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What is generative 
AI?
• Broadly speaking: Any machine learning 

model that focuses on generating output 
rather than categorizing or scoring input 
data

• More narrowly: Generally involves a very 
large, pretrained language model 
(typically referred to as a large language 
model, or LLM)
• Can also involve multimodal models, 

to interpret or generate non-text data
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Generative AI is becoming pervasive across applications!

UIC CS 521 - Natalie Parde 4



Large Language Models

• What is “large”?
• Not clearly defined, but generally speaking, anything “BERT-sized” (~110 

million parameters) or larger

• Trained on massive quantities of text data to predict which word(s) 
should appear, given a context
• Can theoretically use any architecture that works for this setting, 

but in practice, modern LLMs are Transformer models
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How are LLMs 
pretrained?

• Can be pretrained with numerous objectives
• Masked language modeling
• Next sentence prediction
• Autoregressive generation

• Different pretraining objectives are useful for 
different purposes
• Pretraining for masked language modeling 

may produce LLMs that are especially well-
suited for classification

• Pretraining for autoregressive generation may 
produce LLMs that are especially well-suited 
for longer-form generation tasks
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What’s most popular right now?

• The most popular LLMs right now (e.g., GPT-X or LLaMa) are 
pretrained for autoregressive generation
• Given the sequence of words that have been generated so far, decide 

which word should come next

Generative Pretrained Transformer

G P T
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Next 
Word 

Prediction

Next 
Word 

Prediction

Next 
Word 

Prediction

Autoregressive Generation

<s> Transformer generation

<s> generation Transformer is

<s> generation is Transformer fun
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Is this a 
step back?

• First came autoregressive 
generation, then came masked 
language modeling, then came 
…autoregressive generation 
again?
• Autoregressive generation 

without instruction tuning is 
only useful for limited 
purposes (e.g., 
autocomplete)

• Autoregressive generation + 
instruction tuning + 
reinforcement learning 
with human feedback (+ 
better prefixes) is a very 
recent development, and 
much more useful!
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In fact, these recent developments have 
ushered in a new training paradigm.
• Why?
• Fine-tuning pretrained models to perform new tasks works very well in 

many cases, but it still requires that you have a reasonably large 
supervised training set for the target task
• In some cases, we only have a very tiny amount of training data (or none 

at all) for our target task!

Rule-Based Era
•Prior to ~1990s

Statistical and (Early) Neural Era
•1990s to 2010s

Pretrain and Finetune Era
•Late 2010s to present

Pretrain and Prompt Era
•Early 2020s to present
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Introducing: Pretrain (and Optionally Fine-
Tune) and Prompt
• Intuition:
• If we take LLMs that have been pretrained on a wide variety of language 

data, we can prompt them to produce the correct labels or output for new 
tasks

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m. flight.” 
Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get to 
her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance.  Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early morning 
airport security line.” Label:

LLM
SARCASTIC

UIC CS 521 - Natalie Parde 11



This new paradigm has seen remarkably 
rapid uptake in the NLP community!

# Full, Main Conference 
Papers with “Prompt” in Title

ACL 2022 22

EMNLP 2022 41

ACL 2023 36

EMNLP 2023 44
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At the core of most 
recent work are 
generative pretrained 
Transformers (GPTs).

https://cdn.openai.com/research-
covers/language-
unsupervised/language_understandi
ng_paper.pdf
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Popular 
Large 

(Generative) 
Language 

Models
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Open vs. Closed 
Models
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Open vs. Closed Models

• However, very recent interest (and helpful 
efforts from community members!) have led 
to the public release of several open-source
LLMs
• Fully accessible and modifiable
• Architecture is fully explorable
• Free!
• Examples:

• Llama 2: 
https://llama.meta.com/llama2

• OLMo: https://allenai.org/olmo
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LLM 
Resources

https://huggingface.co/spaces/Hugging
FaceH4/open_llm_leaderboard

https://arxiv.org/abs/2303.18223

https://github.com/RUCAIBox/LLM
Survey

https://huggingface.co/models?pipeline
_tag=text-generation&sort=trending
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Instruction Tuning • Contemporary LLMs work well at solving a 
diverse range of tasks, despite their often 
being pretrained on tasks far from the end 
application goal
• Example: general-domain 

autoregressive language modeling
• We ideally want LLMs to optimally follow 

our directions to solve desired task(s)
• How can we improve the LLM’s ability to do 

this?
• Instruction Tuning: An emerging 

technique to align pretrained 
generative language models with end 
application goals
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Why perform instruction tuning?
Advantages of instruction tuning:
• Bridges the gap between standard language 

modeling pretraining tasks and end user task 
goals

• Encourages more controllable and predictable 
model behavior

• Promotes computational efficiency
• Facilitates domain adaptation
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However, 
instruction 
tuning is 
challenging….

• Few high-quality instruction tuning datasets 
are available
• Instructions should be diverse, creative, 

and cover the desired target outcomes
• No guarantee that the tuned model will 

generalize beyond the tasks covered in the 
instruction tuning dataset

• May only learn surface-level patterns 
associated with task data (rather than real 
characteristics of the task)
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How does 
instruction 
tuning 
work?
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Building Instruction Tuning Datasets

• Components:
• Instruction (natural language text sequence)
• General and specific task details

• (Optional) supplemental context (natural language text sequence)
• Related background information and/or demonstrations

• Output (natural language text sequence)
• Generated output label or text sequence
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What does this look like?

Come up with some good acronyms for 
a new instruction tuning method that 
uses less manual data by augmenting 
the training set with synthetic 
generated data

General instruction 
(consistent across all 
training inputs)

Specific input for 
this data instance
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What does this look like?

Come up with some good acronyms for 
a new instruction tuning method that 
uses less manual data by augmenting 
the training set with synthetic 
generated data
Acronyms should use the first letters of 
important words for the method.  For 
example:
Method: an approach to interpret 
metaphors by mapping them to 
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor 
Interpretation by Recognizing 
Associated Groupings and Expressions Supplemental 

context
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What does this look like?

Come up with some good acronyms for 
a new instruction tuning method that 
uses less manual data by augmenting 
the training set with synthetic 
generated data
Acronyms should use the first letters of 
important words for the method.  For 
example:
Method: an approach to interpret 
metaphors by mapping them to 
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor 
Interpretation by Recognizing 
Associated Groupings and Expressions

LLM
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What does this look like?

Come up with some good acronyms for 
a new instruction tuning method that 
uses less manual data by augmenting 
the training set with synthetic 
generated data
Acronyms should use the first letters of 
important words for the method.  For 
example:
Method: an approach to interpret 
metaphors by mapping them to 
conceptual metaphor clusters
Acronym: MIRAGE: Metaphor 
Interpretation by Recognizing 
Associated Groupings and Expressions

LLM

SYNTHETIC: Synthetic 
Yield for Novel 
Instruction Tuning 
and Human-less 
Training
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Methods for Dataset Construction
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Instruction tuning datasets created using 
data integration approaches:

100K+ (INSTRUCTION, INSTANCE) pairs spanning many diverse NLP tasks
“Instance” elements are themselves (input, output) pairs
Instructions refer to the specific task, whereas (input, output) pairs are sourced directly from existing NLP datasets
https://github.com/allenai/natural-instructions

Natural Instructions

(INPUT, ANSWER CHOICE, TARGET) triples integrating data across 170 English-language NLP datasets
Input → Instruction
https://huggingface.co/datasets/bigscience/P3

Public Pool of 
Prompts (P3)

Cross-lingual extension of P3
16 tasks spanning 46 languages (still using English prompts)
https://huggingface.co/datasets/bigscience/xP3

xP3

(INPUT, TARGET) pairs created from 62 popular NLP benchmarks
Instruction and target templates were manually constructed and instances from the benchmark datasets were then used 
to fill the templates
https://github.com/google-research/FLAN

Flan 2021

1000 carefully curated (INSTRUCTION, RESPONSE) pairs
Designed to demonstrate that only a small number of high-quality instruction tuning examples are needed to produce high 
performance
https://huggingface.co/datasets/GAIR/lima

LIMA
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Instruction 
tuning 
datasets 
created using 
data 
generation 
approaches:

Unnatural 
Instructions

(INSTRUCTION, INPUT, CONSTRAINTS, OUTPUT) tuples seeded 
from a third-party instruction tuning dataset and 
automatically expanded using InstructGPT

https://github.com/orhonovich/unnatural-instructions

Self-
Instruction

(INSTRUCTION, INPUT, OUTPUT) triples seeded from 175 tasks 
and automatically expanded using InstructGPT

https://github.com/yizhongw/self-instruct

Baize Multi-turn chat corpus where each turn includes  a 
(PROMPT, RESPONSE) pair

ChatGPT was used to generate data for both 
conversation parties

https://github.com/project-baize/baize-chatbot
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We have our dataset …now, how does 
instruction tuning work?

• Commonly, instruction tuning involves a multi-stage process:
1. Pretrain a model on a large, general-domain corpus
2. Perform supervised fine-tuning of the model using an instruction 

tuning dataset
3. Further tune the model using reinforcement learning from human 

feedback (RLHF)
• Some approaches use only supervised fine-tuning (SFT) or only RLHF
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What are the 
advantages to 
including 
these tuning 
steps?

Pretraining a large language model → 
extremely resource-intensive

Model learns an impressive amount 
of knowledge, but doesn’t fully 
understand how to apply it

SFT or RLHF → less resource-intensive
Big performance gains for little 
effort
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Recall our 
pretraining 
objective!
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Supervised Fine-Tuning

• Goal: Fine-tune the language model so that it completes the prefix by 
performing the task specified within the prefix

• How do we do this?
• Instruction tuning data!
• Show the model how to complete the prefix by performing the task, and it will 

start completing prefixes that way

Note: It’s possible to skip pretraining and perform supervised instruction tuning from scratch; however, in practice 
this tends to produce lower performance than pretraining followed by supervised fine-tuning.
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Supervised Fine-Tuning

• Fine-tuning process is similar to that 
observed in other transfer learning settings
• Start with a pretrained model
• Focus on updating the weights in the 

final layer(s)
• Optimize weights using a cross-entropy 

loss function
• Only the tokens in the completion 

of the prefix are considered when 
calculating loss
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How much data is needed for supervised 
instruction fine-tuning?

https://openreview.net/pdf?id=KBMOKmX2he
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Supervised 
fine-tuning 
is limited 
in several 

ways.
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We need…. • A scoring function that rates 
the quality of an 
(INSTRUCTION, OUTPUT) pair

• A way to use this scoring 
function to train LLMs to 
generate higher-performing 
outputs
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RLHF to the 
rescue!

• Reinforcement learning from human feedback is a 
two-step process:

1. Train a reward model to score (INSTRUCTION, 
OUTPUT) pairs

2. Optimize the LLM to generate higher-scoring 
outputs for instructions
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How does the reward model work?

• Goal: Output a score for an (INSTRUCTION, OUTPUT) pair

• In many ways, similar to other classification or regression problems
• However, challenges may include determining:

• Where to obtain trustworthy scoring data
• How to ensure that annotators agree on scores (can be highly subjective!)
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Data Labeling for Reward 
Models

• Generally framed as a comparison task
• Given two possible completions for a 

prefix, which is better?
• Thus, comparison data is structured as:

• (INSTRUCTION, BETTER OUTPUT, WORSE OUTPUT)

Note: Comparison data tends to have reasonably good 
agreement, but comparing outputs for an instruction is 
still often very subjective.
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How do we train a reward model to 
predict scores, given comparison 
data?
• Train the model to maximize a score difference 

between the better and worse outputs
• Reward models can be trained for scratch, or 

initialized using the supervised fine-tuned model
• Initializing using the SFT model tends to work 

better (intuition: the reward model should be 
at least as powerful as the underlying LLM)
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How much comparison data is needed?

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58
805a001731-Paper-Conference.pdf
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We’ve trained our reward model 
…now, how do we optimize our LLM?

Objective: Improve the 
performance of the fine-
tuned model such that it 
generates outputs that 
maximize the scores 

assigned by the reward 
model

Common approach for this: 
A reinforcement learning 

algorithm known as 
proximal policy 

optimization (PPO)

UIC CS 521 - Natalie Parde 43



Proximal Policy Optimization

Prompts are 
randomly 

selected from a 
distribution

These prompts 
are passed into 

an LLM

Output from the 
LLM is scored 
using a reward 

model

Additional constraint added:
• Output should be relatively similar to the output generated by the 

SFT model (prior to reinforcement learning from human feedback) 
and to the output generated by the original pretrained model
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Why include the additional constraint?

• The reward model has seen very few 
outputs for a given instruction
• For unknown (INSTRUCTION, OUTPUT) 

pairs, the reward model might 
mistakenly predict very high or very 
low scores
• This may consequently bias the 

model towards generating 
(mistakenly) highly scored outputs
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In 
reinforcement 
learning 
terms….

• Action Space: The tokens in the LLM’s 
vocabulary
• Taking an action: Choosing a token to 

generate
• Observation Space: The distribution over all 

possible instructions
• Policy: The probability distribution over all 

actions that can be taken, given an observation
• An LLM is a policy: It predicts which token 

should be generated next, given a prefix

• How much data is used for PPO?
• Approximately 10,000 to 100,000 

instructions
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Limitations of 
RLHF

• RLHF has only very recently been applied to 
language modeling setups, and much is still 
unknown!

• Big issue currently: Hallucination
• LLMs tend to make up information (and phrase 

misinformation confidently!)
• Why does RLHF promote hallucination?

• Two leading hypotheses:
• LLMs don’t understand the causes and 

effects of their actions
• LLMs’ internal knowledge is misaligned 

with human knowledge
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We’ve trained our 
model using 
supervised fine-
tuning and RLHF 
…now what?

• Some instruction tuning settings require 
special considerations:
• Multimodal applications
• Specialized application domains

• In these cases, we need to adapt this 
process to accommodate extra 
information
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Multimodal 
Instruction Tuning

• Typically involves extra steps
• InstructPix2Pix: First fine-tunes an LLM to predict (IMAGE

CAPTION, EDIT INSTRUCTION, UPDATED IMAGE CAPTION) triples, 
and then uses a text-to-image model to convert (IMAGE
CAPTION, UPDATED IMAGE CAPTION) pairs to image pairs
• https://github.com/timothybrooks/instruct-pix2pix

• LLaVA: Fine-tunes a vision encoder and an LLM decoder 
using a vision-language instruction tuning dataset
• https://llava-vl.github.io/
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Domain-Specific Instruction Tuning

https://github.com/prakharguptaz/Instructdial

https://github.com/BeyonderXX/InstructUIE

https://github.com/vipulraheja/coedit
https://github.com/vishakhpk/creative-instructions

https://github.com/Kent0n-Li/ChatDoctor

https://github.com/liutiedong/goat
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Instruction 
tuning can be 
costly and time-
consuming.  
How can we 
make this 
process more 
efficient?

https://proceedings.mlr.press/v97/houl
sby19a/houlsby19a.pdf

https://aclanthology.org/2021.eacl-
main.20.pdf

https://aclanthology.org/2022.acl-
short.1.pdf

https://openreview.net/pdf?id=nZeVKe
eFYf9
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Low-Rank Adaptation (LoRA)

• Reduces the number of trainable parameters during instruction tuning by introducing 
update matrices to existing weights, and focusing only on training the update 
matrices
• Capable of reducing trainable parameters by 10,000x, and memory usage by 3x!
• Why does this work well?

• Freezes previously trained weights → Ensures that the language model 
retains existing knowledge while adapting to new data

• Fewer parameters → Better portability
• Incorporated into attention layers of original model → Helps control the 

extent to which the model adjusts to new data
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How does LoRA
work?

• Update matrices are rank decomposition 
matrices
• Recall from linear algebra …basically, a 

rank decomposition matrix 
approximates a given matrix with a 
lower-rank matrix

• Original paper recommends a minimum 
rank = 8
• More complex datasets require 

higher ranks
• Higher ranks require more compute 

resources
• Full supervised fine-tuning would have 

a rank equal to the model’s hidden 
layer size

Matrix Rank: How many rows/columns can’t be 
made from other rows/columns?  For example, 

the rank of 1 2
2 4  is 1, since the second row is 

just double the first row (no new information!)
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Additional 
Hyperparameters 
in LoRA
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Can we 
further 
improve 
efficiency 
beyond 
LoRA?

• QLoRA: Quantized Low Rank Adapters
• Backpropagates gradients through a frozen quantized LLM 

into Low Rank Adapters
• Improves efficiency over LoRA by:

• Introducing a new data type, 4-bit NormalFloat, that is 
information theoretically optimal for normally-distributed 
weights

• Quantizing the quantization constants (“Double 
Quantization”)
• Quantization constant = Ratio of the maximum of 

the quantized range to the absolute maximum value 
of the original tensor

• Managing memory spikes using paged optimizers
• Paged optimizers = Hardware feature that allows you 

to move paged memory of optimizer states between 
the CPU and GPU

• https://github.com/artidoro/qlora
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What influences instruction 
tuning outcomes?

• Many factors!
• Data quality
• Data coverage

• Greatly influences the extent to 
which the model can generalize
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Challenges and Next Steps in Instruction Tuning

Low-resource 
instruction tuning

Evaluating instruction 
tuning data

Understanding what is 
learned during 

instruction tuning
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Low-Resource Instruction Tuning

• How much data is needed to perform high-quality instruction tuning (i.e., 
performance similar to the state-of-the-art)?
• On average, performing instruction tuning with ~25% of the samples 

required for fully supervised models will outperform the state-of-the-art: 
https://arxiv.org/abs/2306.05539
• In multitask learning settings, only ~6% of the data is needed!

• LIMA performs well using only 1000 carefully selected samples
• Positive implications for many low-resource languages and domains
• https://openreview.net/forum?id=KBMOKmX2he
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How can we ensure high-quality instruction 
tuning data?
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What do instruction-tuned 
models really learn?

• Evidence suggests that much of what instruction-tuned models learn is 
attributable to superficial patterns (e.g., understanding output format and 
making informed guesses) rather than truly understanding the task
• https://aclanthology.org/2023.acl-short.113.pdf

• There is currently no standardized way to evaluate instruction-tuned 
models!
• Emerging metrics:

• IFEval: https://github.com/google-research/google-
research/tree/master/instruction_following_eval

• LMEntry: https://github.com/aviaefrat/lmentry
• M2C: https://github.com/google-research/multi-morph-checklist
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Resources for 
Instruction 
Tuning

• Axolotl: https://github.com/OpenAccess-AI-
Collective/axolotl

• LLaMA-Factory: https://github.com/hiyouga/LLaMA-
Factory

• Open-Instruct: https://github.com/allenai/open-
instruct

• Helpful Literature:
• Instruction Tuning for Large Language Models: 

A Survey: 
https://arxiv.org/pdf/2308.10792.pdf

• RLHF: Reinforcement Learning from Human 
Feedback: 
https://huyenchip.com/2023/05/02/rlhf.html
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• Broadly speaking, text-based generative AI involves 
prompting a large language model (LLM) that has 
optionally been fine-tuned to follow a particular set 
of instructions

• Instruction tuning is done using (INSTRUCTION, 
OUTPUT) pairs

• Instruction tuning can involve both supervised fine-
tuning (SFT) and reinforcement learning from 
human feedback (RLHF)

• In RLHF, a reward model learns to score 
(INSTRUCTION, OUTPUT) pairs and the LLM is then 
optimized to generate higher-scoring outputs for 
input instructions
• One popular way to optimize the LLM is by using 

proximal policy optimization (PPO)

• Low-Rank Adaptation (LoRA) or its extension QLoRA
can be used to greatly improve the efficiency of 
instruction tuning
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Prompting

We’ve pretrained and instruction-tuned our LLM 
…how do we ensure the highest-quality results?
• Prefixes can greatly influence task 

performance!
• Prefixes used to elicit classification labels, 

scores, or other desired output from LLMs are 
typically referred to as prompts
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How does prompting work?

64
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• Take a large model that has already been trained to model language
• Develop prompt templates for your task

• Prompt templates can be manually or automatically constructed
• Develop an approach for answer engineering

• Build an answer space (set of possible answers that your model may 
generate) and map that answer space to your desired outputs

• This can also be done manually or automatically using search techniques
• Format your input according to the relevant prompt template(s) and map the 

resulting language model output to your desired target output



Why is this useful?

• Successful approaches using the pretrain 
and prompt paradigm are able to perform 
few-shot or even zero-shot learning for the 
target task
• Learning from few or no training 

examples
• This allows researchers to build models for 

tasks that were previously inaccessible due 
to extremely scarce resource availability

• Prompting also requires limited or no 
parameter tuning for the base language 
model, making it possible to develop 
classifiers more efficiently
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In a way, prompting works in an opposite 
way from transfer learning setups….
• Transfer learning: Adjust the model’s weights so that it works better with your 

task and data
• Prompting: Adjust (or, edit the description of) your task and data so that it 

works better with the model’s weights
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LLM

I love that I get to attend CS 521 today!  I feel so”

I love that I get to attend CS 521 today!  My emotion is”

I love that I get to attend CS 521 today!  I have a {Z} feeling”

Happy



Formal Definition 
of Prompting

• In traditional supervised learning, our end 
goal is to model the probability that a given 
input 𝐱 has a label 𝐲 by learning a model 
with the optimal parameters 𝜃
• 𝑃(𝐲|𝐱;𝜃)
• However, in cases where we have limited 

data, it is difficult to perform this 
learning process!

• In prompting, we instead model the 
probability of 𝐱 existing in a language 
modeled using the parameters 𝜃, and that in 
turn informs how we predict 𝐲
• 𝑃(𝐱;𝜃)
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Prompt 
Engineering

• Systematically and 
empirically investigating the 
best prompts to produce 
the desired outcome is 
referred to as prompt 
engineering

• Can sometimes be 
counterintuitive!
• Sometimes the “best” 

prompts look weird to 
human developers, but 
work well at 
encouraging the model 
to perform the task well
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How do we predict the highest-performing label using prompting?
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Prompt Addition Answer Search Answer 
Mapping



Prompt Addition

• Goal: Modify 𝐱 into a prompt 𝐱ʹ
• 𝐱ʹ=𝑓prompt(𝐱)

• How does 𝑓prompt typically work?
• Apply a text template that has slots for the input x and an intermediate answer 

z
• Fill the slot x in the text template
• For example:

• x = “I love watching CS 521 lectures”
• Template “[x]. I feel [z]”
• 𝐱ʹ=𝑓prompt(𝐱) = “I love watching CS 521 lectures. I feel [z]”
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What about the 
intermediate 
answer slot?

• Intermediate answer slots can appear within the 
prompt or at the end of it, depending on the 
prompting technique

• Prompts that have slots to fill within the prompt are 
cloze prompts
• “text [x] text [z] text”

• Prompts that have slots to fill only at the end of the 
prompt are prefix prompts
• “text x text [z]”

• The number of [x] and [z] slots in the prompt can 
be flexible

• Template words are often natural language tokens, 
but they don’t have to be
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Example Inputs, Templates, and Answers
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TASK TEMPLATE INPUT [X] ANSWER [Z]

Topic Identification [X] The text is about [Z] She carefully read the journal 
article.

sports
science
…

Aspect-Based Sentiment 
Analysis

[X] How is the service? [Z] Poor service but good food. bad
terrible
…

Named Entity Recognition [X1] [X2] is a [Z] entity. [X1] LREC-COLING is in Turin 
this year.
[X2] Turin

organization
location
…

Summarization [X] TL;DR: [Z] Section 1: Course Details…. CS 521 is at 9:30 a.m. on 
Tuesdays and Thursdays in 
LCA 007….



Answer Search

• Goal: Search for the highest-scoring text !z that 
maximizes 𝑃(𝐱ʹ;𝜃)

• First, define a set 𝑍 of possible answers 𝐳
• Might be a limited set of words (for 

classification) or the entirety of the language 
(for generation)

• Then, create filled prompts for each 𝐳 by filling the
intermediate answer slot in 𝐱ʹ with that 𝐳
• 𝐱ʹ = 𝑓fill(𝐱ʹ,𝐳)
• Note: If this results in a correct answer, we can 

consider this an answered prompt
• Finally, search over all 𝐳 ∈ 𝑍 by calculating the 

probability of their corresponding filled prompts in 
the language model
• !z = search

𝐳∈#
𝑃(𝑓!ill 𝐱

$, 𝐳 ; 𝜃)
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Answer 
Mapping

excellent

wonderful

POSITIVE



Now we understand 
how prompting 
works, but what 
should we think 
about as we design 
prompting 
methods?

• Design Considerations for Prompting
• LLM choice
• Prompt template engineering
• Prompt answer engineering
• Parameter training (how much, if any, is 

necessary?)
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Prompt 
Template 
Engineering

• The process of creating a prompting 
function that results in the best 
performance on the downstream task
• May involve manual design, automated 

algorithms, or both
• What should be considered?
• Prompt shape
• Level of automation
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Prompt Shape



Level of Automation

• Manual Template Engineering
• Templates that seem intuitive based 

on commonsense
• Written by the researcher/model 

developer
• Good starting point, but limited in 

several ways:
• Time-consuming and requires high 

level of expertise
• No guarantee that optimal 

prompts will be written
• Alternative: Automated Template Learning!
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Automated 
Template 
Learning
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• Discrete Prompts: Automatically learned 
prompt template is a text string

• Continuous Prompts: Automatically learned 
prompt is an embedding

Discrete vs. Continuous

• Static Prompts: Same template for each input
• Dynamic Prompts: Custom template for each 

input

Static vs. Dynamic



Discrete Prompting



Continuous Prompting



Example Continuous Prompting Strategies

Prefix Tuning

Prepends a sequence of 
continuous task-specific 
vectors to the input

Tuning Initialized with 
Discrete Prompts

Initialize the search for an 
optimal continuous prompt 
using a discrete prompt

Hard-Soft Prompt 
Hybrid Tuning

Insert tunable embeddings 
into a discrete prompt 
template



Prompt 
Answer 
Engineering



Answer Shape

• Common granularities:
• Token: A token in the language 

model’s vocabulary
• Span: A short multi-token span

• Often used with cloze prompts
• Sentence: A sentence (or more 

generally, a longer document)
• Often used with prefix prompts
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How to choose an answer shape?
• Largely depends on the task

• Token or span answer spaces → 
Classification or information 
extraction tasks

• Long answer spaces → Language 
generation tasks
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Answer Space Design Methods

• Similarly to prompt template design, can be manual or automated
• Automated techniques may include:

• Discrete answer search
• Continuous answer search

UIC CS 521 - Natalie Parde 86



Manual 
Answer 
Space 
Design



Discrete Answer Search



Continuous 
Answer 
Search

• Soft answer tokens can also be optimized 
alongside soft prompts
• In this case, embeddings are learned from 

scratch for each label
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We know the 
basics of prompt 
design …where 
can we go from 
here?

• Multi-Prompt Learning: No need to limit 
yourself to using one prompt!

• Strategies leveraging multiple prompts often 
achieve better performance

• Numerous approaches for multi-prompt 
learning, including:
• Prompt ensembling
• Prompt augmentation
• Prompt composition
• Prompt decomposition
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Prompt Ensembling • Use multiple unanswered prompts at 
inference time to make predictions
• Works with both discrete and continuous 

prompts
• Advantages of prompt ensembling:

• Leverages complementary advantages 
of multiple prompts

• Alleviates the cost of prompt engineering 
(no need to spend time selecting a 
single best prompt!)

• Stabilizes performance on downstream 
tasks
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Prompt Ensembling Techniques

Based on earlier approaches from ensemble models in machine learning
Popular techniques include:
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Uniform Averaging

•Average the answer 
probabilities across 
multiple prompts

Weighted Averaging

•Compute a weighted 
average of answer 
probabilities across 
multiple prompts, 
where weights are 
associated with 
prompts based on 
prompt performance 
or optimized using a 
training set

Majority Voting

•Take a majority vote 
for answers across 
multiple prompts

Knowledge Distillation

•Train a final model to 
distill knowledge 
ensembled across 
multiple prompts

Prompt Ensembling 
for Text Generation

•Generate output 
based on ensembled 
probability of the 
next word in the 
answer sequence, or 
score different 
decoded sequences 
and select the 
highest-scoring 
sequence



Prompt Augmentation



Sample Selection

• The examples provided in prompt 
augmentation settings can influence 
performance!

• Common approaches:
• Select samples that are close to the input 

in embedding space
• Provide both positive and negative 

samples
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Sample Ordering

• The order of examples provided in prompt augmentation settings 
can also influence performance
• Common approaches:
• Score different permutations of samples using entropy-based methods
• Search for ideal permutations of samples
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Prompt Composition

Define a 
composite 

prompt based on 
those prompts

Composition may use logic rules or other strategies to 
compose the subprompts into a single prompt

Create 
subprompts for 
subtasks of the 

broader task
Subprompts may be manually or automatically constructed
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Prompt Decomposition



Chain-of-Thought 
Prompting

• Designed to improve the reasoning abilities of LLMs by enabling them 
to decompose multi-step problems into intermediate steps

• How does this differ from other forms of prompting?
• The model is prompted to give intermediate reasoning steps 
before providing its answer to a problem
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Chain-of-Thought Prompting Elicits Reasoning in Large Language Models: 
https://openreview.net/pdf?id=_VjQlMeSB_J

https://openreview.net/pdf?id=_VjQlMeSB_J


Chain-of-Thought Prompting

• Advantages:
• Intermediate steps can be 

solved individually (and 
perhaps more easily) than 
the overall problem

• Applicable to any 
language-based task

• Disadvantages:
• Usefulness seems to scale 

with LLM size (may not 
work overly well with 
smaller LLMs)
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Large Language Models are Zero-Shot Reasoners: https://openreview.net/pdf?id=e2TBb5y0yFf

Interesting property of CoT prompting: 
Can be implemented for zero-shot 
settings simply by including “Let’s think 
step by step” in the prompt!

https://openreview.net/pdf?id=e2TBb5y0yFf


Prompt-
Aware 
Training

• Although it’s possible to prompt models out 
of the box, it’s also possible to train models 
in concert with prompting methods
• This may be achieved using a variety of 

training and parameter update approaches
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Prompt-Aware 
Training Settings

• Zero-Shot: No training data is provided for the 
task of interest, and the LLM is used as-is to 
predict output

• Few-Shot: A few samples are available for training
• Full-Data: Many samples are available for training
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Prompting is more relevant to zero-shot or few-shot settings, 
since there generally aren’t sufficient resources in those 
settings for the LLM to fully learn the downstream task.



What if training samples are used to help design 
prompts?



Parameter 
Update 

Methods



Promptless 
Fine-Tuning
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• “Classic” transfer learning
• Fine-tune a pretrained model to perform the 

downstream task, irrespective of the prompts that may 
be used with it

• Advantages:
• Simple, powerful, and widely used
• Model can more fully fit to larger training sets

• Disadvantages:
• May overfit or have poor stability on smaller training 

sets
• May forget information learned prior to fine-tuning 

(catastrophic forgetting)



Tuning-Free Prompting



Fixed-LM Prompt Tuning
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• Prompt-relevant parameters are added and fine-tuned based on downstream 
task samples, while the LLM remains frozen

• Advantages:
• Often better performance than tuning-free prompting, while also retaining 

other advantages of that setting
• Disadvantages:

• Requires prompt engineering, and resulting prompts are often not easy for 
humans to interpret or manipulate
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Fixed-Prompt LM Tuning

• Instruction tuning
• Fine-tunes the LLM using prompts 

with fixed parameters
• Advantages:

• Efficient and more fully specifies 
the task to the model

• Disadvantages:
• Requires template and/or answer 

engineering of some form, and 
may not generalize across 
downstream tasks
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Prompt + LM Tuning

• Tunable prompt parameters are tuned 
alongside some or all of the 
parameters of the LLM

• Advantages:
• Most expressive setting, and well-

suited for large datasets
• Disadvantages:

• Requires more compute resources, 
and may overfit with small 
datasets
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What kind of 
problems can 
we solve with 

prompt-
based 

learning?

UIC CS 521 - N
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• Knowledge Probing: How much (and what kind of) knowledge does the 
LLM have?
• Factual Probing
• Linguistic Probing

• Structure Prediction: What structured meaning representations can be 
extracted by the LLM?
• Semantic Parsing

• Classification: How well can the task be reformulated and specified as 
a prompt?

• Information Extraction: What special units or relations can be 
extracted by the LLM?
• Relation Extraction
• Named Entity Recognition

• Reasoning: What do LLMs really understand about the world?
• Commonsense Reasoning
• Mathematical Reasoning

• Question Answering: To what extent can the LLM answer the specified 
question?

• Text Generation: How well does the LLM generate text, conditioned on 
the provided information?

• Automated Evaluation of Text Generation: Can prompts be used to 
evaluate the quality of generated text?
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Prompting can 
also support 
other NLP 
tasks!

• Domain Adaptation
• Debiasing
• Dataset Construction

• Generate datasets conforming to the 
provided instructions
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What about multimodal prompts?

• It’s possible to prompt LLMs with images:
• Represent images as embeddings
• Prompt LLMs with these embeddings

• Helpful to include demonstrations in this setting, especially if 
keeping the LLM frozen
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How does prompt-
based learning 
connect to other 
NLP and deep 
learning concepts?

• Prompt Ensembling→ Facilitates ensemble 
learning without requiring that multiple 
models are trained

• Prompt Augmentation → Advances study of 
few-shot learning and larger-context learning

• Discrete Prompt Search → Borrows 
techniques from query reformulation

• Continuous Prompt Fine-Tuning → Adds 
control signals (such as those used in 
controllable text generation) to the prompts
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Ongoing 
Challenges in 
Prompt-Based 
Learning

• Prompt Design
• Creating prompts for classification and 

generation tasks is straightforward, but how 
should we design them when the end goal is 
language analysis?

• Prompt Answer Engineering
• How should we engineer answer spaces with 

many classes, or with multi-token answers?

• Model Development
• How should we select the base LLM, or the 

tuning strategy (if any)?

• Multi-Prompt Learning
• What are the best prompts to include when 

performing prompt ensembling?
• What is the best way to select demonstration 

samples, and how should they be ordered?
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We also need to more fully understand:

• Theoretical and empirical analyses and 
guarantees for prompt-based learning
• Just how much does prompt-based 

learning help a task?
• Optimal pretraining strategies for prompt-

based learning
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Prompting Resources

• OpenPrompt:
• https://thunlp.github.io/OpenPrompt/

• PromptBench:
• https://github.com/microsoft/promptbench

• Prompt Engineering Guide:
• https://www.promptingguide.ai/

• Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural 
Language Processing
• https://dl.acm.org/doi/full/10.1145/3560815
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https://thunlp.github.io/OpenPrompt/
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Summary: 
Prompt-
Based 

Learning


