
Deep Learning
Architectures
for Sequence
Processing
Natalie Parde
UIC CS 521

Review: Neural Networks Basics

Natalie Parde - UIC CS 521

2

Feedforward
Neural

Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in the
last layer are hidden from external viewers

Natalie Parde - UIC CS 521 3

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 521 4

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 521 5

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

Natalie Parde - UIC CS 521 6

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

Natalie Parde - UIC CS 521 7

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

Natalie Parde - UIC CS 521 8

Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 521 9

Neural
networks tend
to be more
powerful than
traditional
classification
algorithms.

• Traditional classification algorithms
usually assume that data is linearly
separable

• Neural networks are better equipped to
learn complex, nonlinear separations
between data classes

10

Building
Blocks for

Neural
Networks

• At their core, neural networks are
comprised of computational units

• Computational units:
1. Take real-valued numbers as input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

Natalie Parde - UIC CS 521 11

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥!, … , 𝑥", a unit has a set of corresponding
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑#𝑤#𝑥#

Natalie Parde - UIC CS 521 12

Computational
Units

• The weighted sum of inputs computes a
linear function of 𝑥

• We pass this sum through one of many
possible nonlinear functions, commonly
referred to as activations

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

Natalie Parde - UIC CS 521 13

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 521 14

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 521 15

Computational Unit with Sigmoid
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Natalie Parde - UIC CS 521 16

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
Natalie Parde - UIC CS 521 17

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 18

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 19

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 20

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 21

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 22

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$% = 0.686

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 23

Example: Computational Unit with
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Vectorized input (e.g.,
averaged n-dimensional
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 521 24

Particularly Popular
Activation Functions

• Tanh:
• Variant of sigmoid that ranges from -1 to +1

• 𝑦 = !!"!"!

!!#!"!

• Once again differentiable
• Larger derivatives → generally faster

convergence
• ReLU:

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

Natalie Parde - UIC CS 521 25

Combining Computational Units

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 26

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 27

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 28

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 29

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 30

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 31

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 32

Combining Computational Units

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 521 33

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
that can better separate the data into the target classes

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 34

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
that can better separate the data into the target classes

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 35

Formalizing
Feedforward
Neural
Networks

Formalizing
Feedforward
Neural
Networks

• We can represent a two-layer network as:
• 𝑧[!] = 𝑊[!]𝑎[6] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[7] = 𝑊[7]𝑎[!] + 𝑏[7]

• 𝑎[7] = 𝑔 7 (𝑧 7)
• 𝑦8 = 𝑎[7]

• We can easily generalize to networks with
more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#9!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 #)
• 𝑦8 = 𝑎["]

Natalie Parde - UIC CS 521 37

Does every
layer use
the same
activation
function?

• The activation function 𝑔(-) generally differs
for the final layer

• Final layers will usually use softmax (for
multinomial classification) or sigmoid (for
binary classification) activations

Natalie Parde - UIC CS 521 38

How do we train neural
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Natalie Parde - UIC CS 521 39

How do we train neural
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Cross-entropy loss

Natalie Parde - UIC CS 521 40

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Gradient descent

Natalie Parde - UIC CS 521 41

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

???

Natalie Parde - UIC CS 521 42

Recall….
• When we train a logistic regression classifier,

we can compute the gradient of our loss
function by just taking its derivative:

• :;!"(<,=)
:<#

= 2𝑦 − 𝑦 𝑥> = (𝜎 𝑤 - 𝑥 + 𝑏 − 𝑦)𝑥>

Natalie Parde - UIC CS 521

Difference between true and estimated y
Corresponding input
observation

43

However, we
can’t do that
with a neural
network that
has multiple
weight layers
(“hidden”
layers).

• Why?
• Taking the derivative of the loss

function only provides the gradient
for the final weight layer

• What we need is a way to:
• Compute the derivative with respect

to weight parameters occurring
earlier in the network as well

• Even though we can only compute
loss at a single point (the end of the
network)

Natalie Parde - UIC CS 521 44

We do this
using
backward
differentiation.

• Usually referred to as backpropagation in the
context of neural networks

• Frames neural networks as computation graphs
• Representations of interconnected mathematical

operations
• Nodes = Operations
• Directed edges = connections between output/input of

nodes

Natalie Parde - UIC CS 521 45

There are
two different
ways that we
can pass
information
through our
neural
network
computation
graphs.

• Forward pass
• Apply operations in the direction of the final

layer
• Pass the output of one computation as the

input to the next
• Backward pass

• Compute partial derivatives in the opposite
direction of the final layer

• Multiply them by the partial derivatives
passed down from the previous step

Natalie Parde - UIC CS 521 46

Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 47

Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 48

Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 49

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 50

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 51

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 52

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 53

To perform
a backward
pass, how
do we get
from L all
the way
back to a, b,
and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect
to v(x)

• Find the derivative of v(x) with respect
to x

• Multiply the two together
• ?@
?A =

?B
?C ∗

?C
?A

Natalie Parde - UIC CS 521

Derivatives of popular activation functions:
$!"#$(&)

$& = 1 − tanh(𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 40	for	𝑧 < 0

1	for	𝑧 ≥ 0

54

In theory, !!"#$(#)
!%

	 is undefined! In practice,

by convention we set !!"#$(#)
!%

= 0.

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

Natalie Parde - UIC CS 521 55

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐 = 𝑒

Natalie Parde - UIC CS 521 56

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= ?

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑎 = 𝑐 ∗ 1 = 𝑐

Natalie Parde - UIC CS 521 57

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= ?

&'
&*
= 𝑒

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏 =

𝜕𝐿
𝜕𝑒
𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏 = 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐

Natalie Parde - UIC CS 521 58

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐

&'
&)
= 2𝑐

&'
&*
= 𝑒

Natalie Parde - UIC CS 521 59

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

&'
&(
= 𝑐 = −2

&'
&)
= 2𝑐 = 2 ∗ −2 = −4

&'
&*
= 𝑒 = 5

Natalie Parde - UIC CS 521 60

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Computation graphs for neural networks
involve numerous interconnected units.

Input Output

Natalie Parde - UIC CS 521 61

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

Natalie Parde - UIC CS 521 62

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

All of these weights
need to be updated
using backpropagation!

w

Natalie Parde - UIC CS 521 63

Convolutional
Neural
Networks

• Neural networks that incorporate one or
more convolutional layers

• Designed to reflect the inner workings of the
visual cortex system

• Require that fewer parameters are learned
relative to feedforward networks for
equivalent input data

Natalie Parde - UIC CS 521 64

What are
convolutional

layers?

• Sliding windows that perform matrix
operations on subsets of the input

• Compute products between those subsets
of input and a corresponding weight matrix

Natalie Parde - UIC CS 521 65

Convolutional Layers

• First layer(s): low-level features
• Color, gradient orientation
• N-grams

• Higher layer(s): high-level features
• Objects
• Phrases

Natalie Parde - UIC CS 521 66

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 1

Natalie Parde - UIC CS 521 67

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 2

Natalie Parde - UIC CS 521 68

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Feature Map

Natalie Parde - UIC CS 521 69

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521 Feature Map

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 70

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521 Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 71

After applying a convolution with specific
region (kernel) and stride sizes to an input
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 72

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

It’s common to extract multiple different
feature maps from the same input.

Natalie Parde - UIC CS 521 73

After extracting
feature maps

from the input,
CNNs utilize

pooling layers.

• Pooling layers: Layers that reduce the
dimensionality of input feature maps by
pooling all of the values in a given region

• Why use pooling layers?
• Further increase efficiency
• Improve the model’s ability to be

invariant to small changes

Natalie Parde - UIC CS 521 74

Pooling Layers

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 75

Common
Techniques
for Pooling

• Max pooling
• Take the maximum of all values computed in

a given window

1
4
2
3

4

Natalie Parde - UIC CS 521 76

Common
Techniques
for Pooling

• Max pooling
• Take the maximum of all values computed in

a given window
• Average pooling

• Take the average of all values computed in a
given window

1
4
2
3

2.5

Natalie Parde - UIC CS 521 77

The output from pooling layers is passed
along as input to the rest of the network.

Input Output
I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 78

Convolutional neural
network architectures
can vary greatly!

• Additional hyperparameters:
• Kernel size
• Padding
• Stride size
• Number of channels
• Pooling technique

Natalie Parde - UIC CS 521 79

Padding?

• Add empty vectors to the beginning and
end of your text input

• Why do this?
• Allows you to apply a filter to every

element of the input matrix

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Natalie Parde - UIC CS 521 80

Channels?

• Red, green, blue

For images, generally
corresponds to color channels

• Different types of word embeddings
• Word2Vec, GloVe, etc.

• Other feature types
• POS tags, word length, etc.

For text, can mean:

Natalie Parde - UIC CS 521 81

Why use
CNNs for
NLP tasks
at all?

• Traditionally for image classification!
• However, offer unique advantages for

NLP tasks:
• CNNs inherently extract meaningful local

structures from input
• In NLP → implicitly-learned, useful n-grams!

Natalie Parde - UIC CS 521 82

Summary:
Feedforward
Neural
Networks and
CNNs

• Neural networks are built from
interconnected layers of computing
units

• To train the weights across the entire
network, loss values are passed
backward to earlier layers using
backpropagation

• Model design and training procedures
for neural networks can be optimized
by tuning hyperparameters

• One more specialized neural network
architecture is the convolutional
neural network

• CNNs can be an efficient way to
capture local structure in numerous
types of input data

Natalie Parde - UIC CS 521 83

Language is
inherently
temporal.

• Continuous input streams of indefinite
length that unfold over time

• Even clear from the metaphors we use to
describe language:

• Conversation flow
• News feed
• Twitter stream

Natalie Parde - UIC CS 521 84

My project proposal is cooler than yours.

cooler yours. is proposal My than project

Aren’t neural network models (e.g., feedforward
networks) already able to capture temporal information?

• In a sense, yes
• How?

• Sliding window approach

Natalie Parde - UIC CS 521 85

Sliding Window Approach

Natalie wt-4

sat wt-3

down wt-2

to wt-1

write wt

the wt+1

exam wt+2

𝑃(𝑤+ = “write”|𝑤+!, = “to”, 𝑤+!- = “down”, 𝑤+!. = “sat”)

h1

h2

y1

…

“write”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 86

Sliding Window Approach

Natalie wt-5

sat wt-4

down wt-3

to wt-2

write wt-1

the wt

exam wt+1

𝑃(𝑤+ = “the”|𝑤+!, = “write”, 𝑤+!- = “to”, 𝑤+!. = “down”)

h1

h2

y1

…

“the”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 87

Sliding Window Approach

Natalie wt-6

sat wt-5

down wt-4

to wt-3

write wt-2

the wt-1

exam wt

𝑃(𝑤+ = “exam”|𝑤+!, = “the”, 𝑤+!- = “write”, 𝑤+!. = “to”)

h1

h2

y1

…

“exam”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 521 88

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. Positive 🤷

Natalie Parde - UIC CS 521 89

However, this method has some
limitations.
• Constrains the context from which information can be

extracted
• Only items within the predetermined context window can impact the

model’s decision
• Makes it difficult to learn systematic patterns

• Particularly problematic when learning grammatical information (e.g.,
constituent parses)

I can’t say I loved this movie. I can’t say I loved this movie. I can’t say I loved this movie.

Natalie Parde - UIC CS 521 90

Recurrent
neural
networks
(RNNs) are
designed to
overcome
these
limitations.

91

Natalie Parde - UIC CS 521

Built-in capacity to handle temporal
information
• Contain cycles within their connections, where the

value of a unit is dependent upon outputs from
previous timesteps

Can accept variable length inputs without
the use of fixed-size windows

Many varieties exist

• “Vanilla” RNNs
• Long short-term memory networks (LSTMs)
• Gated recurrent units (GRUs)

Vanilla RNN Unit

xt

Current input

Natalie Parde - UIC CS 521 92

Vanilla RNN Unit

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 521 93

Vanilla RNN Unit

xt ht

Current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 521 94

Vanilla RNN Unit

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 521 95

Although they are more complex, computation units
in RNNs still perform the same core actions.

Given:

• Input vector
• (New!) activation

values for the hidden
layer from the previous
timestep

Compute:

• Weighted sum of
inputs

Natalie Parde - UIC CS 521 96

Biggest
change….

• New set of weights that connect the
hidden layer from the previous timestep
to the current hidden layer

• These weights determine how the
network should make use of prior
context

Natalie Parde - UIC CS 521
97

Formal
Equations

• Recall the basic set of equations for a
feedforward neural network:

• h = 𝜎 𝑊x + 𝐛
• z = 𝑉h
• 𝑦 = softmax(z)

• Just add (weights X activation values from
previous timestep) product to the current
(weights X inputs) product

• ht = 𝜎 𝑊xt + 𝑈ht−1 + 𝐛
• zt = 𝑉ht
• 𝑦! = softmax(z)

• W, U, and V are shared across all
timesteps

Natalie Parde - UIC CS 521 98

Formal Algorithm
h0 ← 0 # Initialize activations from the hidden layer to 0

Iterate through each input element in temporal order

for i ← 1 to length(x) do:

hi ← g(Uhi-1 + Wxi + b) # Bias vector is optional

yi ← f(Vhi)

New values for h and y are calculated with each time step!

Natalie Parde - UIC CS 521 99

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

y1

…“write”

…

y|V|

…

h0

x1

h1

Natalie Parde - UIC CS 521 100

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x2

y1

…“write”

…

y|V|

…

h2

Natalie Parde - UIC CS 521 101

y1

…“write”

…

y|V|

…

h0

h1

Earlier Example: RNN Edition

Natalie
sat
down
to
write
the
exam

x3

y1

…“write”

…

y|V|

…

h2

y1

…“write”

…

y|V|

…

h3

Natalie Parde - UIC CS 521 102

y1

…“write”

…

y|V|

…

h0

h1

Training
RNNs

• Same core elements:
• Loss function
• Optimization function
• Backpropagation

• One extra set of weights to update
• Hidden layer from t-1 to current hidden layer at t

• For forward inference:
• Compute ht and yt at each step in time
• Compute the loss at each step in time

• For backward inference:
• Process the sequence in reverse
• Compute the required error gradients at each

step backward in time

Natalie Parde - UIC CS 521 103

Forward Pass

h0 x1

y1

t1

h1

Natalie Parde - UIC CS 521 104

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h2

h1

Natalie Parde - UIC CS 521 105

Forward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 106

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 107

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 108

Backward Pass

h0 x1

y1

t1

x2

y2

t2

h1

h2

x3

y3

t3

h3

Natalie Parde - UIC CS 521 109

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

W

Natalie Parde - UIC CS 521 110

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

U

Natalie Parde - UIC CS 521 111

Updated
Backpropagation
Equations
• Now we have three sets of weights

we need to update:
• W, the weights from the input

layer to the hidden layer
• U, the weights from the

previous hidden layer to the
current hidden layer

• V, the weights from the
hidden layer to the output
layer

h0 x1

y1

t1

x2

y2

t2

h1

h2
x3

y3

t3

h3

V

Natalie Parde - UIC CS 521 112

Weight Update Equations

• Updating the weights for V works no differently from feedforward networks
• When updating the other weights, remember that a hidden layer, 𝛿), must be the sum of the error term from

the current output and the error term from the next timestep
• 𝛿) = 𝑔* 𝑧 𝑉𝛿+ + 𝛿+#,

• Once we have this updated error term for the hidden layer, we can proceed as usual to compute the
gradients for U and W

• $-
$. = $-

$&
$&
$/

$/
$. = 𝛿)𝑥+

• $-
$0 =

$-
$&

$&
$/

$/
$0 = 𝛿)ℎ+",

• Backpropagate the error from 𝛿) to ℎ+", based on the weights in U
• 𝛿+#, = 𝑔* 𝑧 𝑈𝛿)

• At this point, we have all of the necessary gradients to update U, V, and W!

Natalie Parde - UIC CS 521 113

Earlier language models
(e.g., n-gram language
models or those using
feedforward neural
networks) attempted to
predict the next word in
a sequence given a
prior context of fixed
length.

• What’s challenging about this approach?
• Model quality is dependent on context

size
• Anything outside the fixed context

window has no impact on the model’s
decision

• Recurrent neural language models
address many of these challenges

Natalie Parde - UIC CS 521

114

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 115

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 116

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 117

Recurrent
Neural

Language
Models

• At each timestep:
1. Retrieve an embedding for the current

input word
2. Combine the weighted sums of (a) the

input embedding values and (b) the
activations of the hidden layer from the
previous step, to compute a new set of
activation values from the hidden layer

3. Generate a set of outputs based on the
activations from the hidden layer

4. Pass the outputs through a softmax
function to generate a probability
distribution over the entire vocabulary

Natalie Parde - UIC CS 521 118

Generation
with Neural
Language
Models

1. Sample the first word in the output from the
softmax distribution that results from using
the beginning of sentence marker (<s>)
as input

2. Get the embedding for that word
3. Use it as input to the network at the next

time step, and sample the following word
as in (1)

4. Repeat until the end of sentence marker
(</s>) is sampled, or a fixed length limit is
reached

Natalie Parde - UIC CS 521 119

Autoregressive
Generation

• This technique is referred to as
autoregressive generation

• Word generated at each timestep is
conditioned on the word generated
previously by the model

Natalie Parde - UIC CS 521 120

Autoregressive Generation

<s> RNN

softmax

recurrent

Natalie Parde - UIC CS 521 121

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

Natalie Parde - UIC CS 521 122

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Natalie Parde - UIC CS 521 123

Autoregressive Generation

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN

softmax

network

Key to successful
autoregressive
generation?

Prime the generation
component with appropriate
context (e.g., something more
useful than <s>)

Natalie Parde - UIC CS 521 124

Sequence
processing
models like
RNNs are also
useful for many
classification
problems.

• Sequence Labeling Tasks: Given a fixed
set of labels, assign a label to each
element of a sequence

• Example: Part-of-speech tagging
• Inputs → word embeddings
• Outputs → label probabilities generated

by the softmax (or other activation)
function over the set of all labels

• Sequence Classification Tasks: Given
an input sequence, assign the entire
sequence to a class (rather than the
individual tokens within it)

Natalie Parde - UIC CS 521

125

Sequence Labeling

h0 a

determiner

t1

h1

Natalie Parde - UIC CS 521 126

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective

Natalie Parde - UIC CS 521 127

Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun

Natalie Parde - UIC CS 521 128

How to use RNNs for sequence
classification?

1

Pass the sequence
through an RNN one
word at a time, as usual

2

Assume that the hidden
layer for the final word,
hn, acts as a
compressed
representation of the
entire sequence

3

Use hn as input to a
subsequent feedforward
neural network

4

Choose a class via
softmax over all the
possible classes

Natalie Parde - UIC CS 521 129

Sequence Classification

recurrent RNN

neural RNN

network RNN

Natalie Parde - UIC CS 521 130

Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING

Natalie Parde - UIC CS 521 131

Notes about Sequence Classification

• Loss function is based entirely on the final classification task (not with intermediate
outputs)

• Errors are still backpropagated all the way through the RNN
• The process of adjusting weights the entire way through the network based on the

loss from a downstream application is often referred to as end-to-end training

Natalie Parde - UIC CS 521 132

Where do
we go
from
here?

• So far, we’ve discussed “vanilla” RNNs
• Many additional varieties exist!
• Extensions to the vanilla RNN model:

• RNN + Feedforward layers
• Stacked RNNs
• Bidirectional RNNs

RNN

hn

FNN

Natalie Parde - UIC CS 521 133

Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Use the entire sequence of outputs from one RNN
as the input sequence to another

• Capable of outperforming single-layer networks

• Why?
• Having more layers allows the network to

learn representations at differing levels of
abstraction across layers

• Early layers → more fundamental
properties

• Later layers → more meaningful groups
of fundamental properties

• Optimal number of RNNs to stack together?
• Depends on application and training set

• More RNNs in the stack → increased training costs

Natalie Parde - UIC CS 521 134

Bidirectional
RNNs

• Standard RNNs only consider the
information in a sequence leading up to the
current timestep

• ℎ7
8 = 𝑅𝑁𝑁89:;<:=(𝑥>7)
• ℎ7

8 corresponds to the normal hidden
state at time t

Natalie ran to LCA 007

Natalie Parde - UIC CS 521 135

Bidirectional
RNNs

• However, in many cases the context after
the current timestep could be useful as well!

• In many applications we also have access
to the entire input sequence anyway

Natalie ran to LCA 007

Natalie ran her code again

Natalie Parde - UIC CS 521

Ran (Sense #1)

Ran (Sense #2)

136

Bidirectional
RNNs

• How can we make use of information
both before and after the current
timestep?

• Train an RNN on an input sequence in
reverse

• ℎ!" = 𝑅𝑁𝑁"#$%&#'((𝑥!))
• ℎ+) corresponds to information from the current

timestep to the end of the sequence
• Combine the forward and backward

networks

Natalie Parde - UIC CS 521 137

Bidirectional
RNNs

• Two independent RNNs
• One where the input is processed from start

to end
• One where the input is processed from end

to start
• Outputs combined into a single representation

that captures both the prior and future contexts
of an input at each timestep

• ℎ* = ℎ*
+⨁ℎ*,

• How to combine the contexts?
• Concatenation
• Element-wise addition, multiplication, etc.

Natalie Parde - UIC CS 521 138

Bidirectional RNNs

RNNNatalie ran to LCA 007

Natalie Parde - UIC CS 521 139

Bidirectional RNNs

RNN

RNN

Natalie ran to LCA 007

007 LCA to ran Natalie

Natalie Parde - UIC CS 521 140

Bidirectional RNNs

RNN

RNN

Natalie ran to LCA 007

007 LCA to ran Natalie

+
ℎ+

ℎ+
2

ℎ+)

Natalie Parde - UIC CS 521 141

Sequence Classification with a Bidirectional RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+

Natalie Parde - UIC CS 521 142

Despite the advantages we’ve seen
compared to feedforward neural
networks, RNNs may still struggle
with managing context.

• In a standard RNN, the final state tends to
reflect more information about recent items
than those at the beginning of the sequence

• Distant timesteps → less information

Natalie Parde - UIC CS 521 143

This long-distance information
can be critical to many tasks!

N
atalie

took
a train
to O

’H
are

and
then
a plane

to L.A
.

and

then

a plane

to Tokyo

and

then

a plane

to M
iyazaki

w
here

she

finally

U
bered

to her

hotel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

Natalie Parde - UIC CS 521 144

Why is it so hard
to maintain long-
distance context?

• Hidden layers must perform two tasks
simultaneously:

• Provide information useful for the
current decision (input at t)

• Update and carry forward
information required for future
decisions (input at time t+1 and
beyond)

• These tasks may not always be
perfectly aligned with one another

Natalie Parde - UIC CS 521 145

There’s also the issue of
“vanishing gradients”….

• When small derivatives are
repeatedly multiplied together, the
products can become extremely small

• This means that when
backpropagating through time for a
long sequence, gradients can become
so close to zero that they are no
longer effective for model training!

Natalie Parde - UIC CS 521 146

How can we address
this?

• Design more complex RNNs that learn to:
• Forget information that is no longer

needed
• Remember information still required

for future decisions

Natalie Parde - UIC CS 521 147

Long Short-Term Memory
Networks (LSTMs)

• Remove information no longer needed
from the context, and add information
likely to be needed later

• Do this by:
• Adding an explicit context layer to the

architecture
• This layer controls the flow of

information into and out of network
layers using specialized neural units
called gates

Natalie Parde - UIC CS 521 148

LSTM Gates
• Feedforward layer + sigmoid activation + pointwise

multiplication with the layer being gated
• Combination of sigmoid activation and pointwise

multiplication essentially creates a binary mask
• Values near 1 in the mask are passed through nearly

unchanged
• Values near 0 are nearly erased

• Three main gates:
• Forget gate: Should we erase this existing information

from the context?
• Add gate: Should we write this new information to the

context?
• Output gate: What information should be leveraged for

the current hidden state?

Natalie Parde - UIC CS 521 149

• Goal: Delete information from the context
that is no longer needed

• 𝑓7 = 𝜎(𝑈8ℎ7@> +𝑊8𝑥7)
• 𝑘7 = 𝑐7@>⨀𝑓7

Forget
Gate

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 150

Context vector from the
previous timestep

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔7 = tanh(𝑈Aℎ7@> +𝑊A𝑥7)
• 𝑖7 = 𝜎(𝑈Bℎ7@> +𝑊B𝑥7)
• 𝑗7 = 𝑔7⨀𝑖7
• 𝑐7 = 𝑗7 + 𝑘7

Regular RNN computation

Natalie Parde - UIC CS 521 151

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Add Gate

• Goal: Select the information to add to the
current context

• 𝑔7 = tanh(𝑈Aℎ7@> +𝑊A𝑥7)
• 𝑖7 = 𝜎(𝑈Bℎ7@> +𝑊B𝑥7)
• 𝑗7 = 𝑔7⨀𝑖7
• 𝑐7 = 𝑗7 + 𝑘7 New information to be added

Natalie Parde - UIC CS 521 152

Updated context vector contains:
• New information to be added
• Existing information from context vector that was

not removed by the forget gate

Output
Gate

• Goal: Decide what information is required for
the current hidden state

• 𝑜7 = 𝜎(𝑈9ℎ7@> +𝑊9𝑥7)
• ℎ7 = 𝑜7⨀tanh(𝑐7)

Weighted sum of:
• Hidden layer at the previous timestep
• Current input

Natalie Parde - UIC CS 521 153

Updated hidden layer output

What does this process look like in a
single LSTM unit?

Natalie Parde - UIC CS 521 154

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

Natalie Parde - UIC CS 521 155

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

Natalie Parde - UIC CS 521 156

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

Natalie Parde - UIC CS 521 157

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

Natalie Parde - UIC CS 521 158

What does this process look like in a
single LSTM unit?

𝑐+!,

𝑥+

ℎ+!,

𝜎 ⨀

Forget

𝜎

tanh
⨀ +

Add

𝜎

tanh
⨀

Output

ℎ+

𝑐+

Natalie Parde - UIC CS 521 159

Gated
Recurrent

Units (GRUs)

• Also manage the context that is passed
through to the next timestep, but do so
using a simpler architecture than LSTMs

• No separate context vector
• Only two gates

• Reset gate
• Update gate

• Gates still use a similar design to that
seen in LSTMs

• Feedforward layer + sigmoid
activation + pointwise
multiplication with the layer being
gated, resulting in a binary-like mask

Natalie Parde - UIC CS 521 160

Reset Gate
• Goal: Decide which aspects of the previous

hidden state are relevant to the current
context

• 𝑟7 = 𝜎(𝑈:ℎ7@> +𝑊:𝑥7)
• Eℎ7 = tanh(𝑈 𝑟7⨀ℎ7@> +𝑊𝑥7)

Weighted sum of:
• Hidden layer at

the previous
timestep

• Current input

Natalie Parde - UIC CS 521 161

Intermediate representation for ℎ+

Update
Gate

• Goal: Decide which aspects of the
intermediate hidden state and which aspects
of the previous hidden state need to be
preserved for future use

• 𝑧7 = 𝜎(𝑈Hℎ7@> +𝑊H𝑥7)
• ℎ7 = 1 − 𝑧7 ℎ7@> + 𝑧7 Eℎ7

Weighted sum of:
• Hidden layer at the

previous timestep
• Current input

Natalie Parde - UIC CS 521 162

Updated hidden layer output

What does this process look like in a
single GRU unit?

Natalie Parde - UIC CS 521 163

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

Natalie Parde - UIC CS 521 164

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

Reset

Natalie Parde - UIC CS 521 165

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

Natalie Parde - UIC CS 521 166

What does this process look like in a
single GRU unit?

𝑥+

ℎ+!,

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ+

Natalie Parde - UIC CS 521 167

Overall, comparing inputs and outputs for
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU

Natalie Parde - UIC CS 521 168

When to use LSTMs vs. GRUs?

Natalie Parde - UIC CS 521 169

Why use GRUs instead of
LSTMs?

• Computational efficiency:
Good for scenarios in
which you need to train
your model quickly and
don’t have access to high-
performance computing
resources

Why use LSTMs instead of
GRUs?

• Performance: LSTMs
generally outperform GRUs
at the same tasks

Summary:
Recurrent
Neural
Networks

• Recurrent neural networks
incorporate prior context into their
design by leveraging weighted
temporal information from the
previous timestep

• RNNs can be stacked together, or
they can be combined to form
bidirectional models

• Two specialized RNN architectures
designed to address weaknesses
associated with long-range context are
long short-term memory networks
and gated recurrent units

• Both LSTMs and GRUs incorporate
gating mechanisms to offer improved
control over the flow of information
between timesteps

Natalie Parde - UIC CS 521 170

