP tasks.
• Temporal context
• Variable-length input

• However …they’re not perfect (no
networks are!)

Natalie Parde - UIC CS 521 168

In particular, RNNs
may struggle with
managing context.

• In a simple RNN, the final state tends to
reflect more information about recent items
than those at the beginning of the sequence

• Distant timesteps → less information

Natalie Parde - UIC CS 521 169

This long-distance information
can be critical to many tasks!

N
atalie
took
a train
to O
’H
are

and
then
a plane

to L.A
.

and

then

a plane

to Tokyo

and

then

a plane

to M
iyazaki

w
here

she

finally

U
bered

to her

hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

Natalie Parde - UIC CS 521 170

Why is it so hard
to maintain long-
distance context?

• Hidden layers must perform two tasks
simultaneously:

• Provide information useful for the
current decision (input at t)

• Update and carry forward
information required for future
decisions (input at time t+1 and
beyond)

• These tasks may not always be
perfectly aligned with one another

Natalie Parde - UIC CS 521 171

There’s also the issue of
“vanishing gradients”….

• When small derivatives are repeatedly
multiplied together, the products can
become extremely small

• This means that when backpropagating
through time for a long sequence,
gradients can become so close to zero
that they are no longer effective for
model training!

Natalie Parde - UIC CS 521 172

How can we address
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer

needed
• Remember information still required

for future decisions

Natalie Parde - UIC CS 521 173

Long Short-Term Memory
Networks (LSTMs)

• Remove information no longer needed
from the context, and add information
likely to be needed later

• Do this by:
• Adding an explicit context layer to the

architecture
• This layer controls the flow of

information into and out of network
layers using specialized neural units
called gates

Natalie Parde - UIC CS 521 174

LSTM Gates
• Feedforward layer + sigmoid

activation + pointwise
multiplication with the layer
being gated

• Combination of sigmoid
activation and pointwise
multiplication essentially
creates a binary mask

• Values near 1 in the mask
are passed through
nearly unchanged

• Values near 0 are nearly
erased

Natalie Parde - UIC CS 521 175

LSTM
Gates

• Three main gates:
• Forget gate: Should we erase this

existing information from the context?
• Add gate: Should we write this new

information to the context?
• Output gate: What information should be

leveraged for the current hidden state?

Natalie Parde - UIC CS 521 176

• Goal: Delete information from the context
that is no longer needed

• 𝑓b = 𝜎(𝑈Bℎb-! +𝑊B𝑥b)
• 𝑘b = 𝑐b-!⨀𝑓b

Forget
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 177

• Goal: Delete information from the context
that is no longer needed

• 𝑓b = 𝜎(𝑈Bℎb-! +𝑊B𝑥b)
• 𝑘b = 𝑐b-!⨀𝑓b

Forget
Gate

Context vector from the previous timestep

Natalie Parde - UIC CS 521 178

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Regular RNN computation

Natalie Parde - UIC CS 521 179

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 180

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

New information to be added

Natalie Parde - UIC CS 521 181

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Updated context vector contains:
• New information to be added
• Existing information from context vector that was

not removed by the forget gate

Natalie Parde - UIC CS 521 182

Output
Gate

• Goal: Decide what information is required for
the current hidden state

• 𝑜b = 𝜎(𝑈cℎb-! +𝑊c𝑥b)
• ℎb = 𝑜b⨀tanh(𝑐b)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 183

Output
Gate

• Goal: Decide what information is required for
the current hidden state

• 𝑜b = 𝜎(𝑈cℎb-! +𝑊c𝑥b)
• ℎb = 𝑜b⨀tanh(𝑐b)

Updated hidden layer output

Natalie Parde - UIC CS 521 184

What does this process look like in a
single LSTM unit?

Natalie Parde - UIC CS 521 185

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

Natalie Parde - UIC CS 521 186

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

Natalie Parde - UIC CS 521 187

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

Natalie Parde - UIC CS 521 188

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

Natalie Parde - UIC CS 521 189

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

ℎ+

𝑐+

Natalie Parde - UIC CS 521 190

Long Short-
Term

Memory
Networks

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden outputs from previous timestep
• Current input vector

• They return as output:
• Context layer
• Hidden outputs from the current

timestep
• The output of the hidden layer can be used

as input to subsequent layers in a stacked
RNN, or to the network’s output layer

Natalie Parde - UIC CS 521 191

Gated
Recurrent

Units
(GRUs)

• Also manage the context that is passed
through to the next timestep, but do so by
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen
in LSTMs

• Feedforward layer + sigmoid
activation + pointwise multiplication
with the layer being gated, resulting in a
binary-like mask

Natalie Parde - UIC CS 521 192

Reset Gate
• Goal: Decide which aspects of the previous

hidden state are relevant to the current
context

• 𝑟b = 𝜎(𝑈dℎb-! +𝑊d𝑥b)
• Pℎb = tanh(𝑈 𝑟b⨀ℎb-! +𝑊𝑥b)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 193

Reset Gate
• Goal: Decide which aspects of the previous

hidden state are relevant to the current
context

• 𝑟b = 𝜎(𝑈dℎb-! +𝑊d𝑥b)
• Pℎb = tanh(𝑈 𝑟b⨀ℎb-! +𝑊𝑥b)

Intermediate representation for ℎ+

Natalie Parde - UIC CS 521 194

Update
Gate

• Goal: Decide which aspects of the
intermediate hidden state and which aspects
of the previous hidden state need to be
preserved for future use

• 𝑧b = 𝜎(𝑈kℎb-! +𝑊k𝑥b)
• ℎb = 1 − 𝑧b ℎb-! + 𝑧b Pℎb

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 195

Update
Gate

• Goal: Decide which aspects of the
intermediate hidden state and which aspects
of the previous hidden state need to be
preserved for future use

• 𝑧b = 𝜎(𝑈kℎb-! +𝑊k𝑥b)
• ℎb = 1 − 𝑧b ℎb-! + 𝑧b Pℎb

Updated hidden layer output

Natalie Parde - UIC CS 521 196

What does this process look like in a
single GRU unit?

Natalie Parde - UIC CS 521 197

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

Natalie Parde - UIC CS 521 198

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

Reset

Natalie Parde - UIC CS 521 199

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

Natalie Parde - UIC CS 521 200

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ+

Natalie Parde - UIC CS 521 201

Overall, comparing inputs and outputs for
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU

Natalie Parde - UIC CS 521 202

When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which
you need to train your model quickly and don’t have
access to high-performance computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the
same tasks

Why use LSTMs instead of GRUs?

Natalie Parde - UIC CS 521 203

Advanced RNNs are a powerful tool,
but they are not without their
limitations.
• Remaining challenges:

• Even with sophisticated architectures, processing
long-distance dependencies through many
recurrences can eventually lead to loss of valuable
information

• Sequential processing models cannot productively
leverage parallel resources

Natalie Parde - UIC CS 521 204

Transformers
• Get rid of recurrences entirely
• Closer to feedforward neural networks

205

How do
Transformers
work?

206

Self-Attention

207

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

208

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

209

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

210

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

211

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

212

Computing Self-Attention

213

How do Transformers learn?

Natalie Parde - UIC CS 521

• Continually updating weight matrices applied to inputs
• Weight matrices are learned for each of three roles when computing self-attention:

• Query: The focus of attention when it is being compared to inputs up until that
point, 𝑊/

• Key: An input that is being compared to the focus of attention, 𝑊0

• Value: A value being used to compute the output for the current focus of
attention, 𝑊1

214

Training
Transformers

• Weight matrices are applied to inputs in the context of
their respective roles

• 𝑞2 = 𝑊/𝑥2
• 𝑘2 = 𝑊0𝑥2
• 𝑣2 = 𝑊1𝑥2

• Then, we can update our equations for computing self-
attention so that these roles are reflected in them:

• score 𝑥2, 𝑥3 = 𝑞2 ⋅ 𝑘3
• 𝛼23 = softmax score 𝑥2, 𝑥3 ∀𝑗 ≤ 𝑖
• 𝑦2 = ∑342 𝛼23𝑣3

Natalie Parde - UIC CS 521 215

is

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis

𝛼!" = softmax score 𝑥!, 𝑥"

𝑦! =2
"#!

𝛼!"𝑣"

k521

v521
q521

kCS

vCS
qCS

216

Practical
Considerations

• Combining a dot product with an exponential (as in
softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the
dimensionality of the key (and query) vectors, 𝑑&

• score 𝑥' , 𝑥(=)!⋅&"
+#

• Each 𝑦' is computed independently, so we can parallelize
computations using efficient matrix multiplication routines
where 𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊,𝑋
• 𝐾 = 𝑊-𝑋
• 𝑉 = 𝑊.𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax ,-$

+#
𝑉

• Zero out the upper triangular portion of the
comparison matrix in a language modeling
setting to avoid including knowledge of future
words!

Natalie Parde - UIC CS 521 217

Transformer Blocks

• Self-attention is the central component of a Transformer block, which also
includes:

• Feedforward layers
• Residual connections
• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 521 218

Multihead Attention

• Each self-attention layer represents a single attention
head

• However, words can relate to one another in many
different ways!

• Multihead attention places multiple attention heads in
parallel in the Transformer model

• Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction

Natalie Parde - UIC CS 521

Attention

Attention

Attention

219

Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights
• 𝑄 = 𝑊>

?𝑋
• 𝐾 = 𝑊>

@𝑋
• 𝑉 = 𝑊>

A𝑋
• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors

of equal length
• These heads are concatenated and then reduced to the original input/output

dimensionality
• head> = SelfAttention(𝑊>

?𝑋,𝑊>
@𝑋,𝑊>

A𝑋)
• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊B(headC⨁headD⨁…⨁headE)

220

Multihead Attention

Natalie Parde - UIC CS 521

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

⨁

Self-Attention Layer

𝑊3 Output

221

Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position
• Update weights during the training process
• Input embedding with positional information = word embedding + positional

embedding
• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
222

Transformers as Autoregressive
Language Models

Natalie Parde - UIC CS 521

Transformers Transformer
Block softmax

are

are
softmax

fun

fun </s>

softmax

Transformer
Block

Transformer
Block

loss

loss

loss

223

Summary:
Deep Learning
Architectures
for Sequence

Processing

N
atalie Parde -U

IC
 C

S 521

• Review: Feedforward neural networks are
comprised of interconnected layers of computing units

• Neural networks are trained used backpropagation
• Convolutional neural networks were originally

designed for image processing, but can be useful for
learning phrases and fundamental structural
components

• Recurrent neural networks consider temporal
sequence

• LSTMs, GRUs, and BiLSTMs are all variations of
the “vanilla” RNN model

• Transformers use self-attention to learn which
components of an input are important for processing
one another

224

