
Machine
Translation and
Encoder-
Decoder Models
Natalie Parde
UIC CS 521

What is
machine

translation?

• The process of automatically converting a
text from one language to another

hello bonjour

2Natalie Parde - UIC CS 521

3Natalie Parde - UIC CS 521

Machine
translation is
increasingly
ubiquitous, and
useful in a
wide variety of
contexts!

4Natalie Parde - UIC CS 521

Machine
translation
is also
difficult,
for a
variety of
reasons.

Structural and lexical differences
between languages

Differences in word order

Morphological differences

Stylistic and cultural differences

5Natalie Parde - UIC CS 521

Creating high-quality translations requires a deep
understanding of both the source and target

language.
6Natalie Parde - UIC CS 521

Computer-
Aided

Translation

• Even poor translations are useful for some
purposes!

• Computer-Aided Translation: Computers
provide draft translations, which are then
fixed in a post-editing phase by a human
translator

• Effective for:
• High volume jobs
• Jobs requiring quick turnaround

Blender Manual:
English

Blender Manual:
French

Blender Manual:
Spanish

Blender Manual:
Arabic

7Natalie Parde - UIC CS 521

Cross-Linguistic
Similarities and Differences
• Typology: The study of systematic cross-linguistic

similarities and differences
• Although some aspects of language are

universal, others tend to differ
• Differences between languages often have

systematic structure

8Natalie Parde - UIC CS 521

Morphological
Differences

• Isolating languages: Each word
generally has one morpheme

• Polysynthetic languages: Each
word may have many morphemes

Number of morphemes per
word

• Agglutinative languages:
Morphemes have well-defined
boundaries

• Fusion languages: Morphemes may
be conflated with one another

Degree to which morphemes
can be segmented

9Natalie Parde - UIC CS 521

Syntactic
Differences

• Primary difference between languages: Word
order

• SVO languages: Verb tends to come
between the subject and object

• SOV languages: Verb tends to come at the
end of basic clauses

• VSO languages: Verb tends to come at the
beginning of basic clauses

• Languages with similar basic word order also
tend to share other similarities

• SVO languages generally have prepositions
• SOV languages generally have

postpositions

10Natalie Parde - UIC CS 521

Differences
in
Argument
Structure
and
Linking

The bottle floated out. La botella salió flotando.

The bottle exited floating.

Verb-framed languages: Generally mark the
direction of motion on the verb, leaving its
satellites (particles, prepositional phrases, and
adverbial phrases) to mark the manner of
motion

Satellite-framed languages: Generally mark
the direction of motion on the satellite, leaving
the verb to mark the manner of motion

11Natalie Parde - UIC CS 521

Differences
in

Permissible
Omissions

• Languages differ in terms of what
components can be omitted from a
sentence

• Pro-Drop languages: Can omit pronouns
when talking about certain referents

• Some pro-drop languages permit more
pronoun omission than others

• Referentially dense and sparse
languages

• Converting text from pro-drop languages
(e.g., Japanese) to non-pro-drop languages
(e.g., English) requires that all missing
pronoun locations are identified and their
appropriate anaphors recovered

12Natalie Parde - UIC CS 521

Other
Differences

Differences in noun-adjective order
• Blue house → Maison bleue

Differences in homonymy and polysemy

Differences in grammatical constraints
• Some languages require gender for nouns
• Some languages require gender for pronouns

Lexical gaps
• No word or phrase in the target language can

express the meaning of a word in the source
language

13Natalie Parde - UIC CS 521

Machine
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models

14Natalie Parde - UIC CS 521

Classical
Machine

Translation

• Direct translation
• Take a large bilingual dictionary
• Proceed through the source text word by

word
• Translate each word according to the

dictionary

blue house
t1 t2

bleue maison
t1 t2

15Natalie Parde - UIC CS 521

Direct
Translation

No intermediate structures

Simple reordering rules may be applied

• Moving adjectives so that they are after nouns when
translating from English to French

Dictionary entries may be relatively complex

• Tiny, rule-based programs for translating a word to
the target language

16Natalie Parde - UIC CS 521

Direct
Translation

• Simple
• Easy to implement

Pros:

• Cannot reliably handle long-distance
reorderings

• Cannot handle reorderings involving
phrases or larger structures

• Too focused on individual words

Cons:

17Natalie Parde - UIC CS 521

Classical
Machine

Translation

• Transfer approaches
• Parse the input text
• Apply rules to transform the source

language parse structure into a target
language parse structure

blue house

amod

maison bleue

amod

18Natalie Parde - UIC CS 521

Transfer
Approaches

19Natalie Parde - UIC CS 521

Syntactic Transfer

• Modifies the source parse
tree to resemble the
target parse tree

• For some languages, may
also include thematic
structures

• Directional or locative
prepositional phrases
vs. recipient
prepositional phrases

Adjective Noun

Nominal

Noun Adjective

Nominal

20Natalie Parde - UIC CS 521

Lexical Transfer
• Generally based on a bilingual dictionary

• As with direct translation, dictionary
entries can be complex to
accommodate many possible
translations

21Natalie Parde - UIC CS 521

Transfer
Approaches

• Can handle more complex
language phenomena than
direct translation

Pros:

• Still not sufficient for many
cases!

Cons:

22Natalie Parde - UIC CS 521

Classical
Machine

Translation

• Interlingua approaches
• Convert the source language text into an

abstract meaning representation
• Generate the target language text based

on the abstract meaning representation

blue house maison bleue

23Natalie Parde - UIC CS 521

Interlingua Approaches

• Goal: Represent all sentences that mean the same
thing in the same way, regardless of language

• What kind of representation scheme should be used?
• Classical approaches:

• First-order logic
• Semantic primitives
• Event-based representation

• More recently, neural models learn vector
representations for this purpose

blue house

maison bleue

casa azul

청와대

24Natalie Parde - UIC CS 521

Interlingua Approaches
• Require more analysis work than transfer

approaches
• Semantic analysis
• Sentiment analysis

• No need for syntactic or lexical
transformations

25Natalie Parde - UIC CS 521

Interlingua
Approaches

• Direct mapping between meaning
representation and lexical
realization

• No need for transformation rules

Pros:

• Extra (often unnecessary) work
• Classical approaches require an

exhaustive analysis and
formalization of the semantics of
the domain

Cons:

26Natalie Parde - UIC CS 521

Statistical
Machine

Translation

• Models automatically learn to map from the
source language to the target language

• Doesn’t require intermediate
transformation rules

• Doesn’t require an explicitly defined
internal meaning representation

27Natalie Parde - UIC CS 521

Statistical
Machine

Translation

28Natalie Parde - UIC CS 521

Bayesian
Noisy
Channel
Model

29Natalie Parde - UIC CS 521

This means
that we need
to consider
two separate
components.

𝑡! = argmax
"!∈$

𝑃(𝑠|𝑡%)𝑃(𝑡%) • The language model is
just like the language
models used for other
NLP tasks

• One common type of
translation model is the
phrase-based
translation model

translation model

language model

30Natalie Parde - UIC CS 521

The
Phrase-
Based
Translation
Model

• Computes the probability that a given
translation ti generates the original
sentence s based on its constituent
phrases

• Intuition: Phrases, as well as single
words, are fundamental units of
translation

• Often entire phrases need to be
translated and moved as a unit

31Natalie Parde - UIC CS 521

Stages of Phrase-Based Translation

Group the words
from the source
sentence into
phrases

01
Translate each
source phrase
into a target
language phrase

02
(Optionally)
reorder the target
language phrases

03

32Natalie Parde - UIC CS 521

Probability in Phrase-Based
Translation Models
• Relies on two probabilities:

• Translation probability
• Probability of generating a source language phrase from a target language

phrase, 𝜙 .𝑡%, .𝑠%
• Distortion probability

• Probability of two consecutive target language phrases being separated in the
source language by a word span of a particular length, 𝑑(𝑎% − 𝑏%&')

33Natalie Parde - UIC CS 521

How do we
learn the

probabilities
for this
model?

34Natalie Parde - UIC CS 521

Alignment in Machine Translation

Natalie did not slap the green witch

Natalie no dió una bofetada a la bruja verde

NULL

35Natalie Parde - UIC CS 521

Decoding
for Phrase-
Based
Machine
Translation

• Aligned phrases can be stored in a phrase-
translation table

• Decoding algorithms can then search
through this table to find the overall
translation that maximizes the phrase
translation probabilities

36Natalie Parde - UIC CS 521

Machine
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models

37Natalie Parde - UIC CS 521

Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length
output sequences

• Particularly useful for:
• Machine translation
• Summarization
• Question answering
• Dialogue modeling

38Natalie Parde - UIC CS 521

Encoder-Decoder Models

• Basic premise:
• Use a neural network to encode an input to an internal

representation
• Pass that internal representation as input to a second neural

network
• Use that neural network to decode the internal representation

to a task-specific output sequence
• Usually, the encoder and decoder are both some type of RNN
• This method allows networks to be trained in an end-to-end fashion

39Natalie Parde - UIC CS 521

Where did this
idea come from?

Recall our discussion of
autoregressive generation:
• Start with a seed token (e.g.,

<s>)
• Predict the most likely next

word in the sequence

• Use that word as input at the
next timestep

• Repeat until an end token (or
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

40Natalie Parde - UIC CS 521

Slight variation to this idea….

• Rather than generating a sentence from scratch, the model can generate a
sentence given a prefix

• Pass the specified prefix through the language model, in sequence
• End with the hidden state corresponding to the last word of the prefix
• Start the autoregressive process at that point

• Goal: Output sequence should be a reasonable completion of the prefix

41Natalie Parde - UIC CS 521

Updated Autoregressive
Generation

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN

42Natalie Parde - UIC CS 521

We can build upon this idea to transform
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated

sequence (text from Language #1) and checking to see what the
generated completion (text from Language #2) looks like

43Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

44Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

45Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

46Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Mina.

Hi, I’m Mina. </s>

Hi, RNN I’m RNN Mina. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Mina. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

47Natalie Parde - UIC CS 521

This intuition forms the basis of
encoder-decoder networks.

• Key elements of an encoder-decoder network:
• Encoder: Generates a contextualized representation of the input
• Decoder: Takes the contextualized representation and

autoregressively generates a sequence of outputs

48Natalie Parde - UIC CS 521

More
formally….

• Encoder
• Accepts an input sequence, 𝑥!"
• Generates a sequence of contextualized

representations, ℎ!"

• Context vector
• A function, 𝑐, of ℎ!" that conveys the basic

meaning of 𝑥!" to the decoder
• (Might just be equivalent to ℎ!")

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of

hidden states, ℎ!#, from which a corresponding
sequence of output states 𝑦!# can be obtained

49Natalie Parde - UIC CS 521

Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM/BiLSTM
• GRU/BiGRU
• Transformer

• These networks can be stacked on top of one another

More common

50Natalie Parde - UIC CS 521

Decoders

• Need to perform autoregressive generation to produce the output sequence
• Can be any type of sequential network

• RNN
• LSTM
• GRU
• Transformer

51Natalie Parde - UIC CS 521

Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

52Natalie Parde - UIC CS 521

Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Final hidden state of the encoder

53Natalie Parde - UIC CS 521

Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

First hidden state of the decoder

54Natalie Parde - UIC CS 521

Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Some type of RNN

Embedding for the output
sampled from the previous step

55Natalie Parde - UIC CS 521

Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Regular ending steps (activation function
applied to hidden state outputs, and
softmax applied to activation outputs)

56Natalie Parde - UIC CS 521

A couple useful extensions….

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$) → ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$, 𝑐)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Make the context vector available at each
timestep when decoding, so that its
influence doesn’t diminish over time

57Natalie Parde - UIC CS 521

A couple useful extensions….

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$) → ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$, 𝑐)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%) → 𝑦% = softmax(&𝑦%&', 𝑧% , 𝑐)

Condition output on not only the hidden state, but
the previous output and encoder context (easier
to keep track of what’s been generated already)

58Natalie Parde - UIC CS 521

What other ways can we improve the
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the
input sequence

• Can be addressed by using bidirectional RNNs, summing the
encoder hidden states, or averaging the encoder hidden states

59Natalie Parde - UIC CS 521

Beam Search
• Selects from multiple possible outputs by framing the

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed
size (beam width)

• Results in a set of b hypotheses, where b is the beam
width

60Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

61Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"#

𝑦!"#

62Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

63Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

64Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

65Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

66Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"%

67Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"% Decoder 𝑦"#$ =</s>

68Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder Decoder

𝑦!"#

𝑦!"#

𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

𝑦!"% =</s>

𝑦!"% 𝑦"#$ =</s>

69Natalie Parde - UIC CS 521

How do we
choose a best

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a

downstream application

70Natalie Parde - UIC CS 521

So far, the
encoder context
vectors we’ve
seen have been
simple and
static. • Can we do better?

• Yes 🙂

71Natalie Parde - UIC CS 521

Attention
Mechanism

• Takes entire encoder context into
account

• Dynamically updates during the course
of decoding

• Can be embodied in a fixed-size vector

72Natalie Parde - UIC CS 521

Recall….

• We’ve already made our context vector
available at each timestep when decoding

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐)
• The first step in creating our attention

mechanism is to update our hidden state
such that it is conditioned on an updated
context vector with each decoding step

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐&)

73Natalie Parde - UIC CS 521

How do we
dynamically
create a new
context
vector at
each step?

• Compute a vector of scores that
capture the relevance of each encoder
hidden state to the decoder hidden
state, ℎ4567

• 𝑠𝑐𝑜𝑟𝑒 ℎ)(!' , ℎ*+ = ℎ)(!' / ℎ*+

74Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

75Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

76Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

77Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

78Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

79Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

80Natalie Parde - UIC CS 521

How can we
make use of

context scores?

• Parameterize these scores with weights
• This allows the model to learn which

aspects of similarity between the encoder
and decoder states are important

81Natalie Parde - UIC CS 521

Attention
Weights

• Normalize context scores to create a
vector of weights, 𝛼)*

• 𝛼)* = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ)(!' , ℎ*+)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of

each encoder hidden state 𝑗 to the
current decoder state 𝑖

• Finally, take a weighted average over all
the encoder hidden states to create a
fixed-length context vector for the current
decoder state

• 𝑐) = ∑* 𝛼)*ℎ*+

82Natalie Parde - UIC CS 521

Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

83Natalie Parde - UIC CS 521

Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&))

Σ

84Natalie Parde - UIC CS 521

Other
Attention
Weights

• More sophisticated scoring functions can be used
as well

• Common: Parameterize the attention score with its
own set of trainable weights

• score 𝐡%&'(, 𝐡)* = 𝐡"&'(𝐖+𝐡)*

• Advantage: Allows the encoder and decoder to
use vectors with different dimensionality (dot-
product attention requires the encoder and
decoder hidden states to have the same
dimensionality)

85Natalie Parde - UIC CS 521

Encoder-
Decoder
Models with
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps

sequential input to an output representation
• Decoder (Transformer model) attends to the

encoder representation and generates
sequential output autoregressively

• However….
• Transformer blocks in the decoder include

an extra cross-attention layer

86Natalie Parde - UIC CS 521

Cross-
Attention

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

• Same form as multiheaded self-attention in a normal Transformer block,
with one difference: queries come from the previous layer of the decoder
as usual, but keys and values come from the output of the encoder

• Multihead attention:
• Split key, query, and value parameters n ways
• Pass each split independently through a separate attention head
• Combine attention calculations from each head to produce a final

attention score

Reminder: Normal Transformer block

87Natalie Parde - UIC CS 521

Cross-
Attention

• 𝐐 = 𝐖𝐐𝐇'+6[)(!]

• 𝐊 = 𝐖𝐐𝐇+"6

• 𝐕 = 𝐖𝐕𝐇+"6

• 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐐,𝐊, 𝐕 = softmax 𝐐𝐊3

'4
𝐕

88Natalie Parde - UIC CS 521

Updated Decoder Transformer Block

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize
Output

C
ross-Attention

Layer

Add and N
orm

alize

89Natalie Parde - UIC CS 521

Encoder-
Decoder
Models with
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to

the entire source language text
• Training Transformer-based

encoder-decoders is similar to
training RNN-based encoder-
decoders

• Use teacher forcing
• Train autoregressively

90Natalie Parde - UIC CS 521

Practical Details for Building MT
Systems

• MT systems typically use a fixed vocabulary generated using byte pair encoding
or other wordpiece algorithms

• Vocabulary is usually shared across the source and target languages

Vocabulary

• Parallel corpora with the same content communicated in multiple languages
• Common sources:

• Government documents for nations with multiple official languages
• Subtitles for movies and TV shows

• Often, text from the source and target language(s) is aligned at the sentence
level

Corpora

91Natalie Parde - UIC CS 521

What if we
don’t
have
much
training
data?

• Parallel corpora are difficult to find, especially
for lower-resource language pairs

• Backtranslation:
1. Train an intermediate target-to-source

MT system on a small parallel corpus
2. Translate additional monolingual data

from the target language to the source
language using this intermediate system

3. Consider this new, synthetic parallel data
as additional training data

4. Train a source-to-target MT system on
the expanded training dataset

92Natalie Parde - UIC CS 521

How do we
evaluate
machine

translation
models?

• Translation quality tends to be
very subjective!

• Two common approaches:
• Human ratings
• Automated metrics

93Natalie Parde - UIC CS 521

Evaluating
Machine

Translation
Using Human

Ratings

• Typically evaluated along multiple
dimensions

• Tend to check for both fluency and
adequacy

• Fluency:
• Clarity
• Naturalness
• Style

• Adequacy:
• Fidelity
• Informativeness

94Natalie Parde - UIC CS 521

Evaluating
Machine
Translation
Using Human
Ratings

• How to get quantitative measures of
fluency?

• Ask humans to rate different
aspects of fluency along a scale

• Measure how long it takes humans
to read a segment of text

• Ask humans to guess the identity of
the missing word

• “After such a late night working
on my project, it was hard to
wake up this _____!”

95Natalie Parde - UIC CS 521

Evaluating Machine Translation Using
Human Ratings

• How to get quantitative measures of adequacy?
• Ask bilingual raters to rate how much information was preserved in the

translation
• Ask monolingual raters to do the same, given access to a gold standard

reference translation
• Ask humans to answer multiple-choice questions about content present in

a translation

96Natalie Parde - UIC CS 521

Another set
of human

evaluation
metrics

considers
post-

editing.

• Ask a human to post-edit or “fix” a
translation

• Compute the number of edits required to
correct the output to an acceptable level

• Can be measured via number of word changes,
number of keystrokes, amount of time taken, etc.

97Natalie Parde - UIC CS 521

Automated
Metrics

• Less accurate than human
evaluation, but:

• Useful for iteratively testing
system improvements

• Can be used as an automatic
loss function

• Two main families:
• Character- or word-overlap
• Embedding similarity

98Natalie Parde - UIC CS 521

Popular Lexical Overlap Metrics

• BLEU
• Measure of word overlap

• METEOR
• Measure of word overlap, considering stemming and synonymy

• Character F-Score (chrF)
• Measure of character n-gram overlap

99Natalie Parde - UIC CS 521

BLEU
• Weighted average of the number of n-gram overlaps with human translations
• Precision-based metric

• What percentage of words in the candidate translation also occur in the gold
standard translation(s)?

100Natalie Parde - UIC CS 521

How is BLEU
computed?
• Count the maximum number of times each n-gram is used in any

single reference translation, cmax(n−gram)

• Count the number of times each n-gram is used in the candidate
translation

• Clip that amount so that the highest it can be is cmax(n−gram)

• Compute precision for each word in the candidate translation based
on that clipped amount

• prec' =
∑
!∈{Candidates} ∑n−gram∈%)*+(c n−gram ,cmax(n−gram))

∑
!∈{Candidates} ∑n−gram∈% c(n−gram)

• Take the geometric mean of the modified n-gram precisions for
unigrams, bigrams, trigrams, and 4-grams

101Natalie Parde - UIC CS 521

BLEU also adds a penalty for translation
brevity.

• Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!
• The penalty is based on two values:

• The effective reference length, r, for the corpus
• The sum of the lengths of the best matches for each candidate sentence

• The total length of the candidate translation corpus, c
• Formally, the penalty is set to:

• 𝐵𝑃 = 5
1 𝑖𝑓 𝑐 > 𝑟

𝑒('&
+
,) 𝑖𝑓 𝑐 ≤ 𝑟

102Natalie Parde - UIC CS 521

Computing
BLEU

• The full BLEU score for a set of translations
is then:

• 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (∏";!
< prec")

?
@

103Natalie Parde - UIC CS 521

Example: Computing BLEU

Natalie didn’t slap the green witch.

Natalie no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Natalie did not give a slap to the green witch. Candidate Translation

104Natalie Parde - UIC CS 521

Example: Computing BLEU

Natalie didn’t slap the green witch.

Natalie no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Natalie did not give a slap to the green witch. Candidate Translation

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)
𝐵𝑃 = Q

1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

105Natalie Parde - UIC CS 521

Example: Computing BLEU
Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

Unigram Unigram Frequency
(Candidate)

Unigram Frequency
(Reference)

Natalie 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

106Natalie Parde - UIC CS 521

Example: Computing BLEU

𝑝# =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

Unigram Unigram Frequency
(Candidate)

Unigram Frequency
(Reference)

Natalie 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

107Natalie Parde - UIC CS 521

Example: Computing BLEU

Bigram Bigram Frequency
(Candidate)

Bigram Frequency
(Reference)

Natalie did 1 0

did not 1 0

not give 1 0

give a 1 0

a slap 1 0

slap to 1 0

to the 1 0

the green 1 1

green witch 1 1

witch . 1 1

𝑝$ =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

=
3
10

𝑝# =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

108Natalie Parde - UIC CS 521

Example: Computing BLEU

Trigram Trigram Frequency
(Candidate)

Trigram Frequency
(Reference)

Natalie did not 1 0

did not give 1 0

not give a 1 0

give a slap 1 0

a slap to 1 0

slap to the 1 0

to the green 1 0

the green witch 1 1

green witch . 1 1

𝑝# =
6
11

𝑝$ =
3
10

𝑝% =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

2
9

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

109Natalie Parde - UIC CS 521

Example: Computing BLEU

4-gram 4-gram Frequency
(Candidate)

4-gram Frequency
(Reference)

Natalie did not give 1 0

did not give a 1 0

not give a slap 1 0

give a slap to 1 0

a slap to the 1 0

slap to the green 1 0

to the green witch 1 0

the green witch . 1 1

𝑝# =
6
11

𝑝$ =
3
10

𝑝% =
2
9

𝑝7 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

1
8

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

110Natalie Parde - UIC CS 521

Example: Computing BLEU

𝑝# =
6
11

𝑝$ =
3
10 𝑝% =

2
9 𝑝7 =

1
8

r = 7

c = 11

𝐵𝑃 = 1

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 1 ∗ (∏-6#
7 prec-)

!
"= 1 ∗ (8

##
∗ %
#9
∗ $
:
∗ #
;
)
!
"= 1 ∗ 0.00454545454

!
" = 1 ∗ 0.25965358893 = 0.26

111Natalie Parde - UIC CS 521

Limitations of BLEU
• Word or phrase order is of minimal importance

• When computing unigram precision, a word can exist anywhere in the
translation!

• Does not consider word similarity
• Relatively low correlation with human ratings
• Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric

is needed to assess translation performance

112Natalie Parde - UIC CS 521

Character F-Score (chrF)

• Same intuition as BLEU: Good machine translations tend to contain the same
words and characters as human translations

• Ranks a candidate translation by a function of the number of character n-gram
overlaps with a human reference translation

• Less sensitive to word tokenization than BLEU

113Natalie Parde - UIC CS 521

How is chrF computed?

• Similarly to “regular” F-score
• chrP: averaged % of character unigrams, bigrams, …, k-grams in

the hypothesis that also occur in the reference
• chrR: averaged % of character unigrams, bigrams, …, k-grams in

the reference that also occur in the hypothesis
• β: weighting parameter (similarly to F-score) that determines the

relative impacts of chrP and chrR on the overall F-score

• chrF𝛽 = (1 + 𝛽h) chrP × chrR
jA × chrPk chrR, or chrF2 = l × chrP × chrR

< × chrPk chrR

114Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best

115Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

116Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

117Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

118Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-grams
in the hypothesis that are also in the reference k=3

chrR: averaged % of character unigrams, bigrams, …, k-grams
in the reference that are also in the hypothesis

119Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

120Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS S5 52 21 1i is st th he eb be es st

CS S5 52 21 1i is sg gr re ea at

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

121Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

122Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

123Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

124Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42

125Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42

chrP: 9.><"9.<<"9.<
%

= 0.6
126Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42

chrP: 9.><"9.<<"9.<
%

= 0.6 chrR: 9.87"9.78"9.7$
%

= 0.51
127Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

chrP: 9.><"9.<<"9.<
%

= 0.6 chrR: 9.87"9.78"9.7$
%

= 0.51

chrF2 =
5 ∗ chrP ∗ chrR
4 ∗ chrP + chrR =

5 ∗ 0.6 ∗ 0.51
4 ∗ 0.6 + 0.51 = 0.53

128Natalie Parde - UIC CS 521

Limitations
of chrF

• Focuses on differences at a very local scale
(i.e., character n-grams)

• Doesn’t measure discourse coherence
• Best at measuring performance for different

versions of the same system, rather than
comparing different systems

129Natalie Parde - UIC CS 521

Embedding
-Based
Evaluation
Methods

• Measuring exact word- or character-level
overlap might be overly strict

• Good translations may use words that
are synonymous to those in the
reference!

• Embedding-based methods measure the
semantic overlap between reference and
hypothesis translations

130Natalie Parde - UIC CS 521

Popular Embedding-Based Methods
for Evaluating MT Systems

• https://github.com/Unbabel/COMET

COMET

• https://github.com/google-research/bleurt

BLEURT

• https://github.com/Tiiiger/bert_score

BERTScore

131Natalie Parde - UIC CS 521

https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt
https://github.com/Tiiiger/bert_score

Summary:
Machine

Translation
and

Encoder-
Decoder

Models

• There are many typological differences between languages
that make translation a challenging task

• Classical approaches to machine translation focused on
dictionary-based methods, direct transfer of source and
target language parses, and logic-based interlingua
approaches

• Statistical approaches bridged the gap between classical
methods and modern neural MT

• Modern machine translation leverages encoder-decoder
models, often generating candidate parses using beam
search

• Encoder-decoder models often leverage attention
mechanisms to improve the context passed from the encoder
to the decoder

• MT systems are commonly evaluated using both human
ratings and automated metrics

• Popular automated metrics include BLEU, chrF, and
embedding-based measures

132Natalie Parde - UIC CS 521

