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Review: Neural Networks Basics
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Feedforward 
Neural 

Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in the 
last layer are hidden from external viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value
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Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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Neural 
networks tend 
to be more 
powerful than 
traditional 
classification 
algorithms.

• Traditional classification algorithms 
usually assume that data is linearly 
separable

• Neural networks are better equipped to 
learn complex, nonlinear separations 
between data classes
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Building 
Blocks for 

Neural 
Networks

• At their core, neural networks are 
comprised of computational units

• Computational units:
1. Take real-valued numbers as input
2. Perform some computation on them
3. Produce a single output
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥!, … , 𝑥", a unit has a set of corresponding 
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑#𝑤#𝑥#
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Computational 
Units

• The weighted sum of inputs computes a 
linear function of 𝑥

• We pass this sum through one of many 
possible nonlinear functions, commonly 
referred to as activations

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)
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sigmoid
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Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 20



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Vectorized input (e.g., 
averaged n-dimensional 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Particularly Popular 
Activation Functions

• Tanh:
• Variant of sigmoid that ranges from -1 to +1

• 𝑦 = !!"!"!

!!#!"!

• Once again differentiable
• Larger derivatives → generally faster 

convergence
• ReLU:

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Combining Computational Units
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ReLU
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Combining Computational Units
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Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 28



Combining Computational Units
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Combining Computational Units
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Combining Computational Units
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Combining Computational Units
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Combining Computational Units
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input 
that can better separate the data into the target classes
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Why does this work?
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Formalizing 
Feedforward 
Neural 
Networks



Formalizing 
Feedforward 
Neural 
Networks

• We can represent a two-layer network as:
• 𝑧[!] = 𝑊[!]𝑎[6] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[7] = 𝑊[7]𝑎[!] + 𝑏[7]

• 𝑎[7] = 𝑔 7 (𝑧 7 )
• 𝑦8 = 𝑎[7]

• We can easily generalize to networks with 
more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#9!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 # )
• 𝑦8 = 𝑎["]
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Does every 
layer use 
the same 
activation 
function?

• The activation function 𝑔(-) generally differs 
for the final layer

• Final layers will usually use softmax (for 
multinomial classification) or sigmoid (for 
binary classification) activations
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How do we train neural 
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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Recall….
• When we train a logistic regression classifier, 

we can compute the gradient of our loss 
function by just taking its derivative:

• :;!"(<,=)
:<#

= 2𝑦 − 𝑦 𝑥> = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥>

Natalie Parde - UIC CS 521

Difference between true and estimated y
Corresponding input 
observation
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However, we 
can’t do that 
with a neural 
network that 
has multiple 
weight layers 
(“hidden” 
layers).

• Why?
• Taking the derivative of the loss 

function only provides the gradient 
for the final weight layer

• What we need is a way to:
• Compute the derivative with respect 

to weight parameters occurring 
earlier in the network as well

• Even though we can only compute 
loss at a single point (the end of the 
network)
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We do this 
using 
backward 
differentiation.

• Usually referred to as backpropagation in the 
context of neural networks

• Frames neural networks as computation graphs
• Representations of interconnected mathematical 

operations
• Nodes = Operations
• Directed edges = connections between output/input of 

nodes
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There are 
two different 
ways that we 
can pass 
information 
through our 
neural 
network 
computation 
graphs.

• Forward pass
• Apply operations in the direction of the final 

layer
• Pass the output of one computation as the 

input to the next
• Backward pass

• Compute partial derivatives in the opposite 
direction of the final layer

• Multiply them by the partial derivatives 
passed down from the previous step
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Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Represent L(a, b, c) = c(a + 2b)
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To perform 
a backward 
pass, how 
do we get 
from L all 
the way 
back to a, b, 
and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect 
to v(x)

• Find the derivative of v(x) with respect 
to x

• Multiply the two together
• ?@
?A =

?B
?C ∗

?C
?A

Natalie Parde - UIC CS 521

Derivatives of popular activation functions: 
$!"#$(&)

$& = 1 − tanh( 𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 40	for	𝑧 < 0

1	for	𝑧 ≥ 0

54

In theory, !!"#$(#)
!%

	 is undefined!  In practice, 

by convention we set !!"#$(#)
!%

= 0.



Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐 = 𝑒
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= 𝑒 

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎 = 𝑐 ∗ 1 = 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐 

&'
&)
= ?

&'
&*
= 𝑒 

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏 = 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐 

&'
&)
= 2𝑐 

&'
&*
= 𝑒 
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

&'
&(
= 𝑐 = −2 

&'
&)
= 2𝑐 = 2 ∗ −2 = −4 

&'
&*
= 𝑒 = 5 
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Computation graphs for neural networks 
involve numerous interconnected units.

Input Output
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What would a computation graph look 
like for a simple neural network?
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What would a computation graph look 
like for a simple neural network?
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All of these weights 
need to be updated 
using backpropagation!

w

Natalie Parde - UIC CS 521 63



Convolutional 
Neural 
Networks

• Neural networks that incorporate one or 
more convolutional layers

• Designed to reflect the inner workings of the 
visual cortex system

• Require that fewer parameters are learned 
relative to feedforward networks for 
equivalent input data
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What are 
convolutional 

layers?

• Sliding windows that perform matrix 
operations on subsets of the input

• Compute products between those subsets 
of input and a corresponding weight matrix
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Convolutional Layers

• First layer(s): low-level features
• Color, gradient orientation
• N-grams

• Higher layer(s): high-level features
• Objects
• Phrases
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Feature Map
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.
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After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 72



I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

It’s common to extract multiple different 
feature maps from the same input.
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After extracting 
feature maps 

from the input, 
CNNs utilize 

pooling layers.

• Pooling layers: Layers that reduce the 
dimensionality of input feature maps by 
pooling all of the values in a given region

• Why use pooling layers?
• Further increase efficiency
• Improve the model’s ability to be 

invariant to small changes
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Pooling Layers
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window

1
4
2
3

4
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Common 
Techniques 
for Pooling

• Max pooling
• Take the maximum of all values computed in 

a given window
• Average pooling

• Take the average of all values computed in a 
given window

1
4
2
3

2.5
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The output from pooling layers is passed 
along as input to the rest of the network.

Input Output
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Convolutional neural 
network architectures 
can vary greatly!

• Additional hyperparameters:
• Kernel size
• Padding
• Stride size
• Number of channels
• Pooling technique
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Padding?

• Add empty vectors to the beginning and 
end of your text input

• Why do this?
• Allows you to apply a filter to every 

element of the input matrix
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Channels?

• Red, green, blue

For images, generally 
corresponds to color channels

• Different types of word embeddings
• Word2Vec, GloVe, etc.

• Other feature types
• POS tags, word length, etc.

For text, can mean:
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Why use 
CNNs for 
NLP tasks 
at all?

• Traditionally for image classification!
• However, offer unique advantages for 

NLP tasks:
• CNNs inherently extract meaningful local 

structures from input
• In NLP → implicitly-learned, useful n-grams!
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Summary: 
Feedforward 
Neural 
Networks and 
CNNs

• Neural networks are built from 
interconnected layers of computing 
units

• To train the weights across the entire 
network, loss values are passed 
backward to earlier layers using 
backpropagation

• Model design and training procedures 
for neural networks can be optimized 
by tuning hyperparameters

• One more specialized neural network 
architecture is the convolutional 
neural network

• CNNs can be an efficient way to 
capture local structure in numerous 
types of input data
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Language is 
inherently 
temporal.

• Continuous input streams of indefinite 
length that unfold over time

• Even clear from the metaphors we use to 
describe language:

• Conversation flow
• News feed
• Twitter stream

Natalie Parde - UIC CS 521 84

My project proposal is cooler than yours.

cooler yours. is proposal My than project



Aren’t neural network models (e.g., feedforward 
networks) already able to capture temporal information?

• In a sense, yes
• How?

• Sliding window approach
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Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤+ = “write”|𝑤+!, = “to”, 𝑤+!- = “down”, 𝑤+!. = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax 
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤+ = “the”|𝑤+!, = “write”, 𝑤+!- = “to”, 𝑤+!. = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax 
distribution over 
all words in the 
vocabulary
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Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤+ = “exam”|𝑤+!, = “the”, 𝑤+!- = “write”, 𝑤+!. = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax 
distribution over 
all words in the 
vocabulary
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. Positive 🤷
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However, this method has some 
limitations.
• Constrains the context from which information can be 

extracted
• Only items within the predetermined context window can impact the 

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g., 
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.
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Recurrent 
neural 
networks 
(RNNs) are 
designed to 
overcome 
these 
limitations.

91

Natalie Parde - UIC CS 521

Built-in capacity to handle temporal 
information
• Contain cycles within their connections, where the 

value of a unit is dependent upon outputs from 
previous timesteps

Can accept variable length inputs without 
the use of fixed-size windows

Many varieties exist

• “Vanilla” RNNs
• Long short-term memory networks (LSTMs)
• Gated recurrent units (GRUs)



Vanilla RNN Unit

xt

Current input
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Vanilla RNN Unit

xt ht

Current input
Information from xt
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Vanilla RNN Unit

xt ht

Current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Vanilla RNN Unit

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Although they are more complex, computation units 
in RNNs still perform the same core actions.

Given:

• Input vector
• (New!) activation 

values for the hidden 
layer from the previous 
timestep

Compute:

• Weighted sum of 
inputs
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Biggest 
change….

• New set of weights that connect the 
hidden layer from the previous timestep 
to the current hidden layer

• These weights determine how the 
network should make use of prior 
context

Natalie Parde - UIC CS 521
97



Formal 
Equations

• Recall the basic set of equations for a 
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑉h
• 𝑦 = softmax(z)

• Just add (weights X activation values from 
previous timestep) product to the current 
(weights X inputs) product

• ht = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• zt = 𝑉ht
• 𝑦! = softmax(z)

• W, U, and V are shared across all 
timesteps
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Formal Algorithm
h0 ← 0  # Initialize activations from the hidden layer to 0

# Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b)  # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1
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Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x2

y1

…“write”

…

y|V|

…

h2
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y1

…“write”

…

y|V|

…

h0

h1



Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h3
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y1

…“write”

…

y|V|

…

h0

h1



Training 
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden layer at t

• For forward inference:
• Compute ht and yt at each step in time
• Compute the loss at each step in time

• For backward inference:
• Process the sequence in reverse
• Compute the required error gradients at each 

step backward in time
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Forward Pass

h0 x1

y1

t1

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1
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Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U
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Updated 
Backpropagation 
Equations
• Now we have three sets of weights 

we need to update:
• W, the weights from the input 

layer to the hidden layer
• U, the weights from the 

previous hidden layer to the 
current hidden layer

• V, the weights from the 
hidden layer to the output 
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V
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Weight Update Equations

• Updating the weights for V works no differently from feedforward networks
• When updating the other weights, remember that a hidden layer, 𝛿), must be the sum of the error term from 

the current output and the error term from the next timestep
• 𝛿) = 𝑔* 𝑧 𝑉𝛿+ + 𝛿+#,

• Once we have this updated error term for the hidden layer, we can proceed as usual to compute the 
gradients for U and W

• $-
$. = $-

$&
$&
$/

$/
$. = 𝛿)𝑥+

• $-
$0 =

$-
$&

$&
$/

$/
$0 = 𝛿)ℎ+",

• Backpropagate the error from 𝛿) to ℎ+", based on the weights in U
• 𝛿+#, = 𝑔* 𝑧 𝑈𝛿)

• At this point, we have all of the necessary gradients to update U, V, and W!
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Earlier language models 
(e.g., n-gram language 
models or those using 
feedforward neural 
networks) attempted to 
predict the next word in 
a sequence given a 
prior context of fixed 
length.

• What’s challenging about this approach?
• Model quality is dependent on context 

size
• Anything outside the fixed context 

window has no impact on the model’s 
decision

• Recurrent neural language models 
address many of these challenges

Natalie Parde - UIC CS 521
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax 
function to generate a probability 
distribution over the entire vocabulary
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Recurrent 
Neural 

Language 
Models

• At each timestep:
1. Retrieve an embedding for the current 

input word
2. Combine the weighted sums of (a) the 

input embedding values and (b) the 
activations of the hidden layer from the 
previous step, to compute a new set of 
activation values from the hidden layer

3. Generate a set of outputs based on the 
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability 
distribution over the entire vocabulary
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Generation 
with Neural 
Language 
Models

1. Sample the first word in the output from the 
softmax distribution that results from using 
the beginning of sentence marker (<s>) 
as input

2. Get the embedding for that word
3. Use it as input to the network at the next 

time step, and sample the following word 
as in (1)

4. Repeat until the end of sentence marker 
(</s>) is sampled, or a fixed length limit is 
reached
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Autoregressive 
Generation

• This technique is referred to as 
autoregressive generation

• Word generated at each timestep is 
conditioned on the word generated 
previously by the model
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Autoregressive Generation

<s> RNN

softmax

recurrent
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network
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Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful 
autoregressive 
generation?

Prime the generation 
component with appropriate 
context (e.g., something more 
useful than <s>)
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Sequence 
processing 
models like 
RNNs are also 
useful for many 
classification 
problems.

• Sequence Labeling Tasks: Given a fixed 
set of labels, assign a label to each 
element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated 

by the softmax (or other activation) 
function over the set of all labels

• Sequence Classification Tasks: Given 
an input sequence, assign the entire 
sequence to a class (rather than the 
individual tokens within it)

Natalie Parde - UIC CS 521
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Sequence Labeling

h0 a

determiner

t1

h1
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective
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Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun
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How to use RNNs for sequence 
classification?

1

Pass the sequence 
through an RNN one 
word at a time, as usual

2

Assume that the hidden 
layer for the final word, 
hn, acts as a 
compressed 
representation of the 
entire sequence

3

Use hn as input to a 
subsequent feedforward 
neural network

4

Choose a class via 
softmax over all the 
possible classes
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Sequence Classification

recurrent RNN

neural RNN

network RNN
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Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING
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Notes about Sequence Classification

• Loss function is based entirely on the final classification task (not with intermediate 
outputs)

• Errors are still backpropagated all the way through the RNN
• The process of adjusting weights the entire way through the network based on the 

loss from a downstream application is often referred to as end-to-end training
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Where do 
we go 
from 
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN
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Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Use the entire sequence of outputs from one RNN 
as the input sequence to another

• Capable of outperforming single-layer networks

• Why?
• Having more layers allows the network to 

learn representations at differing levels of 
abstraction across layers

• Early layers → more fundamental 
properties

• Later layers → more meaningful groups 
of fundamental properties

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs
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Bidirectional 
RNNs

• Standard RNNs only consider the 
information in a sequence leading up to the 
current timestep

• ℎ7
8 = 𝑅𝑁𝑁89:;<:=(𝑥>7)
• ℎ7

8 corresponds to the normal hidden 
state at time t

Natalie ran to LCA 007
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Bidirectional 
RNNs

• However, in many cases the context after 
the current timestep could be useful as well!

• In many applications we also have access 
to the entire input sequence anyway

Natalie ran to LCA 007

Natalie ran her code again
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Ran (Sense #2)
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Bidirectional 
RNNs

• How can we make use of information 
both before and after the current 
timestep?

• Train an RNN on an input sequence in 
reverse

• ℎ!" = 𝑅𝑁𝑁"#$%&#'((𝑥!))
• ℎ+) corresponds to information from the current 

timestep to the end of the sequence
• Combine the forward and backward 

networks
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Bidirectional 
RNNs

• Two independent RNNs
• One where the input is processed from start 

to end
• One where the input is processed from end 

to start
• Outputs combined into a single representation 

that captures both the prior and future contexts 
of an input at each timestep

• ℎ* = ℎ*
+⨁ℎ*,

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.
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Bidirectional RNNs

RNNNatalie ran to LCA 007
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Bidirectional RNNs

RNN

RNN

Natalie ran to LCA 007

007 LCA to ran Natalie
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Bidirectional RNNs

RNN

RNN

Natalie ran to LCA 007

007 LCA to ran Natalie

+
ℎ+

ℎ+
2

ℎ+)
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Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
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Despite the advantages we’ve seen 
compared to feedforward neural 
networks, RNNs may still struggle 
with managing context.

• In a standard RNN, the final state tends to 
reflect more information about recent items 
than those at the beginning of the sequence

• Distant timesteps → less information
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This long-distance information 
can be critical to many tasks!

N
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
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Why is it so hard 
to maintain long-
distance context?

• Hidden layers must perform two tasks 
simultaneously:

• Provide information useful for the 
current decision (input at t)

• Update and carry forward 
information required for future 
decisions (input at time t+1 and 
beyond)

• These tasks may not always be 
perfectly aligned with one another
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There’s also the issue of 
“vanishing gradients”….

• When small derivatives are 
repeatedly multiplied together, the 
products can become extremely small

• This means that when 
backpropagating through time for a 
long sequence, gradients can become 
so close to zero that they are no 
longer effective for model training!
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How can we address 
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer 

needed
• Remember information still required 

for future decisions
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Long Short-Term Memory 
Networks (LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:
• Adding an explicit context layer to the 

architecture
• This layer controls the flow of 

information into and out of network 
layers using specialized neural units 
called gates
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LSTM Gates
• Feedforward layer + sigmoid activation + pointwise 

multiplication with the layer being gated
• Combination of sigmoid activation and pointwise 

multiplication essentially creates a binary mask
• Values near 1 in the mask are passed through nearly 

unchanged
• Values near 0 are nearly erased

• Three main gates:
• Forget gate: Should we erase this existing information 

from the context?
• Add gate: Should we write this new information to the 

context?
• Output gate: What information should be leveraged for 

the current hidden state?
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• Goal: Delete information from the context 
that is no longer needed

• 𝑓7 = 𝜎(𝑈8ℎ7@> +𝑊8𝑥7)
• 𝑘7 = 𝑐7@>⨀𝑓7

Forget 
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Context vector from the 
previous timestep



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔7 = tanh(𝑈Aℎ7@> +𝑊A𝑥7)
• 𝑖7 = 𝜎(𝑈Bℎ7@> +𝑊B𝑥7)
• 𝑗7 = 𝑔7⨀𝑖7
• 𝑐7 = 𝑗7 + 𝑘7

Regular RNN computation
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Weighted sum of:
• Hidden layer at the previous timestep
• Current input



Add Gate

• Goal: Select the information to add to the 
current context

• 𝑔7 = tanh(𝑈Aℎ7@> +𝑊A𝑥7)
• 𝑖7 = 𝜎(𝑈Bℎ7@> +𝑊B𝑥7)
• 𝑗7 = 𝑔7⨀𝑖7
• 𝑐7 = 𝑗7 + 𝑘7 New information to be added
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Updated context vector contains:
• New information to be added
• Existing information from context vector that was 

not removed by the forget gate



Output 
Gate

• Goal: Decide what information is required for 
the current hidden state

• 𝑜7 = 𝜎(𝑈9ℎ7@> +𝑊9𝑥7)
• ℎ7 = 𝑜7⨀tanh(𝑐7)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input
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Updated hidden layer output



What does this process look like in a 
single LSTM unit?

Natalie Parde - UIC CS 521 154



What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output
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What does this process look like in a 
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

ℎ+

𝑐+
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Gated 
Recurrent 

Units (GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so 
using a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that 
seen in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise 
multiplication with the layer being 
gated, resulting in a binary-like mask
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Reset Gate
• Goal: Decide which aspects of the previous 

hidden state are relevant to the current 
context

• 𝑟7 = 𝜎(𝑈:ℎ7@> +𝑊:𝑥7)
• Eℎ7 = tanh(𝑈 𝑟7⨀ℎ7@> +𝑊𝑥7)

Weighted sum of:
• Hidden layer at 

the previous 
timestep

• Current input
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Intermediate representation for ℎ+



Update 
Gate

• Goal: Decide which aspects of the 
intermediate hidden state and which aspects 
of the previous hidden state need to be 
preserved for future use

• 𝑧7 = 𝜎(𝑈Hℎ7@> +𝑊H𝑥7)
• ℎ7 = 1 − 𝑧7 ℎ7@> + 𝑧7 Eℎ7

Weighted sum of:
• Hidden layer at the 

previous timestep
• Current input
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Updated hidden layer output



What does this process look like in a 
single GRU unit?
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

Reset
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update
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What does this process look like in a 
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ+
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Overall, comparing inputs and outputs for 
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU
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When to use LSTMs vs. GRUs?
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Why use GRUs instead of 
LSTMs?

• Computational efficiency: 
Good for scenarios in 
which you need to train 
your model quickly and 
don’t have access to high-
performance computing 
resources

Why use LSTMs instead of 
GRUs?

• Performance: LSTMs 
generally outperform GRUs 
at the same tasks



Summary: 
Recurrent 
Neural 
Networks

• Recurrent neural networks 
incorporate prior context into their 
design by leveraging weighted 
temporal information from the 
previous timestep

• RNNs can be stacked together, or 
they can be combined to form 
bidirectional models

• Two specialized RNN architectures 
designed to address weaknesses 
associated with long-range context are 
long short-term memory networks
and gated recurrent units

• Both LSTMs and GRUs incorporate 
gating mechanisms to offer improved 
control over the flow of information 
between timesteps
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