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Review: Neural Networks Basics
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Feedforward 
Neural 

Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in the 
last layer are hidden from external viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value
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Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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How many layers is “deep?”

Input Output
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Neural 
networks tend 
to be more 
powerful than 
traditional 
classification 
algorithms.

• Traditional classification algorithms 
usually assume that data is linearly 
separable

• In contrast, neural networks learn 
nonlinear functions
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Building 
Blocks for 

Neural 
Networks

• At their core, neural networks are 
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥!, … , 𝑥", a unit has a set of corresponding 
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑#𝑤#𝑥#
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Computational 
Units

• The weighted sum of inputs computes a 
linear function of 𝑥

• As we already saw, neural networks 
learn nonlinear functions

• These nonlinear functions are 
commonly referred to as activations

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 20



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 23



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = ,!-,"!

,!.,"!

• Once again differentiable
• Larger derivatives → generally faster 

convergence
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Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Comparing 
sigmoid, 
tanh, and 
ReLU
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Truth Table Examples: XOR
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𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Truth Table Examples: XOR
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable
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Feedforward 
Network

• Formal equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
input layer
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What if we 
want our 

network to 
have more 

than two 
layers?

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(-) be an activation function
• ReLU
• tanh
• softmax
• Etc.

• Let a[n] be the output from layer n, and z[n]
be the combination of weights and biases 
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

Natalie Parde - UIC CS 521 39



What if we 
want our 
network to 
have more 
than two 
layers?

• With this representation, a two-layer network 
becomes:

• 𝑧[!] = 𝑊[!]𝑎[9] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[:] = 𝑊[:]𝑎[!] + 𝑏[:]

• 𝑎[:] = 𝑔 : (𝑧 : )
• 𝑦; = 𝑎[:]

• With this notation, we can easily generalize to 
networks with more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#-!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 # )
• 𝑦; = 𝑎["]
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Does every 
layer use 
the same 
activation 
function?

• The activation function 𝑔(-) generally differs 
for the final layer

• Earlier layers will more commonly be ReLU
or tanh

• Final layers will more commonly be softmax
(for multinomial classification) or sigmoid (for 
binary classification)

Natalie Parde - UIC CS 521 41



How do we train neural 
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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Backpropagation
• A method for propagating loss values all the 

way back to the beginning of a deep neural 
network, even though it’s only computed at 
the end of the network
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Recall…. • For a “neural network” with just one weight 
layer containing a single computation unit + 
sigmoid activation (i.e., a logistic regression 
classifier), we can compute the gradient of 
our loss function by just taking its derivative:

• <=#$(>,?)
<>%

= @𝑦 − 𝑦 𝑥@ = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥@
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Recall…. • For a “neural network” with just one weight 
layer containing a single computation unit + 
sigmoid activation (i.e., a logistic regression 
classifier), we can compute the gradient of 
our loss function by just taking its derivative:

• <=#$(>,?)
<>%

= @𝑦 − 𝑦 𝑥@ = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥@

Natalie Parde - UIC CS 521

Difference between true and estimated y
Corresponding input 
observation
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However, we 
can’t do that 
with a neural 
network that has 
multiple weight 
layers (“hidden” 
layers).

• Why?
• Simply taking the derivative like we did for 

logistic regression only provides the gradient 
for the most recent (i.e., last) weight layer

• What we need is a way to:
• Compute the derivative with respect to weight 

parameters occurring earlier in the network as well
• Even though we can only compute loss at a single 

point (the end of the network)
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We do this 
using 
backward 
differentiation.

• Usually referred to as backpropagation
(“backprop” for short) in the context of 
neural networks

• Frames neural networks as 
computation graphs
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What are 
computation 

graphs?

• Representations of interconnected 
mathematical operations

• Nodes = Operations
• Directed edges = connections between 

output/input of nodes
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There are 
two different 
ways that we 
can pass 
information 
through our 
neural 
network 
computation 
graphs.

• Forward pass
• Apply operations in the direction of the 

arrows
• Pass the output of one computation as the 

input to the next
• Backward pass

• Compute partial derivatives in the opposite 
direction of the arrows

• Multiply them by the partial derivatives 
passed down from the previous step
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Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c
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How do we 
get from L 
all the way 
back to a, 
b, and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect 
to v(x)

• Find the derivative of v(x) with respect 
to x

• Multiply the two together
• AB
AC =

AD
AE ∗

AE
AC

Natalie Parde - UIC CS 521

Derivatives of popular activation functions: 
!!"#$(#)

!# = 1 − tanh% 𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 40 for 𝑧 < 0

1 for 𝑧 ≥ 0
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐 = 𝑒
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎 = 𝑐 ∗ 1 = 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏 = 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= 2𝑐

&'
&*
= 𝑒
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2

d+a = 5

c*e = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐 = −2

&'
&)
= 2𝑐 = 2 ∗ −2 = −4

&'
&*
= 𝑒 = 5

Natalie Parde - UIC CS 521 67



Computation 
graphs for 
neural 
networks are 
a bit more 
complex than 
the previous 
example.

• More operations:
• Products (input * weight)
• Summations (of weighted inputs)
• Activation functions
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What would a computation graph look 
like for a simple neural network?

Input Output
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What would a computation graph look 
like for a simple neural network?
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What would a computation graph look 
like for a simple neural network?
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All of these weights 
need to be updated 
using backpropagation!

w
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Convolutional 
Neural 
Networks

• Neural networks that incorporate one or 
more convolutional layers

• Designed to reflect the inner workings of the 
visual cortex system

• CNNs require that fewer parameters are 
learned relative to standard feedforward 
networks for equivalent input data

Natalie Parde - UIC CS 521 72



What are 
convolutional 

layers?

• Sliding windows that perform matrix 
operations on subsets of the input

• Compute products between those subsets 
of input and a corresponding weight matrix
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Convolutional Layers

• First layer(s): low-level features
• Color, gradient orientation
• N-grams

• Higher layer(s): high-level features
• Objects
• Phrases
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.

I
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waking

up

early

for
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521

I

love
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early

for
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I
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Stride size = 1
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.

I
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waking

up

early
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Stride size = 2
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Feature Map
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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521 Feature Map
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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It’s common to extract multiple different 
feature maps from the same input.
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After extracting 
feature maps 

from the input, 
CNNs utilize 

pooling layers.

• Pooling layers: Layers that reduce the 
dimensionality of input feature maps by 
pooling all of the values in a given region

• Why use pooling layers?
• Further increase efficiency
• Improve the model’s ability to be 

invariant to small changes
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Pooling Layers
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window
• Average pooling

• Take the average of all values computed in a 
given window

1
4
2
3

4
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window
• Average pooling

• Take the average of all values computed in a 
given window

1
4
2
3

2.5
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The output from pooling layers is typically 
then passed along as input to one or more 
feedforward layers.

Input Output
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Convolutional neural 
network architectures 
can vary greatly!

• Additional hyperparameters:
• Kernel size
• Padding
• Stride size
• Number of channels
• Pooling technique
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Padding?

• Add empty vectors to the beginning and 
end of your text input

• Why do this?
• Allows you to apply a filter to every 

element of the input matrix
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up
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for
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Channels?

• Red, green, blue

For images, generally 
corresponds to color channels

• Different types of word embeddings
• Word2Vec, GloVe, etc.

• Other feature types
• POS tags, word length, etc.

For text, can mean:
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The big 
question 
…why use 
CNNs at 
all?

• Traditionally for image classification!
• However, offer unique advantages for 

NLP tasks:
• CNNs inherently extract meaningful local 

structures from input
• In NLP → implicitly-learned, useful n-grams!
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Language is 
inherently 
temporal.

• Continuous input streams of indefinite 
length that unfold over time

• Even clear from the metaphors we use to 
describe language:

• Conversation flow
• News feed
• Twitter stream
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What are 
recurrent 

neural 
networks?

• Neural networks that exploit the temporal
nature of language!

• Also allow variable-length inputs

My project proposal is cooler than yours.

cooler yours. is proposal My than project
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This makes RNNs 
particularly useful 
for performing 
sequence 
processing.

• Sequence Processing: Automated 
processing of sequential items (e.g., 
words in a sentence) while taking into 
account temporal information (e.g., w1
occurs before w2)
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Sequence processing is particularly 
useful for some tasks!

• Syntactic parsing
• Part of speech tagging
• Language modeling

Natalie did not like social events so 
she politely declined the party 
invitation.

verb? noun? adjective?

Natalie’s tweet had a like within thirty 
seconds of posting it.

verb? noun? adjective?
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Aren’t other neural network models (e.g., 
feedforward networks) already able to 
capture temporal information?

• In a sense, yes
• How?

• Sliding window approach

Natalie Parde - UIC CS 521 95



Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤+ = “write”|𝑤+!, = “to”, 𝑤+!- = “down”, 𝑤+!. = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤+ = “the”|𝑤+!, = “write”, 𝑤+!- = “to”, 𝑤+!. = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤+ = “exam”|𝑤+!, = “the”, 𝑤+!- = “write”, 𝑤+!. = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax
distribution over 
all words in the 
vocabulary
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. Positive 🤷
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.
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Recurrent neural 
networks (RNNs) are 
designed to overcome 
these limitations.

• Built-in capacity to handle 
temporal information

• Can accept variable length 
inputs without the use of fixed-
size windows
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Recurrent 
Neural Networks

• Contain cycles within their connections
• The value of a unit is dependent 

upon outputs from previous 
timesteps

• Many varieties exist
• “Vanilla” RNNs
• Long short-term memory networks 

(LSTMs)
• Gated recurrent units (GRUs)
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Vanilla RNN Layer

xt

Current input
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Vanilla RNN Layer

xt ht

Current input
Information from xt
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Vanilla RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Vanilla RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Thus, hidden layers in RNNs are more 
complex than in feedforward networks.
Outputs from earlier timesteps serve as additional context

Makes decisions based on both current input and outputs from 
prior timesteps

Can include information extending all the way back to the 
beginning of the sequence
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However, computation units still 
perform the same core actions.

Given:

• Input vector
• (New!) activation 

values for the hidden 
layer from the 
previous timestep

Compute:

• Weighted sum of 
inputs
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Most 
Significant 
Change

• New set of weights that connect the hidden 
layer from the previous timestep to the 
current hidden layer

• These weights determine how the network 
should make use of prior context
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Formal 
Equations

• Similar to what we’ve seen with 
feedforward networks

• Recall the basic set of equations for a 
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)
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Formal 
Equations

• Just add (weights X activation values from 
previous timestep) product to the current 
(weights X inputs) product

• h = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• z = 𝑉ht
• 𝑦 = softmax(z)

• W, U, and V are shared across all 
timesteps
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xt ht yt

ht-1
U

W V
xt ht yt

W

U

V

What does this look like 
when unrolled?

Recurrent View Unrolled View
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Formal Algorithm
h0 ← 0  # Initialize activations from the hidden layer to 0

# Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b)  # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0x2

h1

y1

…“write”

…

y|V|

…

h2
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h0

h1
y1

…“write”

…

y|V|

…

h3
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Training 
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden 

layer at t
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Forward Inference
• Compute ht and yt at each step in time
• Compute the loss at each step in time

Updated from feedforward networks!
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Forward Pass

h0 x1

y1

t1

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

Natalie Parde - UIC CS 521 120



Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backpropagation Through Time

• Process the sequence in reverse
• Compute the required error 

gradients at each step backward in 
time

Updated from feedforward networks!
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V
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Updating the 
weights for V
works no 
differently from 
feedforward 
networks.

𝜕𝐿
𝜕𝑉

=
𝜕𝐿
𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑉

Chain rule
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Updating the 
weights for W
and U works a 
little bit 
differently.

• Error term for a hidden layer, 𝛿a, 
must be the sum of the error term 
from the current output and the 
error term from the next timestep

• 𝛿a = 𝑔; 𝑧 𝑉𝛿b + 𝛿b.!
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Once we have 
this updated error 

term for the 
hidden layer, we 
can proceed as 

usual to compute 
the gradients for 

U and W.

• 89
8:

= 89
8;

8;
8<

8<
8:

= 𝛿=𝑥>

• 89
8?
= 89

8;
8;
8<

8<
8?
= 𝛿=ℎ>@A
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One remaining 
step….

• Backpropagate the error 
from 𝛿! to ℎ"#$ based on 
the weights in U

• 𝛿"%$ = 𝑔& 𝑧 𝑈𝛿!
• At this point, we have all of 

the necessary gradients to 
update U, V, and W!

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3
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At this point, 
we’ve seen a 
few types of 
language 
models.

• N-gram language models
• Feedforward neural network 

language models
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These models 
attempt to 
predict the 

next word in a 
sequence 

given a prior 
context of 

fixed length.

• What’s challenging about this approach?
• Model quality is dependent on context 

size
• Anything outside the fixed context 

window has no impact on the model’s 
decision
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Recurrent Neural Language Models
• Recurrent neural language models process sequences one word at a time
• This means that they avoid constraining the context size
• The hidden state embodies information about all of the preceding 

words, all the way back to the beginning of the sequence
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 136



Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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How can we generate text with neural 
language models?
Model Completion (Machine-Written, 10 Tries): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white 
unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, 
with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were 
so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example, 
that they have a common ‘language,’ something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there 
before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human 
civilization. According to Pérez, “In South America, such incidents seem to be quite common.”

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But 
they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization,” said the scientist.

Natalie Parde - UIC CS 521 140



Generation 
with Neural 
Language 
Models

1. Sample the first word in the output from the 
softmax distribution that results from using 
the beginning of sentence marker (<s>) 
as input

2. Get the embedding for that word
3. Use it as input to the network at the next 

time step, and sample the following word 
as in (1)

4. Repeat until the end of sentence marker 
(</s>) is sampled, or a fixed length limit is 
reached
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Autoregressive 
Generation

• This technique is referred to as 
autoregressive generation

• Word generated at each timestep is 
conditioned on the word generated 
previously by the model
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Autoregressive Generation

<s> RNN

softmax

recurrent
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax
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neural RNN

softmax
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful 
autoregressive 
generation?

Prime the generation 
component with appropriate 
context (e.g., something more 
useful than <s>)
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RNNs are 
also highly 

useful for 
sequence 

labeling.

• Task: Given a fixed set of labels, assign a 
label to each element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated by 

the softmax (or other activation) function 
over the set of all labels
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Sequence Labeling

h0 a

determiner

t1

h1
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Sequence Labeling

h0 a

determiner
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun
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They’re also 
useful for 
sequence 
classification!

• Task: Given an input sequence, assign 
the entire sequence to a class (rather 
than the individual tokens within it)
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How to use RNNs for sequence 
classification?

1

Pass the sequence 
through an RNN one 
word at a time, as usual

2

Assume that the hidden 
layer for the final word, 
hn, acts as a 
compressed 
representation of the 
entire sequence

3

Use hn as input to a 
subsequent feedforward 
neural network

4

Choose a class via 
softmax over all the 
possible classes
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Sequence Classification

recurrent RNN

neural RNN

network RNN
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Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING
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Notes about 
Sequence 

Classification

• No loss associated with intermediate 
outputs

• Loss function is based entirely on the final 
classification task!

• Errors are still backpropagated all the way 
through the RNN

• The process of adjusting weights the entire 
way through the network based on the loss 
from a downstream application is often 
referred to as end-to-end training
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Where do 
we go 
from 
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN
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Stacked 
RNNs

• Use the entire sequence of outputs from one 
RNN as the input sequence to another

• Capable of outperforming single-layer networks
• Why?

• Having more layers allows the network to 
learn representations at differing levels of 
abstraction across layers

• Early layers → more fundamental 
properties

• Later layers → more meaningful 
groups of fundamental properties
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Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs
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Bidirectional 
RNNs

• Simple RNNs only consider the information 
in a sequence leading up to the current 
timestep

• ℎb
B = 𝑅𝑁𝑁Bcd>edA(𝑥!b)
• ℎb

B corresponds to the normal hidden 
state at time t

• This could be visualized as the context to 
the left of the current time

Natalie ran to TH 216
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Bidirectional 
RNNs

• However, in many cases the context after 
the current timestep (to the right of the 
current time) could be useful as well!

• In many applications we have access to the 
entire input sequence at once anyway

Natalie ran to TH 216

Natalie ran her code again

Natalie Parde - UIC CS 521

Ran (Sense #1)

Ran (Sense #2)

160



Bidirectional 
RNNs

• How can we make use of information 
from both sides of the current timestep?

• Simple solution:
• Train an RNN on an input sequence in 

reverse
• ℎ"' = 𝑅𝑁𝑁'()*+(,-(𝑥".)

• ℎ+) corresponds to information from the current 
timestep to the end of the sequence

• Combine the forward and backward 
networks
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Bidirectional 
RNNs

• Two independent RNNs
• One where the input is processed from start 

to end
• One where the input is processed from end 

to start
• Outputs combined into a single representation 

that captures both the left and right contexts of 
an input at each timestep

• ℎ; = ℎ;
<⨁ℎ;=

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.
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Bidirectional RNNs

RNNNatalie ran to TH 216
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Bidirectional RNNs

RNN

RNN

Natalie ran to TH 216

216 TH to ran Natalie
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Bidirectional RNNs

RNN

RNN

Natalie ran to TH 216

216 TH to ran Natalie

+
ℎ+

ℎ+
2
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Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
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More 
advanced 
variations to 
come….

• Additional ways to combine RNNs
• Architectural modifications to allow 

better context management
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“Vanilla” RNNs hold many 
advantages over feedforward 
networks for NLP tasks.
• Temporal context
• Variable-length input

• However …they’re not perfect (no 
networks are!)
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In particular, RNNs 
may struggle with 
managing context.

• In a simple RNN, the final state tends to 
reflect more information about recent items 
than those at the beginning of the sequence

• Distant timesteps → less information
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This long-distance information 
can be critical to many tasks!

N
atalie
took
a train
to O
’H
are

and
then
a plane

to L.A
.

and

then

a plane

to Tokyo

and

then

a plane

to M
iyazaki

w
here

she

finally

U
bered

to her

hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
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Why is it so hard 
to maintain long-
distance context?

• Hidden layers must perform two tasks 
simultaneously:

• Provide information useful for the 
current decision (input at t)

• Update and carry forward 
information required for future 
decisions (input at time t+1 and 
beyond)

• These tasks may not always be 
perfectly aligned with one another
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There’s also the issue of 
“vanishing gradients”….

• When small derivatives are repeatedly 
multiplied together, the products can 
become extremely small

• This means that when backpropagating 
through time for a long sequence, 
gradients can become so close to zero 
that they are no longer effective for 
model training!
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How can we address 
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer 

needed
• Remember information still required 

for future decisions

Natalie Parde - UIC CS 521 173



Long Short-Term Memory 
Networks (LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:
• Adding an explicit context layer to the 

architecture
• This layer controls the flow of 

information into and out of network 
layers using specialized neural units 
called gates
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LSTM Gates
• Feedforward layer + sigmoid 

activation + pointwise 
multiplication with the layer 
being gated

• Combination of sigmoid 
activation and pointwise 
multiplication essentially 
creates a binary mask

• Values near 1 in the mask 
are passed through 
nearly unchanged

• Values near 0 are nearly 
erased
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LSTM 
Gates

• Three main gates:
• Forget gate: Should we erase this 

existing information from the context?
• Add gate: Should we write this new 

information to the context?
• Output gate: What information should be 

leveraged for the current hidden state?
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• Goal: Delete information from the context 
that is no longer needed

• 𝑓b = 𝜎(𝑈Bℎb-! +𝑊B𝑥b)
• 𝑘b = 𝑐b-!⨀𝑓b

Forget 
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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• Goal: Delete information from the context 
that is no longer needed

• 𝑓b = 𝜎(𝑈Bℎb-! +𝑊B𝑥b)
• 𝑘b = 𝑐b-!⨀𝑓b

Forget 
Gate

Context vector from the previous timestep

Natalie Parde - UIC CS 521 178



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Regular RNN computation
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

New information to be added
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Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔b = tanh(𝑈gℎb-! +𝑊g𝑥b)
• 𝑖b = 𝜎(𝑈#ℎb-! +𝑊#𝑥b)
• 𝑗b = 𝑔b⨀𝑖b
• 𝑐b = 𝑗b + 𝑘b

Updated context vector contains:
• New information to be added
• Existing information from context vector that was 

not removed by the forget gate
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Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜b = 𝜎(𝑈cℎb-! +𝑊c𝑥b)
• ℎb = 𝑜b⨀tanh(𝑐b)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜b = 𝜎(𝑈cℎb-! +𝑊c𝑥b)
• ℎb = 𝑜b⨀tanh(𝑐b)

Updated hidden layer output
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What does this process look like in a 
single LSTM unit?
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,
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What does this process look like in a 
single LSTM unit?

𝑐+!,
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ℎ+!,

𝜎 ⨀

Forget
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What does this process look like in a 
single LSTM unit?
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

ℎ+

𝑐+
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Long Short-
Term 

Memory 
Networks 

(LSTMs)

• LSTMs thus accept as input:
• Context layer
• Hidden outputs from previous timestep
• Current input vector

• They return as output:
• Context layer
• Hidden outputs from the current 

timestep
• The output of the hidden layer can be used 

as input to subsequent layers in a stacked 
RNN, or to the network’s output layer
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Gated 
Recurrent 

Units 
(GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so by 
utilizing a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that seen 
in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise multiplication 
with the layer being gated, resulting in a 
binary-like mask
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Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟b = 𝜎(𝑈dℎb-! +𝑊d𝑥b)
• Pℎb = tanh(𝑈 𝑟b⨀ℎb-! +𝑊𝑥b)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟b = 𝜎(𝑈dℎb-! +𝑊d𝑥b)
• Pℎb = tanh(𝑈 𝑟b⨀ℎb-! +𝑊𝑥b)

Intermediate representation for ℎ+
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Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧b = 𝜎(𝑈kℎb-! +𝑊k𝑥b)
• ℎb = 1 − 𝑧b ℎb-! + 𝑧b Pℎb

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧b = 𝜎(𝑈kℎb-! +𝑊k𝑥b)
• ℎb = 1 − 𝑧b ℎb-! + 𝑧b Pℎb

Updated hidden layer output

Natalie Parde - UIC CS 521 196



What does this process look like in a 
single GRU unit?
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,
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What does this process look like in a 
single GRU unit?
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ+
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Overall, comparing inputs and outputs for 
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU
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When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which 
you need to train your model quickly and don’t have 
access to high-performance computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the 
same tasks

Why use LSTMs instead of GRUs?
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Advanced RNNs are a powerful tool, 
but they are not without their 
limitations.
• Remaining challenges:

• Even with sophisticated architectures, processing 
long-distance dependencies through many 
recurrences can eventually lead to loss of valuable 
information

• Sequential processing models cannot productively 
leverage parallel resources
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Transformers
• Get rid of recurrences entirely
• Closer to feedforward neural networks
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How do 
Transformers 
work?
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Computing Self-Attention
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How do Transformers learn?

Natalie Parde - UIC CS 521

• Continually updating weight matrices applied to inputs
• Weight matrices are learned for each of three roles when computing self-attention:

• Query: The focus of attention when it is being compared to inputs up until that 
point, 𝑊/

• Key: An input that is being compared to the focus of attention, 𝑊0

• Value: A value being used to compute the output for the current focus of 
attention, 𝑊1
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Training 
Transformers

• Weight matrices are applied to inputs in the context of 
their respective roles

• 𝑞2 = 𝑊/𝑥2
• 𝑘2 = 𝑊0𝑥2
• 𝑣2 = 𝑊1𝑥2

• Then, we can update our equations for computing self-
attention so that these roles are reflected in them:

• score 𝑥2, 𝑥3 = 𝑞2 ⋅ 𝑘3
• 𝛼23 = softmax score 𝑥2, 𝑥3 ∀𝑗 ≤ 𝑖
• 𝑦2 = ∑342 𝛼23𝑣3
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is

Self-Attention
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kCS
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Practical 
Considerations

• Combining a dot product with an exponential (as in 
softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the 
dimensionality of the key (and query) vectors, 𝑑&

• score 𝑥' , 𝑥( = )!⋅&"
+#

• Each 𝑦' is computed independently, so we can parallelize 
computations using efficient matrix multiplication routines 
where 𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊,𝑋
• 𝐾 = 𝑊-𝑋
• 𝑉 = 𝑊.𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax ,-$

+#
𝑉

• Zero out the upper triangular portion of the 
comparison matrix in a language modeling 
setting to avoid including knowledge of future 
words!
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Transformer Blocks

• Self-attention is the central component of a Transformer block, which also 
includes:

• Feedforward layers
• Residual connections
• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output
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Multihead Attention

• Each self-attention layer represents a single attention 
head

• However, words can relate to one another in many 
different ways!

• Multihead attention places multiple attention heads in 
parallel in the Transformer model

• Since each attention head has its own set of weights, 
each one can learn different aspects of the relations 
between input elements at the same level of 
abstraction

Natalie Parde - UIC CS 521

Attention

Attention

Attention
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Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights
• 𝑄 = 𝑊>

?𝑋
• 𝐾 = 𝑊>

@𝑋
• 𝑉 = 𝑊>

A𝑋
• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors 

of equal length
• These heads are concatenated and then reduced to the original input/output 

dimensionality
• head> = SelfAttention(𝑊>

?𝑋,𝑊>
@𝑋,𝑊>

A𝑋)
• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊B(headC⨁headD⨁…⨁headE)
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Multihead Attention
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Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead 
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position
• Update weights during the training process
• Input embedding with positional information = word embedding + positional 

embedding
• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
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Transformers as Autoregressive 
Language Models

Natalie Parde - UIC CS 521
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Summary: 
Deep Learning 
Architectures 
for Sequence 

Processing

N
atalie Parde -U

IC
 C

S 521

• Review: Feedforward neural networks are 
comprised of interconnected layers of computing units

• Neural networks are trained used backpropagation
• Convolutional neural networks were originally 

designed for image processing, but can be useful for 
learning phrases and fundamental structural 
components

• Recurrent neural networks consider temporal 
sequence

• LSTMs, GRUs, and BiLSTMs are all variations of 
the “vanilla” RNN model

• Transformers use self-attention to learn which 
components of an input are important for processing 
one another
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