Machine Translation and Encoder-Decoder Models

Natalie Parde UIC CS 521

What is machine translation?

• The process of automatically converting a text from one language to another

Le Monde 🤣 @lemondefr

Ligue 1 : Lyon rebondit, Angers prend la deuxième place

Translated from French by Google

Ligue 1: Lyon bounces back, Angers takes second place

Ligue 1 : Lyon rebondit, Angers prend la deuxième place Face à Nîmes, dernier de Ligue 1, les Angevins s'imposent 1-0 et prennent la place de dauphins du PSG. Strasbourg remporte sa première victoire hors de ... \mathscr{S} lemonde.fr Machine translation is increasingly ubiquitous, and useful in a wide variety of contexts!

Machine translation is also difficult, for a variety of reasons.

Structural and lexical differences between languages

Differences in word order

Morphological differences

Stylistic and cultural differences

I hope I remembered to unplug my office space heater.	×	Tha mi an dòchas gun do chuimhnich mi a bhit 'falamhachadh an teasadair àite oifis agam.	ha	*
 ♥ ● 53 / 5000 	•		I	<
Tha mi an dòchas gun do chuimhnich mi a bhith a 'falamhachadh an teasadair àite oifis agam.	×	I hope I remembered to empty my office heater		☆
● ● ●	0 🎤		1	<

Creating high-quality translations requires a deep understanding of both the source and target language.

Computer-Aided Translation

- Even poor translations are useful for some purposes!
- Computer-Aided Translation: Computers provide draft translations, which are then fixed in a post-editing phase by a human translator
- Effective for:
 - High volume jobs
 - Jobs requiring quick turnaround

Cross-Linguistic Similarities and Differences

- **Typology:** The study of systematic cross-linguistic similarities and differences
 - Although some aspects of language are universal, others tend to differ
 - Differences between languages often have systematic structure

Morphological Differences

Number of morphemes per word

- Isolating languages: Each word generally has one morpheme
- Polysynthetic languages: Each word may have many morphemes

Degree to which morphemes can be segmented

- Agglutinative languages: Morphemes have well-defined boundaries
- Fusion languages: Morphemes may be conflated with one another

Syntactic Differences

- Primary difference between languages: Word order
 - SVO languages: Verb tends to come between the subject and object
 - SOV languages: Verb tends to come at the end of basic clauses
 - VSO languages: Verb tends to come at the beginning of basic clauses
- Languages with similar basic word order also tend to share other similarities
 - SVO languages generally have prepositions
 - SOV languages generally have postpositions

Differences in Argument Structure and Linking **Verb-framed languages:** Generally mark the direction of motion on the verb, leaving its satellites (particles, prepositional phrases, and adverbial phrases) to mark the manner of motion

Satellite-framed languages: Generally mark the direction of motion on the satellite, leaving the verb to mark the manner of motion

Differences in Permissible Omissions

- Languages differ in terms of what components can be omitted from a sentence
- **Pro-Drop languages:** Can omit pronouns when talking about certain referents
- Some pro-drop languages permit more pronoun omission than others
 - Referentially dense and sparse languages
- Converting text from pro-drop languages (e.g., Japanese) to non-pro-drop languages (e.g., English) requires that all missing pronoun locations are identified and their appropriate anaphors recovered

Other Differences

Differences in noun-adjective order

• Blue house \rightarrow Maison bleue

Differences in homonymy and polysemy

Differences in grammatical constraints

- Some languages require gender for nouns
- Some languages require gender for pronouns

Lexical gaps

 No word or phrase in the target language can express the meaning of a word in the source language

Machine Translation

- Classical Machine Translation
 - Direct translation
 - Transfer approaches
 - Interlingua approaches
 - Statistical methods
- Modern Machine Translation
 - Encoder-decoder models

Classical Machine Translation

Direct translation

- Take a large bilingual dictionary
- Proceed through the source text word by word
- Translate each word according to the dictionary

Direct Translation

No intermediate structures

Simple reordering rules may be applied

 Moving adjectives so that they are after nouns when translating from English to French

Dictionary entries may be relatively complex

• Tiny, rule-based programs for translating a word to the target language

Direct Translation

Pros:

- Simple
- Easy to implement

Cons:

- Cannot reliably handle long-distance reorderings
- Cannot handle reorderings involving phrases or larger structures
- Too focused on individual words

Classical Machine Translation

Transfer approaches

- Parse the input text
- Apply rules to transform the source language parse structure into a target language parse structure

Transfer Approaches

+

0

- Two subcategories of transformations:
 - Syntactic transfer
 - Lexical transfer

Syntactic Transfer

- Modifies the source parse tree to resemble the target parse tree
- For some languages, may also include thematic structures
 - Directional or locative prepositional phrases vs. recipient prepositional phrases

Lexical Transfer

- Generally based on a bilingual dictionary
 - As with direct translation, dictionary entries can be complex to accommodate many possible translations

Transfer Approaches

Pros:

 Can handle more complex language phenomena than direct translation

Cons:

• Still not sufficient for many cases!

Classical Machine Translation

Interlingua approaches

- Convert the source language text into an abstract meaning representation
- Generate the target language text based on the abstract meaning representation

Interlingua Approaches

- Goal: Represent all sentences that mean the same thing in the same way, regardless of language
- What kind of representation scheme should be used?
 - Classical approaches:
 - First-order logic
 - Semantic primitives
 - Event-based representation
 - More recently, neural models learn vector representations for this purpose

Interlingua Approaches

- Require more analysis work than transfer approaches
 - Semantic analysis
 - Sentiment analysis
- No need for syntactic or lexical transformations

Interlingua Approaches

Pros:

- Direct mapping between meaning representation and lexical realization
- No need for transformation rules

Cons:

- Extra (often unnecessary) work
 - Classical approaches require an exhaustive analysis and formalization of the semantics of the domain

Statistical Machine Translation

- Models automatically learn to map from the source language to the target language
 - Doesn't require intermediate transformation rules
 - Doesn't require an explicitly defined internal meaning representation

Statistical Machine Translation

+

0

- Goal: Produce an output that maximizes some function representing translation faithfulness and fluency
- One possible approach: Bayesian noisy channel model
 - Assume a possible target language translation t_i and a source language sentence s
 - Select the translation *t*' from the set of all possible translations $t_i \in T$ that maximizes the probability $P(t_i|s)$

Bayesian Noisy Channel Model

+

0

- To find $P(t_i|s)$, we can use Bayes rule:
 - $t' = \underset{t_i \in T}{\operatorname{argmax}} P(t_i | s)$ • $t' = \underset{t_i \in T}{\operatorname{argmax}} \frac{P(s|t_i)P(t_i)}{P(s)}$
- We can ignore the denominator (*P*(*s*)) since it will remain the same for all possible translations
- Thus:
 - $t' = \underset{t_i \in T}{\operatorname{argmax}} P(s|t_i) P(t_i)$

This means that we need to consider two separate components.

- The language model is just like the language models used for other NLP tasks
- One common type of translation model is the phrase-based translation model

The Phrase-Based **Translation** Model

- Computes the probability that a given translation t_i generates the original sentence s based on its constituent phrases
- Intuition: Phrases, as well as single words, are fundamental units of translation
 - Often entire phrases need to be translated and moved as a unit

Stages of Phrase-Based Translation

01

Group the words from the source sentence into phrases 02

Translate each source phrase into a target language phrase 03

(Optionally) reorder the target language phrases

Probability in Phrase-Based Translation Models

- Relies on two probabilities:
 - Translation probability
 - Probability of generating a source language phrase from a target language phrase, $\phi(\overline{t_i}, \overline{s_i})$
 - Distortion probability
 - Probability of two consecutive target language phrases being separated in the source language by a word span of a particular length, $d(a_i b_{i-1})$

How do we learn the probabilities for this model?

+

0

- We need to train two sets of parameters:
 - $\phi(t_i, s_i)$
 - $d(a_i b_{i-1})$
- We learn these based on large bilingual training sets in which we know which phrase in a source sentence is translated to which phrase in a target sentence
- These mappings are called phrase alignments

Alignment in Machine Translation

Decoding for Phrase-Based Machine Translation

•

•

•

•

- Aligned phrases can be stored in a phrasetranslation table
- Decoding algorithms can then search through this table to find the overall translation that maximizes the phrase translation probabilities
Machine Translation

- Classical Machine Translation
 - Direct translation
 - Transfer approaches
 - Interlingua approaches
 - Statistical methods
- Modern Machine Translation
 Encoder-decoder models

- Generate contextually-appropriate, arbitrary-length
 output sequences
- Particularly useful for:
 - Machine translation
 - Summarization
 - Question answering
 - Dialogue modeling

Encoder-Decoder Models

Encoder-Decoder Models

- Use a neural network to encode an input to an internal representation
- Pass that internal representation as input to a second neural network
- Use that neural network to decode the internal representation to a task-specific output sequence
- Usually, the encoder and decoder are both some type of RNN
- This method allows networks to be trained in an end-to-end fashion

Where did this idea come from?

Recall our discussion of autoregressive generation:

- Start with a seed token (e.g., <s>)
- Predict the most likely next word in the sequence
- Use that word as input at the next timestep
- Repeat until an end token (or max length) is reached

Slight variation to this idea....

- Rather than generating a sentence from scratch, the model can generate a sentence given a prefix
 - Pass the specified prefix through the language model, in sequence
 - End with the hidden state corresponding to the last word of the prefix
 - Start the autoregressive process at that point
- Goal: Output sequence should be a reasonable completion of the prefix

• • • • • • • • • • •

Updated Autoregressive Generation

We can build upon this idea to transform one type of sequence to another.

• Machine translation example:

• • • • • •

•••

- 1. Take a sequence of text from Language #1
- 2. Take the translation of that text from Language #2
- 3. Concatenate the two sequences, separated by a marker
- 4. Use these concatenated sequences to train the autoregressive model
- 5. Test the model by **passing in only the first part of a concatenated sequence** (text from Language #1) and checking to see what the generated completion (text from Language #2) looks like

This intuition forms the basis of encoder-decoder networks.

- Key elements of an encoder-decoder network:
 - Encoder: Generates a contextualized representation of the input
 - **Decoder:** Takes the contextualized representation and autoregressively generates a sequence of outputs

More formally....

Encoder

- Accepts an input sequence, x_1^n
- Generates a sequence of contextualized representations, h_1^n

Context vector

- A function, c, of h₁ⁿ that conveys the basic meaning of x₁ⁿ to the decoder
- (Might just be equivalent to h_1^n)

• Decoder

- Accepts *c* as input
- Generates an arbitrary-length sequence of hidden states, h_1^m , from which a corresponding sequence of output states y_1^m can be obtained

Encoders

- Can be any type of neural network
 - Feedforward network
 - CNN
 - RNN
 - LSTM/BiLSTM
 - GRU/BiGRU

• These networks can be stacked on top of one another

- Need to perform autoregressive generation to produce the output sequence
- Can be any type of sequential network
 - RNN
 - LSTM
 - GRU
 - Transformer

- Formally....
 - $c = h_n^e$
 - $h_0^d = c$
 - $h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d)$
 - $z_t = f(h_t^d)$
 - $y_t = \operatorname{softmax}(z_t)$

- Formally....
 - $c = h_n^e$
 - $h_0^d = c$
 - $h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d)$
 - $z_t = f(h_t^d)$
 - $y_t = \operatorname{softmax}(z_t)$

Regular ending steps (activation function applied to hidden state outputs, and softmax applied to activation outputs)

A couple useful extensions....

- Formally....
 - $c = h_n^e$
 - $h_0^d = c$
 - $h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d) \to h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d, c)$
 - $z_t = f(h_t^d)$
 - $y_t = \operatorname{softmax}(z_t)$

Make the context vector available at each timestep when decoding, so that its influence doesn't diminish over time

A couple useful extensions....

- Formally....
 - $c = h_n^e$
 - $h_0^d = c$
 - $h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d) \to h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d, c)$
 - $z_t = f(h_t^d)$ • $y_t = \operatorname{softmax}(z_t) \rightarrow y_t = \operatorname{softmax}(\widehat{y_{t-1}}, z_t, c)$

Condition output on not only the hidden state, but the previous output and encoder context (easier to keep track of what's been generated already)

What other ways can we improve the decoder's output quality?

Beam search

- Improved context vector
 - Final hidden state tends to be more focused on the end of the input sequence
 - Can be addressed by using bidirectional RNNs, summing the encoder hidden states, or averaging the encoder hidden states

Beam Search

- Selects from multiple possible outputs by framing the task as a state space search
- Combines breadth-first search with a heuristic filter
 - Continually prunes search space to stay a fixed size (beam width)
- Results in a set of *b* hypotheses, where *b* is the beam width

Natalie Parde - UIC CS 521

How do we choose a best hypothesis?

- Probabilistic scoring scheme
- Pass all or a subset of hypotheses to a downstream application

So far, the encoder context vectors we've seen have been simple and static.

Can we do better?
Yes 🙂

Attention Mechanism

- Takes entire encoder context into account
- Dynamically updates during the course of decoding
- Can be embodied in a fixed-size vector
Recall....

- We've already made our context vector available at each timestep when decoding
 h^d_t = g(ŷ_{t-1}, h^d_{t-1}, c)
- The first step in creating our attention mechanism is to update our hidden state such that it is conditioned on an updated context vector with each decoding step

•
$$h_t^d = g(\widehat{y_{t-1}}, h_{t-1}^d, c_t)$$

How do we dynamically create a new context vector at each step?

• Compute a vector of scores that capture the relevance of each encoder hidden state to the decoder hidden state, h_{i-1}^d

$$score(h_{i-1}^{a},h_{j}^{e})=h_{i-1}^{a}\cdot h_{j}^{e}$$

Natalie Parde - UIC CS 521

How can we make use of context scores?

- Parameterize these scores with weights
- This allows the model to learn which aspects of similarity between the encoder and decoder states are important

Attention Weights

- Normalize context scores to create a vector of weights, α_{ij}
 - $\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(h_{i-1}^d, h_j^e) \forall j \in e)$
 - Provides the proportional relevance of each encoder hidden state *j* to the current decoder state *i*
- Finally, take a weighted average over all the encoder hidden states to create a fixed-length context vector for the current decoder state

$$c_i = \sum_j \alpha_{ij} h_j^e$$

Thus, we finally have an encoderdecoder model with attention!

Thus, we finally have an encoderdecoder model with attention!

Other Attention Weights

- More sophisticated scoring functions can be used
 as well
- Common: Parameterize the attention score with its own set of trainable weights
 - score $(\mathbf{h}_{i-1}^d, \mathbf{h}_j^e) = \mathbf{h}_{t-1}^d \mathbf{W}_s \mathbf{h}_j^e$
 - Advantage: Allows the encoder and decoder to use vectors with different dimensionality (dotproduct attention requires the encoder and decoder hidden states to have the same dimensionality)

Encoder Decoder Models with Transformers

- Similar to other encoder-decoder models
 - Encoder (Transformer model) maps sequential input to an output representation
 - Decoder (Transformer model) attends to the encoder representation and generates sequential output autoregressively
- However....
 - Transformer blocks in the decoder include an extra **cross-attention** layer

Reminder: Normal Transformer block

- Same form as **multiheaded self-attention** in a normal Transformer block, with one difference: queries come from the previous layer of the decoder as usual, but **keys and values come from the output of the encoder**
- Multihead attention:
 - Split key, query, and value parameters *n* ways
 - Pass each split independently through a separate attention head
 - Combine attention calculations from each head to produce a final attention score

Cross-Attention

Cross-Attention

• $\mathbf{Q} = \mathbf{W}^{\mathbf{Q}} \mathbf{H}^{dec[i-1]}$

• $\mathbf{K} = \mathbf{W}^{\mathbf{Q}}\mathbf{H}^{enc}$

• $\mathbf{V} = \mathbf{W}^{\mathbf{V}}\mathbf{H}^{enc}$

Natalie Parde - UIC CS 521

• CrossAttention(**Q**, **K**, **V**) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^{\mathrm{T}}}{\sqrt{d_{k}}}\right)\mathbf{V}$

Updated Decoder Transformer Block

Encoder-Decoder Models with Transformers

- Why is cross-attention useful?
 - Allows the decoder to attend to the entire source language text
- Training Transformer-based encoder-decoders is similar to training RNN-based encoderdecoders
 - Use teacher forcing
 - Train autoregressively

Practical Details for Building MT Systems

Vocabulary

- MT systems typically use a fixed vocabulary generated using byte pair encoding or other wordpiece algorithms
- Vocabulary is usually shared across the source and target languages

Corpora

- Parallel corpora with the same content communicated in multiple languages
- Common sources:
 - Government documents for nations with multiple official languages
 - Subtitles for movies and TV shows
- Often, text from the source and target language(s) is aligned at the sentence level

What if we don't have much training data?

• Parallel corpora are difficult to find, especially for lower-resource language pairs

• Backtranslation:

- 1. Train an intermediate target-to-source MT system on a small parallel corpus
- 2. Translate additional monolingual data from the target language to the source language using this intermediate system
- 3. Consider this new, synthetic parallel data as additional training data
- 4. Train a source-to-target MT system on the expanded training dataset

How do we evaluate machine translation models?

- Translation quality tends to be very subjective!
- Two common approaches:
 - Human ratings
 - Automated metrics

Evaluating Machine Translation Using Human Ratings

- Typically evaluated along multiple dimensions
- Tend to check for both fluency and adequacy
- Fluency:
 - Clarity
 - Naturalness
 - Style
- Adequacy:
 - Fidelity
 - Informativeness

Evaluating Machine Translation Using Human Ratings

- How to get quantitative measures of fluency?
 - Ask humans to rate different aspects of fluency along a scale
 - Measure how long it takes humans to read a segment of text
 - Ask humans to guess the identity of the missing word
 - "After such a late night working on my project, it was hard to wake up this ____!"

Evaluating Machine Translation Using Human Ratings

• How to get quantitative measures of adequacy?

- Ask bilingual raters to rate how much information was preserved in the translation
- Ask monolingual raters to do the same, given access to a gold standard reference translation
- Ask humans to answer multiple-choice questions about content present in a translation

Another set of human evaluation metrics considers postediting.

- Ask a human to post-edit or "fix" a translation
- Compute the number of edits required to correct the output to an acceptable level
 - Can be measured via number of word changes, number of keystrokes, amount of time taken, etc.

Automated Metrics

- Less accurate than human evaluation, but:
 - Useful for iteratively testing system improvements
 - Can be used as an automatic loss function
- Two main families:
 - Character- or word-overlap
 - Embedding similarity

Popular Lexical Overlap Metrics

• BLEU

- Measure of word overlap
- METEOR
 - Measure of word overlap, considering stemming and synonymy
- Character F-Score (chrF)
 - Measure of character n-gram overlap

BLEU

- Weighted average of the number of n-gram overlaps with human translations
- Precision-based metric
 - What percentage of words in the candidate translation also occur in the gold standard translation(s)?

How is BLEU computed?

- Count the maximum number of times each n-gram is used in any single reference translation, c_{max}(n-gram)
- Count the number of times each n-gram is used in the candidate translation
- Clip that amount so that the highest it can be is $c_{max}(n-gram)$
- Compute precision for each word in the candidate translation based on that clipped amount

• $\operatorname{prec}_{n} = \frac{\sum_{c \in \{\text{Candidates}\}} \sum_{n-\operatorname{gram}_{\in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\text{Candidates}\}} \sum_{n-\operatorname{gram}_{\in c} c(n-\operatorname{gram})}}$

Take the geometric mean of the modified n-gram precisions for unigrams, bigrams, trigrams, and 4-grams

BLEU also adds a penalty for translation brevity.

- Otherwise, extremely short translations (e.g., "the") could receive perfect scores!
- The penalty is based on two values:
 - The effective reference length, *r*, for the corpus
 - The sum of the lengths of the best matches for each candidate sentence
 - The total length of the candidate translation corpus, c
- Formally, the penalty is set to:

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•<

•
$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 - \frac{r}{c})} & \text{if } c \le r \end{cases}$$

Computing BLEU

• The full BLEU score for a set of translations is then:

•
$$BLEU = BP * (\prod_{n=1}^{4} \operatorname{prec}_n)^{\frac{1}{4}}$$

Natalie no dió una bofetada a la bruja verde.

Source Sentence

Natalie didn't slap the green witch.

Reference Translation

Natalie did not give a slap to the green witch.

Candidate Translation

Natalie no dió una bofetada a la bruja verde.

Source Sentence

Natalie didn't slap the green witch.

Reference Translation

Natalie did not give a slap to the green witch.

Candidate Translation

$$\operatorname{prec}_{n} = \frac{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} c(n-\operatorname{gram})}$$

$$BLEU = BP * (\prod_{n=1}^{4} \operatorname{prec}_{n})^{\frac{1}{4}}$$

Natalie didn't slap the green witch.

Natalie did not give a slap to the green witch.

prec —	$\sum_{c \in \{Candidates\}} \sum_{n-gram \in c} \min(c(n-gram), c_{max}(n-gram))$				
$\operatorname{prec}_n =$	$\sum_{c \in \{Candidates\}} \sum_{n-gram \in c} c(n-gram)$				
Unigram	Unigram Frequency (Candidate)	Unigram Frequency (Reference)			
Natalie	1	1			
did	1	0			
not	1	0			
give	1	0			
а	1	0			
slap	1	1			
to	1	0			
the	1	1			
green	1	1			
witch	1	1			
	1	1 Nata	lie Parde - UIC CS 521		

$$BLEU = BP * (\prod_{n=1}^{4} \operatorname{prec}_{n})^{\frac{1}{4}}$$

Natalie didn't slap the green witch.

.

Natalie did not give a slap to the green witch.

proc —	$\Sigma_{c \in \{Candidates\}} \Sigma_n - g_n$	ram∈ <i>c</i> min(c(n−gram)	$c_{\max}(n-\text{gram})$ $\int 1 if \ c > r$
$\sum_{c \in \{\text{Candidates}\}} \sum_{n-\text{gram} \in c} c(n-\text{gram})$			gram) $DT = \int e^{(1-\frac{t}{c})} if c \le r$
Unigram	Unigram Frequency (Candidate)	Unigram Frequency (Reference)	4 1
Natalie	1	1	$BLEU = BP * ([prec_n)^{\frac{1}{4}}]$
did	1	0	n=1
not	1	0	
give	1	0	1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 +
а	1	0	$p_1 = \frac{1+0+0+0+0+1+0+1+1+1}{1+1+1+1+1+1+1+1+1+1+1+1}$
slap	1	1	
to	1	0	
the	1	1	
green	1	1	
witch	1	1	
	1	1	

6

11

Natalie didn't slap the green witch.

Natalie did not give a slap to the green witch.

$$\operatorname{prec}_{n} = \frac{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} c(n-\operatorname{gram})}$$

Bigram	Bigram Frequency (Candidate)	Bigram Frequency (Reference)
Natalie did	1	0
did not	1	0
not give	1	0
give a	1	0
a slap	1	0
slap to	1	0
to the	1	0
the green	1	1
green witch	1	1
witch .	1	1

$$BP = \begin{cases} 1 & if \ c > r \\ e^{(1 - \frac{r}{c})} & if \ c \le r \end{cases}$$

$$BLEU = BP * (\prod_{n=1}^{4} \operatorname{prec}_{n})^{\frac{1}{4}}$$

$$p_1 = \frac{1+0+0+0+0+1+0+1+1+1+1}{1+1+1+1+1+1+1+1+1} = \frac{6}{11}$$

$$p_2 = \frac{0+0+0+0+0+0+0+1+1+1}{1+1+1+1+1+1+1+1} = \frac{3}{10}$$

Natalie Parde - UIC CS 521
Example: Computing BLEU

Natalie didn't slap the green witch.

Trigram

Natalie did not give a slap to the green witch.

$$\operatorname{prec}_{n} = \frac{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} c(n-\operatorname{gram})}$$

Trigram Frequency

(Poforonco)

$$BP = \begin{cases} 1 & if \ c > r \\ e^{(1 - \frac{r}{c})} & if \ c \le r \end{cases}$$

BLEU = BP	* ($\operatorname{prec}_n)^{\frac{1}{4}}$
	n=2	

	(Canalate)	(Neierence)
Natalie did not	1	0
did not give	1	0
not give a	1	0
give a slap	1	0
a slap to	1	0
slap to the	1	0
o the green	1	0
he green witch	1	1
green witch .	1	1

Trigram Frequency

(Candidate)

$$p_1 = \frac{6}{11}$$
 $p_2 = \frac{3}{10}$

$$p_3 = \frac{0+0+0+0+0+0+0+1+1}{1+1+1+1+1+1+1+1} = \frac{2}{9}$$

Example: Computing BLEU

Natalie didn't slap the green witch.

Natalie did not give a slap to the green witch.

$$\operatorname{prec}_{n} = \frac{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} c(n-\operatorname{gram})}$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1 - \frac{r}{c})} & \text{if } c \le r \end{cases}$$
$$BLEU = BP * (\prod \text{prec}_n)^{\frac{1}{4}}$$

(1

if c > r

4-gram	4-gram Frequency (Candidate)	4-gram Frequency (Reference)
Natalie did not give	1	0
did not give a	1	0
not give a slap	1	0
give a slap to	1	0
a slap to the	1	0
slap to the green	1	0
to the green witch	1	0
the green witch .	1	1

$$= \frac{6}{11} \qquad p_2 = \frac{3}{10} \qquad p_3 = \frac{2}{9}$$

$$p_4 = \frac{0+0+0+0+0+0+0+1}{1+1+1+1+1+1} = \frac{1}{8}$$

 p_1

Example: Computing BLEU

Natalie didn't slap the green witch.

Natalie did not give a slap to the green witch.

 $\operatorname{prec}_{n} = \frac{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} \min(c(n-\operatorname{gram}), c_{\max}(n-\operatorname{gram}))}{\sum_{c \in \{\operatorname{Candidates}\}} \sum_{n-\operatorname{gram} \in c} c(n-\operatorname{gram})}$

$$BP = \begin{cases} 1 & if \ c > r \\ e^{(1 - \frac{r}{c})} & if \ c \le r \end{cases}$$

c = 11 •

$$BLEU = BP * (\prod_{n=1}^{4} \operatorname{prec}_{n})^{\frac{1}{4}}$$

$$p_1 = \frac{6}{11}$$
 $p_2 = \frac{3}{10}$ $p_3 = \frac{2}{9}$ $p_4 = \frac{1}{8}$

BP = 1

r = 7

 $BLEU = 1 * (\prod_{n=1}^{4} \operatorname{prec}_{n})^{\frac{1}{4}} = 1 * (\frac{6}{11} * \frac{3}{10} * \frac{2}{9} * \frac{1}{8})^{\frac{1}{4}} = 1 * 0.0045454545454^{\frac{1}{4}} = 1 * 0.25965358893 = 0.26$

Limitations of BLEU

- Word or phrase order is of minimal importance
 - When computing unigram precision, a word can exist anywhere in the translation!
- · Does not consider word similarity
- Relatively low correlation with human ratings
- Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric is needed to assess translation performance

Character F-Score (chrF)

- Same intuition as BLEU: Good machine translations tend to contain the same words and characters as human translations
- Ranks a candidate translation by a function of the number of character n-gram overlaps with a human reference translation
- Less sensitive to word tokenization than BLEU

How is chrF computed?

- Similarly to "regular" F-score
 - chrP: averaged % of character unigrams, bigrams, ..., k-grams in the hypothesis that also occur in the reference
 - chrR: averaged % of character unigrams, bigrams, ..., k-grams in the reference that also occur in the hypothesis
 - β: weighting parameter (similarly to F-score) that determines the relative impacts of chrP and chrR on the overall F-score

• chrF
$$\beta = (1 + \beta^2) \frac{\text{chrP} \times \text{chrR}}{\beta^2 \times \text{chrP} + \text{chrR}}$$
, or chrF2 = $\frac{5 \times \text{chrP} \times \text{chrR}}{4 \times \text{chrP} + \text{chrR}}$

chrR: averaged % of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

9 unigrams are in both the hypothesis and the reference

Unigram chrP: $^{9}/_{12} = 0.75$

Unigram chrR: $^{9}/_{14} = 0.64$

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

127

Limitations of chrF

- Focuses on differences at a very local scale (i.e., character n-grams)
- Doesn't measure discourse coherence
- Best at measuring performance for different versions of the same system, rather than comparing different systems

Embedding -Based Evaluation Methods

- Measuring exact word- or character-level overlap might be overly strict
 - Good translations may use words that are synonymous to those in the reference!
- Embedding-based methods measure the semantic overlap between reference and hypothesis translations

Popular Embedding-Based Methods for Evaluating MT Systems

Summary: Machine **Translation** and **Encoder-**Decoder Models

- There are many **typological differences** between languages that make translation a challenging task
- Classical approaches to machine translation focused on dictionary-based methods, direct transfer of source and target language parses, and logic-based interlingua approaches
- Statistical approaches bridged the gap between classical methods and modern neural MT
- Modern machine translation leverages encoder-decoder models, often generating candidate parses using beam search
- Encoder-decoder models often leverage attention mechanisms to improve the context passed from the encoder to the decoder
- MT systems are commonly evaluated using both human ratings and automated metrics
- Popular automated metrics include BLEU, chrF, and embedding-based measures