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What is 
machine 

translation?

• The process of automatically converting a 
text from one language to another

hello bonjour
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Machine 
translation is 
increasingly 
ubiquitous, and 
useful in a 
wide variety of 
contexts!
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Machine 
translation 
is also 
difficult, 
for a 
variety of 
reasons.

Structural and lexical differences 
between languages

Differences in word order

Morphological differences

Stylistic and cultural differences
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Creating high-quality translations requires a deep 
understanding of both the source and target 

language.
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Computer-
Aided 

Translation

• Even poor translations are useful for some 
purposes!

• Computer-Aided Translation: Computers 
provide draft translations, which are then 
fixed in a post-editing phase by a human 
translator

• Effective for:
• High volume jobs
• Jobs requiring quick turnaround

Blender Manual: 
English

Blender Manual: 
French

Blender Manual: 
Spanish

Blender Manual: 
Arabic
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Cross-Linguistic 
Similarities and Differences
• Typology: The study of systematic cross-linguistic 

similarities and differences
• Although some aspects of language are 

universal, others tend to differ
• Differences between languages often have 

systematic structure
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Morphological 
Differences

• Isolating languages: Each word 
generally has one morpheme

• Polysynthetic languages: Each 
word may have many morphemes

Number of morphemes per 
word

• Agglutinative languages: 
Morphemes have well-defined 
boundaries

• Fusion languages: Morphemes may 
be conflated with one another

Degree to which morphemes 
can be segmented
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Syntactic 
Differences

• Primary difference between languages: Word 
order

• SVO languages: Verb tends to come 
between the subject and object

• SOV languages: Verb tends to come at the 
end of basic clauses

• VSO languages: Verb tends to come at the 
beginning of basic clauses

• Languages with similar basic word order also 
tend to share other similarities

• SVO languages generally have prepositions
• SOV languages generally have 

postpositions
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Differences 
in 
Argument 
Structure 
and 
Linking

The bottle floated out. La botella salió flotando.

The bottle exited floating.

Verb-framed languages: Generally mark the 
direction of motion on the verb, leaving its 
satellites (particles, prepositional phrases, and 
adverbial phrases) to mark the manner of 
motion

Satellite-framed languages: Generally mark 
the direction of motion on the satellite, leaving 
the verb to mark the manner of motion
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Differences 
in 

Permissible 
Omissions

• Languages differ in terms of what 
components can be omitted from a 
sentence

• Pro-Drop languages: Can omit pronouns 
when talking about certain referents

• Some pro-drop languages permit more 
pronoun omission than others

• Referentially dense and sparse 
languages

• Converting text from pro-drop languages 
(e.g., Japanese) to non-pro-drop languages 
(e.g., English) requires that all missing 
pronoun locations are identified and their 
appropriate anaphors recovered
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Other 
Differences

Differences in noun-adjective order
• Blue house → Maison bleue

Differences in homonymy and polysemy

Differences in grammatical constraints
• Some languages require gender for nouns
• Some languages require gender for pronouns

Lexical gaps
• No word or phrase in the target language can 

express the meaning of a word in the source 
language
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Machine 
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models
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Classical 
Machine 

Translation

• Direct translation
• Take a large bilingual dictionary
• Proceed through the source text word by 

word
• Translate each word according to the 

dictionary

blue house
t1 t2

bleue maison
t1 t2
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Direct 
Translation

No intermediate structures

Simple reordering rules may be applied

• Moving adjectives so that they are after nouns when 
translating from English to French

Dictionary entries may be relatively complex

• Tiny, rule-based programs for translating a word to 
the target language
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Direct 
Translation

• Simple
• Easy to implement

Pros:

• Cannot reliably handle long-distance 
reorderings

• Cannot handle reorderings involving 
phrases or larger structures

• Too focused on individual words

Cons:
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Classical 
Machine 

Translation

• Transfer approaches
• Parse the input text
• Apply rules to transform the source 

language parse structure into a target 
language parse structure

blue house

amod

maison bleue

amod
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Transfer 
Approaches
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Syntactic Transfer

• Modifies the source parse 
tree to resemble the 
target parse tree

• For some languages, may 
also include thematic 
structures

• Directional or locative 
prepositional phrases 
vs. recipient 
prepositional phrases

Adjective Noun

Nominal

Noun Adjective

Nominal
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Lexical Transfer
• Generally based on a bilingual dictionary

• As with direct translation, dictionary 
entries can be complex to 
accommodate many possible 
translations
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Transfer 
Approaches

• Can handle more complex 
language phenomena than 
direct translation

Pros:

• Still not sufficient for many 
cases!

Cons:
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Classical 
Machine 

Translation

• Interlingua approaches
• Convert the source language text into an 

abstract meaning representation
• Generate the target language text based 

on the abstract meaning representation

blue house maison bleue
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Interlingua Approaches

• Goal: Represent all sentences that mean the same 
thing in the same way, regardless of language

• What kind of representation scheme should be used?
• Classical approaches:

• First-order logic
• Semantic primitives
• Event-based representation

• More recently, neural models learn vector 
representations for this purpose

blue house

maison bleue

casa azul

청와대

24Natalie Parde - UIC CS 521



Interlingua Approaches
• Require more analysis work than transfer 

approaches
• Semantic analysis
• Sentiment analysis

• No need for syntactic or lexical 
transformations
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Interlingua 
Approaches

• Direct mapping between meaning 
representation and lexical 
realization

• No need for transformation rules

Pros:

• Extra (often unnecessary) work
• Classical approaches require an 

exhaustive analysis and 
formalization of the semantics of 
the domain

Cons:
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Statistical 
Machine 

Translation

• Models automatically learn to map from the 
source language to the target language

• Doesn’t require intermediate 
transformation rules

• Doesn’t require an explicitly defined 
internal meaning representation
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Statistical 
Machine 

Translation
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Bayesian 
Noisy 
Channel 
Model
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This means 
that we need 
to consider 
two separate 
components.

𝑡! = argmax
"!∈$

𝑃(𝑠|𝑡%)𝑃(𝑡%) • The language model is 
just like the language 
models used for other 
NLP tasks

• One common type of 
translation model is the 
phrase-based 
translation model

translation model

language model
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The 
Phrase-
Based 
Translation 
Model

• Computes the probability that a given 
translation ti generates the original 
sentence s based on its constituent 
phrases

• Intuition: Phrases, as well as single 
words, are fundamental units of 
translation

• Often entire phrases need to be 
translated and moved as a unit
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Stages of Phrase-Based Translation

Group the words 
from the source 
sentence into 
phrases

01
Translate each 
source phrase 
into a target 
language phrase

02
(Optionally) 
reorder the target 
language phrases

03
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Probability in Phrase-Based 
Translation Models
• Relies on two probabilities:

• Translation probability
• Probability of generating a source language phrase from a target language 

phrase, 𝜙 .𝑡%, .𝑠%
• Distortion probability

• Probability of two consecutive target language phrases being separated in the 
source language by a word span of a particular length, 𝑑(𝑎% − 𝑏%&')
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How do we 
learn the 

probabilities 
for this 
model?
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Alignment in Machine Translation

Natalie did not slap the green witch

Natalie no dió una bofetada a la bruja verde

NULL
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Decoding 
for Phrase-
Based 
Machine 
Translation

• Aligned phrases can be stored in a phrase-
translation table

• Decoding algorithms can then search 
through this table to find the overall 
translation that maximizes the phrase 
translation probabilities
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Machine 
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models
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Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length
output sequences

• Particularly useful for:
• Machine translation
• Summarization
• Question answering
• Dialogue modeling
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Encoder-Decoder Models

• Basic premise:
• Use a neural network to encode an input to an internal 

representation
• Pass that internal representation as input to a second neural 

network
• Use that neural network to decode the internal representation 

to a task-specific output sequence
• Usually, the encoder and decoder are both some type of RNN
• This method allows networks to be trained in an end-to-end fashion
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Where did this 
idea come from?

Recall our discussion of 
autoregressive generation:
• Start with a seed token (e.g., 

<s>)
• Predict the most likely next 

word in the sequence

• Use that word as input at the 
next timestep

• Repeat until an end token (or 
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network
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Slight variation to this idea….

• Rather than generating a sentence from scratch, the model can generate a 
sentence given a prefix

• Pass the specified prefix through the language model, in sequence
• End with the hidden state corresponding to the last word of the prefix
• Start the autoregressive process at that point

• Goal: Output sequence should be a reasonable completion of the prefix
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Updated Autoregressive 
Generation

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN
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We can build upon this idea to transform 
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated 

sequence (text from Language #1) and checking to see what the 
generated completion (text from Language #2) looks like
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Intuition: Machine Translation

Hi, I’m Mina.

Hi, I’m Mina. </s>

Hi, RNN I’m RNN Mina. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Mina. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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This intuition forms the basis of 
encoder-decoder networks.

• Key elements of an encoder-decoder network:
• Encoder: Generates a contextualized representation of the input
• Decoder: Takes the contextualized representation and 

autoregressively generates a sequence of outputs
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More 
formally….

• Encoder
• Accepts an input sequence, 𝑥!"
• Generates a sequence of contextualized 

representations, ℎ!"

• Context vector
• A function, 𝑐, of ℎ!" that conveys the basic 

meaning of 𝑥!" to the decoder
• (Might just be equivalent to ℎ!")

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of 

hidden states, ℎ!#, from which a corresponding 
sequence of output states 𝑦!# can be obtained
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Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM/BiLSTM
• GRU/BiGRU
• Transformer

• These networks can be stacked on top of one another

More common
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Decoders

• Need to perform autoregressive generation to produce the output sequence
• Can be any type of sequential network

• RNN
• LSTM
• GRU
• Transformer
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Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)
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Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Final hidden state of the encoder
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Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

First hidden state of the decoder
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Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Some type of RNN

Embedding for the output 
sampled from the previous step
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Decoders

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Regular ending steps (activation function 
applied to hidden state outputs, and 
softmax applied to activation outputs)
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A couple useful extensions….

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ ) → ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ , 𝑐)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Make the context vector available at each 
timestep when decoding, so that its 
influence doesn’t diminish over time
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A couple useful extensions….

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ ) → ℎ%$ = 𝑔(&𝑦%&', ℎ%&'$ , 𝑐)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%) → 𝑦% = softmax(&𝑦%&', 𝑧% , 𝑐)

Condition output on not only the hidden state, but 
the previous output and encoder context (easier 
to keep track of what’s been generated already)
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What other ways can we improve the 
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the 
input sequence

• Can be addressed by using bidirectional RNNs, summing the 
encoder hidden states, or averaging the encoder hidden states
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Beam Search
• Selects from multiple possible outputs by framing the 

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed 
size (beam width)

• Results in a set of b hypotheses, where b is the beam 
width
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How does beam search work?

Decoder

Beam Size = 3
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"#

𝑦!"#
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder
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How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"%
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"% Decoder 𝑦"#$ =</s>
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder Decoder

𝑦!"#

𝑦!"#

𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

𝑦!"% =</s>

𝑦!"% 𝑦"#$ =</s>
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How do we 
choose a best 

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a 

downstream application
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So far, the 
encoder context 
vectors we’ve 
seen have been 
simple and 
static. • Can we do better?

• Yes 🙂
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Attention 
Mechanism

• Takes entire encoder context into 
account

• Dynamically updates during the course 
of decoding

• Can be embodied in a fixed-size vector

72Natalie Parde - UIC CS 521



Recall….

• We’ve already made our context vector 
available at each timestep when decoding

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐)
• The first step in creating our attention 

mechanism is to update our hidden state 
such that it is conditioned on an updated 
context vector with each decoding step

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐&)
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How do we 
dynamically 
create a new 
context 
vector at 
each step?

• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder hidden 
state, ℎ4567

• 𝑠𝑐𝑜𝑟𝑒 ℎ)(!' , ℎ*+ = ℎ)(!' / ℎ*+
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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How can we 
make use of 

context scores?

• Parameterize these scores with weights
• This allows the model to learn which 

aspects of similarity between the encoder 
and decoder states are important
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Attention 
Weights

• Normalize context scores to create a 
vector of weights, 𝛼)*

• 𝛼)* = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ)(!' , ℎ*+)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of 

each encoder hidden state 𝑗 to the 
current decoder state 𝑖

• Finally, take a weighted average over all 
the encoder hidden states to create a 
fixed-length context vector for the current 
decoder state

• 𝑐) = ∑* 𝛼)*ℎ*+
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&))

Σ

84Natalie Parde - UIC CS 521



Other 
Attention 
Weights

• More sophisticated scoring functions can be used 
as well

• Common: Parameterize the attention score with its 
own set of trainable weights

• score 𝐡%&'( , 𝐡)* = 𝐡"&'( 𝐖+𝐡)*

• Advantage: Allows the encoder and decoder to 
use vectors with different dimensionality (dot-
product attention requires the encoder and 
decoder hidden states to have the same 
dimensionality)
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Encoder-
Decoder 
Models with 
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps 

sequential input to an output representation
• Decoder (Transformer model) attends to the 

encoder representation and generates 
sequential output autoregressively

• However….
• Transformer blocks in the decoder include 

an extra cross-attention layer
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Cross-
Attention

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

• Same form as multiheaded self-attention in a normal Transformer block, 
with one difference: queries come from the previous layer of the decoder 
as usual, but keys and values come from the output of the encoder

• Multihead attention:
• Split key, query, and value parameters n ways
• Pass each split independently through a separate attention head
• Combine attention calculations from each head to produce a final 

attention score

Reminder: Normal Transformer block
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Cross-
Attention

• 𝐐 = 𝐖𝐐𝐇'+6[)(!]

• 𝐊 = 𝐖𝐐𝐇+"6

• 𝐕 = 𝐖𝐕𝐇+"6

• 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐐,𝐊, 𝐕 = softmax 𝐐𝐊3

'4
𝐕
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Updated Decoder Transformer Block

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize
Output

C
ross-Attention 

Layer

Add and N
orm

alize
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Encoder-
Decoder 
Models with 
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to 

the entire source language text
• Training Transformer-based 

encoder-decoders is similar to 
training RNN-based encoder-
decoders

• Use teacher forcing
• Train autoregressively
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Practical Details for Building MT 
Systems

• MT systems typically use a fixed vocabulary generated using byte pair encoding 
or other wordpiece algorithms

• Vocabulary is usually shared across the source and target languages

Vocabulary

• Parallel corpora with the same content communicated in multiple languages
• Common sources:

• Government documents for nations with multiple official languages
• Subtitles for movies and TV shows

• Often, text from the source and target language(s) is aligned at the sentence 
level

Corpora
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What if we 
don’t 
have 
much 
training 
data?

• Parallel corpora are difficult to find, especially 
for lower-resource language pairs

• Backtranslation:
1. Train an intermediate target-to-source 

MT system on a small parallel corpus
2. Translate additional monolingual data 

from the target language to the source 
language using this intermediate system

3. Consider this new, synthetic parallel data 
as additional training data

4. Train a source-to-target MT system on 
the expanded training dataset
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How do we 
evaluate 
machine 

translation 
models?

• Translation quality tends to be 
very subjective!

• Two common approaches:
• Human ratings
• Automated metrics
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Evaluating 
Machine 

Translation 
Using Human 

Ratings

• Typically evaluated along multiple 
dimensions

• Tend to check for both fluency and 
adequacy

• Fluency:
• Clarity
• Naturalness
• Style

• Adequacy:
• Fidelity
• Informativeness
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Evaluating 
Machine 
Translation 
Using Human 
Ratings

• How to get quantitative measures of 
fluency?

• Ask humans to rate different 
aspects of fluency along a scale

• Measure how long it takes humans 
to read a segment of text

• Ask humans to guess the identity of 
the missing word

• “After such a late night working 
on my project, it was hard to 
wake up this _____!”
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Evaluating Machine Translation Using 
Human Ratings

• How to get quantitative measures of adequacy?
• Ask bilingual raters to rate how much information was preserved in the 

translation
• Ask monolingual raters to do the same, given access to a gold standard 

reference translation
• Ask humans to answer multiple-choice questions about content present in 

a translation
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Another set 
of human 

evaluation 
metrics 

considers 
post-

editing.

• Ask a human to post-edit or “fix” a 
translation

• Compute the number of edits required to 
correct the output to an acceptable level

• Can be measured via number of word changes, 
number of keystrokes, amount of time taken, etc.
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Automated 
Metrics

• Less accurate than human 
evaluation, but:

• Useful for iteratively testing 
system improvements

• Can be used as an automatic 
loss function

• Two main families:
• Character- or word-overlap
• Embedding similarity
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Popular Lexical Overlap Metrics

• BLEU
• Measure of word overlap

• METEOR
• Measure of word overlap, considering stemming and synonymy

• Character F-Score (chrF)
• Measure of character n-gram overlap
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BLEU
• Weighted average of the number of n-gram overlaps with human translations
• Precision-based metric

• What percentage of words in the candidate translation also occur in the gold 
standard translation(s)?
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How is BLEU 
computed?
• Count the maximum number of times each n-gram is used in any 

single reference translation, cmax(n−gram)

• Count the number of times each n-gram is used in the candidate 
translation

• Clip that amount so that the highest it can be is cmax(n−gram)

• Compute precision for each word in the candidate translation based 
on that clipped amount

• prec' =
∑
!∈{Candidates} ∑n−gram∈%)*+(c n−gram ,cmax(n−gram))

∑
!∈{Candidates} ∑n−gram∈% c(n−gram)

• Take the geometric mean of the modified n-gram precisions for 
unigrams, bigrams, trigrams, and 4-grams
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BLEU also adds a penalty for translation 
brevity.

• Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!
• The penalty is based on two values:

• The effective reference length, r, for the corpus
• The sum of the lengths of the best matches for each candidate sentence

• The total length of the candidate translation corpus, c
• Formally, the penalty is set to:

• 𝐵𝑃 = 5
1 𝑖𝑓 𝑐 > 𝑟

𝑒('&
+
,) 𝑖𝑓 𝑐 ≤ 𝑟
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Computing 
BLEU

• The full BLEU score for a set of translations 
is then:

• 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (∏";!
< prec")

?
@
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Example: Computing BLEU

Natalie didn’t slap the green witch.

Natalie no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Natalie did not give a slap to the green witch. Candidate Translation
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Example: Computing BLEU

Natalie didn’t slap the green witch.

Natalie no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Natalie did not give a slap to the green witch. Candidate Translation

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)
𝐵𝑃 = Q

1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7
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Example: Computing BLEU
Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

Unigram Unigram Frequency 
(Candidate)

Unigram Frequency 
(Reference)

Natalie 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟
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Example: Computing BLEU

𝑝# =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

Unigram Unigram Frequency 
(Candidate)

Unigram Frequency 
(Reference)

Natalie 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟
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Example: Computing BLEU

Bigram Bigram Frequency 
(Candidate)

Bigram Frequency 
(Reference)

Natalie did 1 0

did not 1 0

not give 1 0

give a 1 0

a slap 1 0

slap to 1 0

to the 1 0

the green 1 1

green witch 1 1

witch . 1 1

𝑝$ =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

=
3
10

𝑝# =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟
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Example: Computing BLEU

Trigram Trigram Frequency 
(Candidate)

Trigram Frequency 
(Reference)

Natalie did not 1 0

did not give 1 0

not give a 1 0

give a slap 1 0

a slap to 1 0

slap to the 1 0

to the green 1 0

the green witch 1 1

green witch . 1 1

𝑝# =
6
11

𝑝$ =
3
10

𝑝% =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

2
9

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

109Natalie Parde - UIC CS 521



Example: Computing BLEU

4-gram 4-gram Frequency 
(Candidate)

4-gram Frequency 
(Reference)

Natalie did not give 1 0

did not give a 1 0

not give a slap 1 0

give a slap to 1 0

a slap to the 1 0

slap to the green 1 0

to the green witch 1 0

the green witch . 1 1

𝑝# =
6
11

𝑝$ =
3
10

𝑝% =
2
9

𝑝7 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

1
8

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟
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Example: Computing BLEU

𝑝# =
6
11

𝑝$ =
3
10 𝑝% =

2
9 𝑝7 =

1
8

r = 7

c = 11

𝐵𝑃 = 1

Natalie didn’t slap the green witch. Natalie did not give a slap to the green witch.

prec- =
∑.∈{Candidates}∑n−gram∈2min(c n−gram , cmax(n−gram))

∑.∈{Candidates}∑n−gram∈2 c(n−gram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ ([
-6#

7

prec-)
#
7

𝐵𝑃 = Q
1 𝑖𝑓 𝑐 > 𝑟

𝑒(#'
4
.) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 1 ∗ (∏-6#
7 prec-)

!
"= 1 ∗ ( 8

##
∗ %
#9
∗ $
:
∗ #
;
)
!
"= 1 ∗ 0.00454545454

!
" = 1 ∗ 0.25965358893 = 0.26
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Limitations of BLEU
• Word or phrase order is of minimal importance

• When computing unigram precision, a word can exist anywhere in the 
translation!

• Does not consider word similarity
• Relatively low correlation with human ratings
• Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric 

is needed to assess translation performance
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Character F-Score (chrF)

• Same intuition as BLEU: Good machine translations tend to contain the same 
words and characters as human translations

• Ranks a candidate translation by a function of the number of character n-gram 
overlaps with a human reference translation

• Less sensitive to word tokenization than BLEU
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How is chrF computed?

• Similarly to “regular” F-score
• chrP: averaged % of character unigrams, bigrams, …, k-grams in 

the hypothesis that also occur in the reference
• chrR: averaged % of character unigrams, bigrams, …, k-grams in 

the reference that also occur in the hypothesis
• β: weighting parameter (similarly to F-score) that determines the 

relative impacts of chrP and chrR on the overall F-score

• chrF𝛽 = (1 + 𝛽h) chrP × chrR
jA × chrPk chrR, or chrF2 = l × chrP × chrR

< × chrPk chrR
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Example: Computing chrF
CS 521 is the best
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Example: Computing chrF
CS 521 is the best CS 521 is great
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-grams 
in the hypothesis that are also in the reference k=3

chrR: averaged % of character unigrams, bigrams, …, k-grams 
in the reference that are also in the hypothesis
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS S5 52 21 1i is st th he eb be es st

CS S5 52 21 1i is sg gr re ea at

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42

chrP: 9.><"9.<<"9.<
%

= 0.6
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: ⁄: #$ = 0.75 Unigram chrR: ⁄: #7 = 0.64

Bigram chrP: ⁄8 ## = 0.55 Bigram chrR: ⁄8 #% = 0.46

Trigram chrP: ⁄< #9 = 0.5 Trigram chrR: ⁄< #$ = 0.42

chrP: 9.><"9.<<"9.<
%

= 0.6 chrR: 9.87"9.78"9.7$
%

= 0.51
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

chrP: 9.><"9.<<"9.<
%

= 0.6 chrR: 9.87"9.78"9.7$
%

= 0.51

chrF2 =
5 ∗ chrP ∗ chrR
4 ∗ chrP + chrR =

5 ∗ 0.6 ∗ 0.51
4 ∗ 0.6 + 0.51 = 0.53
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Limitations 
of chrF

• Focuses on differences at a very local scale 
(i.e., character n-grams)

• Doesn’t measure discourse coherence
• Best at measuring performance for different 

versions of the same system, rather than 
comparing different systems
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Embedding
-Based 
Evaluation 
Methods

• Measuring exact word- or character-level 
overlap might be overly strict

• Good translations may use words that 
are synonymous to those in the 
reference!

• Embedding-based methods measure the 
semantic overlap between reference and 
hypothesis translations
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Popular Embedding-Based Methods 
for Evaluating MT Systems

• https://github.com/Unbabel/COMET

COMET

• https://github.com/google-research/bleurt

BLEURT

• https://github.com/Tiiiger/bert_score

BERTScore
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Summary: 
Machine 

Translation 
and 

Encoder-
Decoder 

Models

• There are many typological differences between languages 
that make translation a challenging task

• Classical approaches to machine translation focused on 
dictionary-based methods, direct transfer of source and 
target language parses, and logic-based interlingua 
approaches

• Statistical approaches bridged the gap between classical 
methods and modern neural MT

• Modern machine translation leverages encoder-decoder 
models, often generating candidate parses using beam 
search

• Encoder-decoder models often leverage attention 
mechanisms to improve the context passed from the encoder 
to the decoder

• MT systems are commonly evaluated using both human 
ratings and automated metrics

• Popular automated metrics include BLEU, chrF, and 
embedding-based measures
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