
Generative AI
Natalie Parde, Ph.D.

Department of Computer Science
University of Illinois Chicago

UIC CS 521 - Natalie Parde 2

What is generative
AI?
• Broadly speaking: Any machine learning

model that focuses on generating output
rather than categorizing or scoring input
data

• More narrowly: Generally involves a very
large, pretrained language model
(typically referred to as a large language
model, or LLM)
• Can also involve multimodal models,

to interpret or generate non-text data

UIC CS 521 - Natalie Parde 3

Generative AI is becoming pervasive across applications!

UIC CS 521 - Natalie Parde 4

Large Language Models

• What is “large”?
• Not clearly defined, but generally speaking, anything “BERT-sized” (~110

million parameters) or larger

• Trained on massive quantities of text data to predict which word(s)
should appear, given a context
• Can theoretically use any architecture that works for this setting,

but in practice, modern LLMs are Transformer models

UIC CS 521 - Natalie Parde 5

How are LLMs
pretrained?

• Can be pretrained with numerous objectives
• Masked language modeling
• Next sentence prediction
• Autoregressive generation

• Different pretraining objectives are useful for
different purposes
• Pretraining for masked language modeling

may produce LLMs that are especially well-
suited for classification

• Pretraining for autoregressive generation may
produce LLMs that are especially well-suited
for longer-form generation tasks

UIC CS 521 - Natalie Parde 6

What’s most popular right now?

• The most popular LLMs right now (e.g., GPT-X or LLaMa) are
pretrained for autoregressive generation
• Given the sequence of words that have been generated so far, decide

which word should come next

Generative Pretrained Transformer

G P T

UIC CS 521 - Natalie Parde 7

Next
Word

Prediction

Next
Word

Prediction

Next
Word

Prediction

Autoregressive Generation

<s> Transformer generation

<s> generation Transformer is

<s> generation is Transformer fun

UIC CS 521 - Natalie Parde 8

Is this a
step back?

• First came autoregressive
generation, then came masked
language modeling, then came
…autoregressive generation
again?
• Autoregressive generation

without instruction tuning is
only useful for limited
purposes (e.g.,
autocomplete)

• Autoregressive generation +
instruction tuning +
reinforcement learning
with human feedback (+
better prefixes) is a very
recent development, and
much more useful!

UIC CS 521 - Natalie Parde 9

In fact, these recent developments have
ushered in a new training paradigm.
• Why?
• Fine-tuning pretrained models to perform new tasks works very well in

many cases, but it still requires that you have a reasonably large
supervised training set for the target task
• In some cases, we only have a very tiny amount of training data (or none

at all) for our target task!

Rule-Based Era
•Prior to ~1990s

Statistical and (Early) Neural Era
•1990s to 2010s

Pretrain and Finetune Era
•Late 2010s to present

Pretrain and Prompt Era
•Early 2020s to present

UIC CS 521 - Natalie Parde 10

Introducing: Pretrain (and Optionally Fine-
Tune) and Prompt
• Intuition:
• If we take LLMs that have been pretrained on a wide variety of language

data, we can prompt them to produce the correct labels or output for new
tasks

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m. flight.”
Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get to
her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance. Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early morning
airport security line.” Label:

LLM
SARCASTIC

UIC CS 521 - Natalie Parde 11

This new paradigm has seen remarkably
rapid uptake in the NLP community!

Full, Main Conference
Papers with “Prompt” in Title

ACL 2022 22

EMNLP 2022 41

ACL 2023 36

EMNLP 2023 44

UIC CS 521 - Natalie Parde 12

At the core of most
recent work are
generative pretrained
Transformers (GPTs).

https://cdn.openai.com/research-
covers/language-
unsupervised/language_understandi
ng_paper.pdf

UIC CS 521 - Natalie Parde 13

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Popular
Large

(Generative)
Language

Models

UIC CS 521 - Natalie Parde 14

Open vs. Closed
Models

UIC CS 521 - Natalie Parde 15

Open vs. Closed Models

• However, very recent interest (and helpful
efforts from community members!) have led
to the public release of several open-source
LLMs
• Fully accessible and modifiable
• Architecture is fully explorable
• Free!
• Examples:

• Llama 2:
https://llama.meta.com/llama2

• OLMo: https://allenai.org/olmo

UIC CS 521 - Natalie Parde 16

https://llama.meta.com/llama2
https://allenai.org/olmo

LLM
Resources

https://huggingface.co/spaces/Hugging
FaceH4/open_llm_leaderboard

https://arxiv.org/abs/2303.18223

https://github.com/RUCAIBox/LLM
Survey

https://huggingface.co/models?pipeline
_tag=text-generation&sort=trending

UIC CS 521 - Natalie Parde 17

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://arxiv.org/abs/2303.18223
https://github.com/RUCAIBox/LLMSurvey
https://github.com/RUCAIBox/LLMSurvey
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending

Instruction Tuning • Contemporary LLMs work well at solving a
diverse range of tasks, despite their often
being pretrained on tasks far from the end
application goal
• Example: general-domain

autoregressive language modeling
• We ideally want LLMs to optimally follow

our directions to solve desired task(s)
• How can we improve the LLM’s ability to do

this?
• Instruction Tuning: An emerging

technique to align pretrained
generative language models with end
application goals

UIC CS 521 - Natalie Parde 18

Why perform instruction tuning?
Advantages of instruction tuning:
• Bridges the gap between standard language

modeling pretraining tasks and end user task
goals

• Encourages more controllable and predictable
model behavior

• Promotes computational efficiency
• Facilitates domain adaptation

UIC CS 521 - Natalie Parde 19

However,
instruction
tuning is
challenging….

• Few high-quality instruction tuning datasets
are available
• Instructions should be diverse, creative,

and cover the desired target outcomes
• No guarantee that the tuned model will

generalize beyond the tasks covered in the
instruction tuning dataset

• May only learn surface-level patterns
associated with task data (rather than real
characteristics of the task)

UIC CS 521 - Natalie Parde 20

How does
instruction
tuning
work?

UIC CS 521 - Natalie Parde 21

Building Instruction Tuning Datasets

• Components:
• Instruction (natural language text sequence)
• General and specific task details

• (Optional) supplemental context (natural language text sequence)
• Related background information and/or demonstrations

• Output (natural language text sequence)
• Generated output label or text sequence

UIC CS 521 - Natalie Parde 22

What does this look like?

Come up with some good acronyms for
a new instruction tuning method that
uses less manual data by augmenting
the training set with synthetic
generated data

General instruction
(consistent across all
training inputs)

Specific input for
this data instance

UIC CS 521 - Natalie Parde 23

What does this look like?

Come up with some good acronyms for
a new instruction tuning method that
uses less manual data by augmenting
the training set with synthetic
generated data
Acronyms should use the first letters of
important words for the method. For
example:
Method: an approach to interpret
metaphors by mapping them to
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor
Interpretation by Recognizing
Associated Groupings and Expressions Supplemental

context

UIC CS 521 - Natalie Parde 24

What does this look like?

Come up with some good acronyms for
a new instruction tuning method that
uses less manual data by augmenting
the training set with synthetic
generated data
Acronyms should use the first letters of
important words for the method. For
example:
Method: an approach to interpret
metaphors by mapping them to
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor
Interpretation by Recognizing
Associated Groupings and Expressions

LLM

UIC CS 521 - Natalie Parde 25

What does this look like?

Come up with some good acronyms for
a new instruction tuning method that
uses less manual data by augmenting
the training set with synthetic
generated data
Acronyms should use the first letters of
important words for the method. For
example:
Method: an approach to interpret
metaphors by mapping them to
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor
Interpretation by Recognizing
Associated Groupings and Expressions

LLM

SYNTHETIC: Synthetic
Yield for Novel
Instruction Tuning
and Human-less
Training

UIC CS 521 - Natalie Parde 26

Methods for Dataset Construction

UIC CS 521 - Natalie Parde 27

Instruction tuning datasets created using
data integration approaches:

100K+ (INSTRUCTION, INSTANCE) pairs spanning many diverse NLP tasks
“Instance” elements are themselves (input, output) pairs
Instructions refer to the specific task, whereas (input, output) pairs are sourced directly from existing NLP datasets
https://github.com/allenai/natural-instructions

Natural Instructions

(INPUT, ANSWER CHOICE, TARGET) triples integrating data across 170 English-language NLP datasets
Input → Instruction
https://huggingface.co/datasets/bigscience/P3

Public Pool of
Prompts (P3)

Cross-lingual extension of P3
16 tasks spanning 46 languages (still using English prompts)
https://huggingface.co/datasets/bigscience/xP3

xP3

(INPUT, TARGET) pairs created from 62 popular NLP benchmarks
Instruction and target templates were manually constructed and instances from the benchmark datasets were then used
to fill the templates
https://github.com/google-research/FLAN

Flan 2021

1000 carefully curated (INSTRUCTION, RESPONSE) pairs
Designed to demonstrate that only a small number of high-quality instruction tuning examples are needed to produce high
performance
https://huggingface.co/datasets/GAIR/lima

LIMA

UIC CS 521 - Natalie Parde 28

https://github.com/allenai/natural-instructions
https://huggingface.co/datasets/bigscience/P3
https://huggingface.co/datasets/bigscience/xP3
https://github.com/google-research/FLAN
https://huggingface.co/datasets/GAIR/lima

Instruction
tuning
datasets
created using
data
generation
approaches:

Unnatural
Instructions

(INSTRUCTION, INPUT, CONSTRAINTS, OUTPUT) tuples seeded
from a third-party instruction tuning dataset and
automatically expanded using InstructGPT

https://github.com/orhonovich/unnatural-instructions

Self-
Instruction

(INSTRUCTION, INPUT, OUTPUT) triples seeded from 175 tasks
and automatically expanded using InstructGPT

https://github.com/yizhongw/self-instruct

Baize Multi-turn chat corpus where each turn includes a
(PROMPT, RESPONSE) pair

ChatGPT was used to generate data for both
conversation parties

https://github.com/project-baize/baize-chatbot

UIC CS 521 - Natalie Parde 29

https://github.com/orhonovich/unnatural-instructions
https://github.com/yizhongw/self-instruct
https://github.com/project-baize/baize-chatbot

We have our dataset …now, how does
instruction tuning work?

• Commonly, instruction tuning involves a multi-stage process:
1. Pretrain a model on a large, general-domain corpus
2. Perform supervised fine-tuning of the model using an instruction

tuning dataset
3. Further tune the model using reinforcement learning from human

feedback (RLHF)
• Some approaches use only supervised fine-tuning (SFT) or only RLHF

UIC CS 521 - Natalie Parde 30

What are the
advantages to
including
these tuning
steps?

Pretraining a large language model →
extremely resource-intensive

Model learns an impressive amount
of knowledge, but doesn’t fully
understand how to apply it

SFT or RLHF → less resource-intensive
Big performance gains for little
effort

UIC CS 521 - Natalie Parde 31

Recall our
pretraining
objective!

UIC CS 521 - Natalie Parde 32

Supervised Fine-Tuning

• Goal: Fine-tune the language model so that it completes the prefix by
performing the task specified within the prefix

• How do we do this?
• Instruction tuning data!
• Show the model how to complete the prefix by performing the task, and it will

start completing prefixes that way

Note: It’s possible to skip pretraining and perform supervised instruction tuning from scratch; however, in practice
this tends to produce lower performance than pretraining followed by supervised fine-tuning.

UIC CS 521 - Natalie Parde 33

Supervised Fine-Tuning

• Fine-tuning process is similar to that
observed in other transfer learning settings
• Start with a pretrained model
• Focus on updating the weights in the

final layer(s)
• Optimize weights using a cross-entropy

loss function
• Only the tokens in the completion

of the prefix are considered when
calculating loss

UIC CS 521 - Natalie Parde 34

How much data is needed for supervised
instruction fine-tuning?

https://openreview.net/pdf?id=KBMOKmX2he

UIC CS 521 - Natalie Parde 35

https://openreview.net/pdf?id=KBMOKmX2he

Supervised
fine-tuning
is limited
in several

ways.

UIC CS 521 - Natalie Parde 36

We need…. • A scoring function that rates
the quality of an
(INSTRUCTION, OUTPUT) pair

• A way to use this scoring
function to train LLMs to
generate higher-performing
outputs

UIC CS 521 - Natalie Parde 37

RLHF to the
rescue!

• Reinforcement learning from human feedback is a
two-step process:

1. Train a reward model to score (INSTRUCTION,
OUTPUT) pairs

2. Optimize the LLM to generate higher-scoring
outputs for instructions

UIC CS 521 - Natalie Parde 38

How does the reward model work?

• Goal: Output a score for an (INSTRUCTION, OUTPUT) pair

• In many ways, similar to other classification or regression problems
• However, challenges may include determining:

• Where to obtain trustworthy scoring data
• How to ensure that annotators agree on scores (can be highly subjective!)

UIC CS 521 - Natalie Parde 39

Data Labeling for Reward
Models

• Generally framed as a comparison task
• Given two possible completions for a

prefix, which is better?
• Thus, comparison data is structured as:

• (INSTRUCTION, BETTER OUTPUT, WORSE OUTPUT)

Note: Comparison data tends to have reasonably good
agreement, but comparing outputs for an instruction is
still often very subjective.

UIC CS 521 - Natalie Parde 40

How do we train a reward model to
predict scores, given comparison
data?
• Train the model to maximize a score difference

between the better and worse outputs
• Reward models can be trained for scratch, or

initialized using the supervised fine-tuned model
• Initializing using the SFT model tends to work

better (intuition: the reward model should be
at least as powerful as the underlying LLM)

UIC CS 521 - Natalie Parde 41

How much comparison data is needed?

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58
805a001731-Paper-Conference.pdf

UIC CS 521 - Natalie Parde 42

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

We’ve trained our reward model
…now, how do we optimize our LLM?

Objective: Improve the
performance of the fine-
tuned model such that it
generates outputs that
maximize the scores

assigned by the reward
model

Common approach for this:
A reinforcement learning

algorithm known as
proximal policy

optimization (PPO)

UIC CS 521 - Natalie Parde 43

Proximal Policy Optimization

Prompts are
randomly

selected from a
distribution

These prompts
are passed into

an LLM

Output from the
LLM is scored
using a reward

model

Additional constraint added:
• Output should be relatively similar to the output generated by the

SFT model (prior to reinforcement learning from human feedback)
and to the output generated by the original pretrained model

UIC CS 521 - Natalie Parde 44

Why include the additional constraint?

• The reward model has seen very few
outputs for a given instruction
• For unknown (INSTRUCTION, OUTPUT)

pairs, the reward model might
mistakenly predict very high or very
low scores
• This may consequently bias the

model towards generating
(mistakenly) highly scored outputs

UIC CS 521 - Natalie Parde 45

In
reinforcement
learning
terms….

• Action Space: The tokens in the LLM’s
vocabulary
• Taking an action: Choosing a token to

generate
• Observation Space: The distribution over all

possible instructions
• Policy: The probability distribution over all

actions that can be taken, given an observation
• An LLM is a policy: It predicts which token

should be generated next, given a prefix

• How much data is used for PPO?
• Approximately 10,000 to 100,000

instructions

UIC CS 521 - Natalie Parde 46

Limitations of
RLHF

• RLHF has only very recently been applied to
language modeling setups, and much is still
unknown!

• Big issue currently: Hallucination
• LLMs tend to make up information (and phrase

misinformation confidently!)
• Why does RLHF promote hallucination?

• Two leading hypotheses:
• LLMs don’t understand the causes and

effects of their actions
• LLMs’ internal knowledge is misaligned

with human knowledge

UIC CS 521 - Natalie Parde 47

We’ve trained our
model using
supervised fine-
tuning and RLHF
…now what?

• Some instruction tuning settings require
special considerations:
• Multimodal applications
• Specialized application domains

• In these cases, we need to adapt this
process to accommodate extra
information

UIC CS 521 - Natalie Parde 48

Multimodal
Instruction Tuning

• Typically involves extra steps
• InstructPix2Pix: First fine-tunes an LLM to predict (IMAGE

CAPTION, EDIT INSTRUCTION, UPDATED IMAGE CAPTION) triples,
and then uses a text-to-image model to convert (IMAGE
CAPTION, UPDATED IMAGE CAPTION) pairs to image pairs
• https://github.com/timothybrooks/instruct-pix2pix

• LLaVA: Fine-tunes a vision encoder and an LLM decoder
using a vision-language instruction tuning dataset
• https://llava-vl.github.io/

UIC CS 521 - Natalie Parde 49

https://github.com/timothybrooks/instruct-pix2pix
https://llava-vl.github.io/

Domain-Specific Instruction Tuning

https://github.com/prakharguptaz/Instructdial

https://github.com/BeyonderXX/InstructUIE

https://github.com/vipulraheja/coedit
https://github.com/vishakhpk/creative-instructions

https://github.com/Kent0n-Li/ChatDoctor

https://github.com/liutiedong/goat

UIC CS 521 - Natalie Parde 50

https://github.com/prakharguptaz/Instructdial
https://github.com/BeyonderXX/InstructUIE
https://github.com/vipulraheja/coedit
https://github.com/vishakhpk/creative-instructions
https://github.com/Kent0n-Li/ChatDoctor
https://github.com/liutiedong/goat

Instruction
tuning can be
costly and time-
consuming.
How can we
make this
process more
efficient?

https://proceedings.mlr.press/v97/houl
sby19a/houlsby19a.pdf

https://aclanthology.org/2021.eacl-
main.20.pdf

https://aclanthology.org/2022.acl-
short.1.pdf

https://openreview.net/pdf?id=nZeVKe
eFYf9

UIC CS 521 - Natalie Parde 51

https://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://aclanthology.org/2021.eacl-main.20.pdf
https://aclanthology.org/2021.eacl-main.20.pdf
https://aclanthology.org/2022.acl-short.1.pdf
https://aclanthology.org/2022.acl-short.1.pdf
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9

Low-Rank Adaptation (LoRA)

• Reduces the number of trainable parameters during instruction tuning by introducing
update matrices to existing weights, and focusing only on training the update
matrices
• Capable of reducing trainable parameters by 10,000x, and memory usage by 3x!
• Why does this work well?

• Freezes previously trained weights → Ensures that the language model
retains existing knowledge while adapting to new data

• Fewer parameters → Better portability
• Incorporated into attention layers of original model → Helps control the

extent to which the model adjusts to new data

UIC CS 521 - Natalie Parde 52

How does LoRA
work?

• Update matrices are rank decomposition
matrices
• Recall from linear algebra …basically, a

rank decomposition matrix
approximates a given matrix with a
lower-rank matrix

• Original paper recommends a minimum
rank = 8
• More complex datasets require

higher ranks
• Higher ranks require more compute

resources
• Full supervised fine-tuning would have

a rank equal to the model’s hidden
layer size

Matrix Rank: How many rows/columns can’t be
made from other rows/columns? For example,

the rank of 1 2
2 4 is 1, since the second row is

just double the first row (no new information!)

UIC CS 521 - Natalie Parde 53

Additional
Hyperparameters
in LoRA

UIC CS 521 - Natalie Parde 54

Can we
further
improve
efficiency
beyond
LoRA?

• QLoRA: Quantized Low Rank Adapters
• Backpropagates gradients through a frozen quantized LLM

into Low Rank Adapters
• Improves efficiency over LoRA by:

• Introducing a new data type, 4-bit NormalFloat, that is
information theoretically optimal for normally-distributed
weights

• Quantizing the quantization constants (“Double
Quantization”)
• Quantization constant = Ratio of the maximum of

the quantized range to the absolute maximum value
of the original tensor

• Managing memory spikes using paged optimizers
• Paged optimizers = Hardware feature that allows you

to move paged memory of optimizer states between
the CPU and GPU

• https://github.com/artidoro/qlora

UIC CS 521 - Natalie Parde 55

https://github.com/artidoro/qlora

What influences instruction
tuning outcomes?

• Many factors!
• Data quality
• Data coverage

• Greatly influences the extent to
which the model can generalize

UIC CS 521 - Natalie Parde 56

Challenges and Next Steps in Instruction Tuning

Low-resource
instruction tuning

Evaluating instruction
tuning data

Understanding what is
learned during

instruction tuning

UIC CS 521 - Natalie Parde 57

Low-Resource Instruction Tuning

• How much data is needed to perform high-quality instruction tuning (i.e.,
performance similar to the state-of-the-art)?
• On average, performing instruction tuning with ~25% of the samples

required for fully supervised models will outperform the state-of-the-art:
https://arxiv.org/abs/2306.05539
• In multitask learning settings, only ~6% of the data is needed!

• LIMA performs well using only 1000 carefully selected samples
• Positive implications for many low-resource languages and domains
• https://openreview.net/forum?id=KBMOKmX2he

UIC CS 521 - Natalie Parde 58

https://arxiv.org/abs/2306.05539
https://openreview.net/forum?id=KBMOKmX2he

How can we ensure high-quality instruction
tuning data?

UIC CS 521 - Natalie Parde 59

What do instruction-tuned
models really learn?

• Evidence suggests that much of what instruction-tuned models learn is
attributable to superficial patterns (e.g., understanding output format and
making informed guesses) rather than truly understanding the task
• https://aclanthology.org/2023.acl-short.113.pdf

• There is currently no standardized way to evaluate instruction-tuned
models!
• Emerging metrics:

• IFEval: https://github.com/google-research/google-
research/tree/master/instruction_following_eval

• LMEntry: https://github.com/aviaefrat/lmentry
• M2C: https://github.com/google-research/multi-morph-checklist

UIC CS 521 - Natalie Parde 60

https://aclanthology.org/2023.acl-short.113.pdf
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/aviaefrat/lmentry
https://github.com/google-research/multi-morph-checklist

Resources for
Instruction
Tuning

• Axolotl: https://github.com/OpenAccess-AI-
Collective/axolotl

• LLaMA-Factory: https://github.com/hiyouga/LLaMA-
Factory

• Open-Instruct: https://github.com/allenai/open-
instruct

• Helpful Literature:
• Instruction Tuning for Large Language Models:

A Survey:
https://arxiv.org/pdf/2308.10792.pdf

• RLHF: Reinforcement Learning from Human
Feedback:
https://huyenchip.com/2023/05/02/rlhf.html

UIC CS 521 - Natalie Parde 61

https://github.com/OpenAccess-AI-Collective/axolotl
https://github.com/OpenAccess-AI-Collective/axolotl
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://github.com/allenai/open-instruct
https://github.com/allenai/open-instruct
https://arxiv.org/pdf/2308.10792.pdf
https://huyenchip.com/2023/05/02/rlhf.html

• Broadly speaking, text-based generative AI involves
prompting a large language model (LLM) that has
optionally been fine-tuned to follow a particular set
of instructions

• Instruction tuning is done using (INSTRUCTION,
OUTPUT) pairs

• Instruction tuning can involve both supervised fine-
tuning (SFT) and reinforcement learning from
human feedback (RLHF)

• In RLHF, a reward model learns to score
(INSTRUCTION, OUTPUT) pairs and the LLM is then
optimized to generate higher-scoring outputs for
input instructions
• One popular way to optimize the LLM is by using

proximal policy optimization (PPO)

• Low-Rank Adaptation (LoRA) or its extension QLoRA
can be used to greatly improve the efficiency of
instruction tuning

UIC CS 521 - Natalie Parde 62

Prompting

We’ve pretrained and instruction-tuned our LLM
…how do we ensure the highest-quality results?
• Prefixes can greatly influence task

performance!
• Prefixes used to elicit classification labels,

scores, or other desired output from LLMs are
typically referred to as prompts

UIC CS 521 - Natalie Parde 63

How does prompting work?

64

UIC CS 521 - N
atalie Parde

• Take a large model that has already been trained to model language
• Develop prompt templates for your task

• Prompt templates can be manually or automatically constructed
• Develop an approach for answer engineering

• Build an answer space (set of possible answers that your model may
generate) and map that answer space to your desired outputs

• This can also be done manually or automatically using search techniques
• Format your input according to the relevant prompt template(s) and map the

resulting language model output to your desired target output

Why is this useful?

• Successful approaches using the pretrain
and prompt paradigm are able to perform
few-shot or even zero-shot learning for the
target task
• Learning from few or no training

examples
• This allows researchers to build models for

tasks that were previously inaccessible due
to extremely scarce resource availability

• Prompting also requires limited or no
parameter tuning for the base language
model, making it possible to develop
classifiers more efficiently

UIC CS 521 - Natalie Parde 65

In a way, prompting works in an opposite
way from transfer learning setups….
• Transfer learning: Adjust the model’s weights so that it works better with your

task and data
• Prompting: Adjust (or, edit the description of) your task and data so that it

works better with the model’s weights

UIC CS 521 - Natalie Parde 66

LLM

I love that I get to attend CS 521 today! I feel so”

I love that I get to attend CS 521 today! My emotion is”

I love that I get to attend CS 521 today! I have a {Z} feeling”

Happy

Formal Definition
of Prompting

• In traditional supervised learning, our end
goal is to model the probability that a given
input 𝐱 has a label 𝐲 by learning a model
with the optimal parameters 𝜃
• 𝑃(𝐲|𝐱;𝜃)
• However, in cases where we have limited

data, it is difficult to perform this
learning process!

• In prompting, we instead model the
probability of 𝐱 existing in a language
modeled using the parameters 𝜃, and that in
turn informs how we predict 𝐲
• 𝑃(𝐱;𝜃)

UIC CS 521 - Natalie Parde 67

Prompt
Engineering

• Systematically and
empirically investigating the
best prompts to produce
the desired outcome is
referred to as prompt
engineering

• Can sometimes be
counterintuitive!
• Sometimes the “best”

prompts look weird to
human developers, but
work well at
encouraging the model
to perform the task well

UIC CS 521 - Natalie Parde 68

How do we predict the highest-performing label using prompting?

UIC CS 521 - Natalie Parde 69

Prompt Addition Answer Search Answer
Mapping

Prompt Addition

• Goal: Modify 𝐱 into a prompt 𝐱ʹ
• 𝐱ʹ=𝑓prompt(𝐱)

• How does 𝑓prompt typically work?
• Apply a text template that has slots for the input x and an intermediate answer

z
• Fill the slot x in the text template
• For example:

• x = “I love watching CS 521 lectures”
• Template “[x]. I feel [z]”
• 𝐱ʹ=𝑓prompt(𝐱) = “I love watching CS 521 lectures. I feel [z]”

UIC CS 521 - Natalie Parde 70

What about the
intermediate
answer slot?

• Intermediate answer slots can appear within the
prompt or at the end of it, depending on the
prompting technique

• Prompts that have slots to fill within the prompt are
cloze prompts
• “text [x] text [z] text”

• Prompts that have slots to fill only at the end of the
prompt are prefix prompts
• “text x text [z]”

• The number of [x] and [z] slots in the prompt can
be flexible

• Template words are often natural language tokens,
but they don’t have to be

UIC CS 521 - Natalie Parde 71

Example Inputs, Templates, and Answers

UIC CS 521 - Natalie Parde 72

TASK TEMPLATE INPUT [X] ANSWER [Z]

Topic Identification [X] The text is about [Z] She carefully read the journal
article.

sports
science
…

Aspect-Based Sentiment
Analysis

[X] How is the service? [Z] Poor service but good food. bad
terrible
…

Named Entity Recognition [X1] [X2] is a [Z] entity. [X1] LREC-COLING is in Turin
this year.
[X2] Turin

organization
location
…

Summarization [X] TL;DR: [Z] Section 1: Course Details…. CS 521 is at 9:30 a.m. on
Tuesdays and Thursdays in
LCA 007….

Answer Search

• Goal: Search for the highest-scoring text !z that
maximizes 𝑃(𝐱ʹ;𝜃)

• First, define a set 𝑍 of possible answers 𝐳
• Might be a limited set of words (for

classification) or the entirety of the language
(for generation)

• Then, create filled prompts for each 𝐳 by filling the
intermediate answer slot in 𝐱ʹ with that 𝐳
• 𝐱ʹ = 𝑓fill(𝐱ʹ,𝐳)
• Note: If this results in a correct answer, we can

consider this an answered prompt
• Finally, search over all 𝐳 ∈ 𝑍 by calculating the

probability of their corresponding filled prompts in
the language model
• !z = search

𝐳∈#
𝑃(𝑓!ill 𝐱

$, 𝐳 ; 𝜃)

UIC CS 521 - Natalie Parde 73

Answer
Mapping

excellent

wonderful

POSITIVE

Now we understand
how prompting
works, but what
should we think
about as we design
prompting
methods?

• Design Considerations for Prompting
• LLM choice
• Prompt template engineering
• Prompt answer engineering
• Parameter training (how much, if any, is

necessary?)

UIC CS 521 - Natalie Parde 75

Prompt
Template
Engineering

• The process of creating a prompting
function that results in the best
performance on the downstream task
• May involve manual design, automated

algorithms, or both
• What should be considered?
• Prompt shape
• Level of automation

UIC CS 521 - Natalie Parde 76

Prompt Shape

Level of Automation

• Manual Template Engineering
• Templates that seem intuitive based

on commonsense
• Written by the researcher/model

developer
• Good starting point, but limited in

several ways:
• Time-consuming and requires high

level of expertise
• No guarantee that optimal

prompts will be written
• Alternative: Automated Template Learning!

UIC CS 521 - Natalie Parde 78

Automated
Template
Learning

UIC CS 521 - Natalie Parde 79

• Discrete Prompts: Automatically learned
prompt template is a text string

• Continuous Prompts: Automatically learned
prompt is an embedding

Discrete vs. Continuous

• Static Prompts: Same template for each input
• Dynamic Prompts: Custom template for each

input

Static vs. Dynamic

Discrete Prompting

Continuous Prompting

Example Continuous Prompting Strategies

Prefix Tuning

Prepends a sequence of
continuous task-specific
vectors to the input

Tuning Initialized with
Discrete Prompts

Initialize the search for an
optimal continuous prompt
using a discrete prompt

Hard-Soft Prompt
Hybrid Tuning

Insert tunable embeddings
into a discrete prompt
template

Prompt
Answer
Engineering

Answer Shape

• Common granularities:
• Token: A token in the language

model’s vocabulary
• Span: A short multi-token span

• Often used with cloze prompts
• Sentence: A sentence (or more

generally, a longer document)
• Often used with prefix prompts

UIC CS 521 - N
atalie Parde

84

How to choose an answer shape?
• Largely depends on the task

• Token or span answer spaces →
Classification or information
extraction tasks

• Long answer spaces → Language
generation tasks

UIC CS 521 - Natalie Parde 85

Answer Space Design Methods

• Similarly to prompt template design, can be manual or automated
• Automated techniques may include:

• Discrete answer search
• Continuous answer search

UIC CS 521 - Natalie Parde 86

Manual
Answer
Space
Design

Discrete Answer Search

Continuous
Answer
Search

• Soft answer tokens can also be optimized
alongside soft prompts
• In this case, embeddings are learned from

scratch for each label

UIC CS 521 - Natalie Parde 89

We know the
basics of prompt
design …where
can we go from
here?

• Multi-Prompt Learning: No need to limit
yourself to using one prompt!

• Strategies leveraging multiple prompts often
achieve better performance

• Numerous approaches for multi-prompt
learning, including:
• Prompt ensembling
• Prompt augmentation
• Prompt composition
• Prompt decomposition

UIC CS 521 - Natalie Parde 90

Prompt Ensembling • Use multiple unanswered prompts at
inference time to make predictions
• Works with both discrete and continuous

prompts
• Advantages of prompt ensembling:

• Leverages complementary advantages
of multiple prompts

• Alleviates the cost of prompt engineering
(no need to spend time selecting a
single best prompt!)

• Stabilizes performance on downstream
tasks

UIC CS 521 - Natalie Parde 91

Prompt Ensembling Techniques

Based on earlier approaches from ensemble models in machine learning
Popular techniques include:

UIC CS 521 - Natalie Parde 92

Uniform Averaging

•Average the answer
probabilities across
multiple prompts

Weighted Averaging

•Compute a weighted
average of answer
probabilities across
multiple prompts,
where weights are
associated with
prompts based on
prompt performance
or optimized using a
training set

Majority Voting

•Take a majority vote
for answers across
multiple prompts

Knowledge Distillation

•Train a final model to
distill knowledge
ensembled across
multiple prompts

Prompt Ensembling
for Text Generation

•Generate output
based on ensembled
probability of the
next word in the
answer sequence, or
score different
decoded sequences
and select the
highest-scoring
sequence

Prompt Augmentation

Sample Selection

• The examples provided in prompt
augmentation settings can influence
performance!

• Common approaches:
• Select samples that are close to the input

in embedding space
• Provide both positive and negative

samples

UIC CS 521 - Natalie Parde 94

Sample Ordering

• The order of examples provided in prompt augmentation settings
can also influence performance
• Common approaches:
• Score different permutations of samples using entropy-based methods
• Search for ideal permutations of samples

UIC CS 521 - Natalie Parde 95

Prompt Composition

Define a
composite

prompt based on
those prompts

Composition may use logic rules or other strategies to
compose the subprompts into a single prompt

Create
subprompts for
subtasks of the

broader task
Subprompts may be manually or automatically constructed

UIC CS 521 - Natalie Parde 96

Prompt Decomposition

Chain-of-Thought
Prompting

• Designed to improve the reasoning abilities of LLMs by enabling them
to decompose multi-step problems into intermediate steps

• How does this differ from other forms of prompting?
• The model is prompted to give intermediate reasoning steps
before providing its answer to a problem

UIC CS 521 - Natalie Parde 98

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models:
https://openreview.net/pdf?id=_VjQlMeSB_J

https://openreview.net/pdf?id=_VjQlMeSB_J

Chain-of-Thought Prompting

• Advantages:
• Intermediate steps can be

solved individually (and
perhaps more easily) than
the overall problem

• Applicable to any
language-based task

• Disadvantages:
• Usefulness seems to scale

with LLM size (may not
work overly well with
smaller LLMs)

UIC CS 521 - Natalie Parde 99

Large Language Models are Zero-Shot Reasoners: https://openreview.net/pdf?id=e2TBb5y0yFf

Interesting property of CoT prompting:
Can be implemented for zero-shot
settings simply by including “Let’s think
step by step” in the prompt!

https://openreview.net/pdf?id=e2TBb5y0yFf

Prompt-
Aware
Training

• Although it’s possible to prompt models out
of the box, it’s also possible to train models
in concert with prompting methods
• This may be achieved using a variety of

training and parameter update approaches

UIC CS 521 - Natalie Parde 100

Prompt-Aware
Training Settings

• Zero-Shot: No training data is provided for the
task of interest, and the LLM is used as-is to
predict output

• Few-Shot: A few samples are available for training
• Full-Data: Many samples are available for training

UIC CS 521 - Natalie Parde 101

Prompting is more relevant to zero-shot or few-shot settings,
since there generally aren’t sufficient resources in those
settings for the LLM to fully learn the downstream task.

What if training samples are used to help design
prompts?

Parameter
Update

Methods

Promptless
Fine-Tuning

UIC CS 521 - Natalie Parde 104

• “Classic” transfer learning
• Fine-tune a pretrained model to perform the

downstream task, irrespective of the prompts that may
be used with it

• Advantages:
• Simple, powerful, and widely used
• Model can more fully fit to larger training sets

• Disadvantages:
• May overfit or have poor stability on smaller training

sets
• May forget information learned prior to fine-tuning

(catastrophic forgetting)

Tuning-Free Prompting

Fixed-LM Prompt Tuning

UI
C

CS
 5

21
 -

N
at

al
ie

 P
ar

de

• Prompt-relevant parameters are added and fine-tuned based on downstream
task samples, while the LLM remains frozen

• Advantages:
• Often better performance than tuning-free prompting, while also retaining

other advantages of that setting
• Disadvantages:

• Requires prompt engineering, and resulting prompts are often not easy for
humans to interpret or manipulate

106

Fixed-Prompt LM Tuning

• Instruction tuning
• Fine-tunes the LLM using prompts

with fixed parameters
• Advantages:

• Efficient and more fully specifies
the task to the model

• Disadvantages:
• Requires template and/or answer

engineering of some form, and
may not generalize across
downstream tasks

UIC CS 521 - Natalie Parde 107

Prompt + LM Tuning

• Tunable prompt parameters are tuned
alongside some or all of the
parameters of the LLM

• Advantages:
• Most expressive setting, and well-

suited for large datasets
• Disadvantages:

• Requires more compute resources,
and may overfit with small
datasets

UIC CS 521 - Natalie Parde 108

What kind of
problems can
we solve with

prompt-
based

learning?

UIC CS 521 - N
atalie Parde

• Knowledge Probing: How much (and what kind of) knowledge does the
LLM have?
• Factual Probing
• Linguistic Probing

• Structure Prediction: What structured meaning representations can be
extracted by the LLM?
• Semantic Parsing

• Classification: How well can the task be reformulated and specified as
a prompt?

• Information Extraction: What special units or relations can be
extracted by the LLM?
• Relation Extraction
• Named Entity Recognition

• Reasoning: What do LLMs really understand about the world?
• Commonsense Reasoning
• Mathematical Reasoning

• Question Answering: To what extent can the LLM answer the specified
question?

• Text Generation: How well does the LLM generate text, conditioned on
the provided information?

• Automated Evaluation of Text Generation: Can prompts be used to
evaluate the quality of generated text?

109

Prompting can
also support
other NLP
tasks!

• Domain Adaptation
• Debiasing
• Dataset Construction

• Generate datasets conforming to the
provided instructions

UIC CS 521 - Natalie Parde 110

What about multimodal prompts?

• It’s possible to prompt LLMs with images:
• Represent images as embeddings
• Prompt LLMs with these embeddings

• Helpful to include demonstrations in this setting, especially if
keeping the LLM frozen

UIC CS 521 - Natalie Parde 111

How does prompt-
based learning
connect to other
NLP and deep
learning concepts?

• Prompt Ensembling→ Facilitates ensemble
learning without requiring that multiple
models are trained

• Prompt Augmentation → Advances study of
few-shot learning and larger-context learning

• Discrete Prompt Search → Borrows
techniques from query reformulation

• Continuous Prompt Fine-Tuning → Adds
control signals (such as those used in
controllable text generation) to the prompts

UIC CS 521 - Natalie Parde

112

Ongoing
Challenges in
Prompt-Based
Learning

• Prompt Design
• Creating prompts for classification and

generation tasks is straightforward, but how
should we design them when the end goal is
language analysis?

• Prompt Answer Engineering
• How should we engineer answer spaces with

many classes, or with multi-token answers?

• Model Development
• How should we select the base LLM, or the

tuning strategy (if any)?

• Multi-Prompt Learning
• What are the best prompts to include when

performing prompt ensembling?
• What is the best way to select demonstration

samples, and how should they be ordered?

UIC CS 521 - Natalie Parde 113

We also need to more fully understand:

• Theoretical and empirical analyses and
guarantees for prompt-based learning
• Just how much does prompt-based

learning help a task?
• Optimal pretraining strategies for prompt-

based learning

UIC CS 521 - Natalie Parde 114

Prompting Resources

• OpenPrompt:
• https://thunlp.github.io/OpenPrompt/

• PromptBench:
• https://github.com/microsoft/promptbench

• Prompt Engineering Guide:
• https://www.promptingguide.ai/

• Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural
Language Processing
• https://dl.acm.org/doi/full/10.1145/3560815

UIC CS 521 - Natalie Parde 115

https://thunlp.github.io/OpenPrompt/
https://github.com/microsoft/promptbench
https://www.promptingguide.ai/
https://dl.acm.org/doi/full/10.1145/3560815

Summary:
Prompt-
Based

Learning

