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Machine Translation: The process of automatically converting
a text from one language to another.
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D st Machine translation is
increasingly ubiquitous, but
: also challenging for many
reasons.

Structural and lexical
differences between languages

Differences in word order

Pause translation

Morphological differences

& [

Instant Scan

1 @ <

Stylistic and cultural

differences
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Cross-Linguistic Similarities
and Differences

« Typological Differences:
» Systematic structural differences between languages

« Morphological Differences:
* Number of morphemes per word

+ Isolating languages: Each word generally has
one morpheme

* Polysynthetic languages: Each word may have
many morphemes

* Degree to which morphemes can be segmented

« Agglutinative languages: Morphemes have
well-defined boundaries

* Fusion languages: Morphemes may be
conflated with one another
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Cross-
Linguistic
Similarities
and
Differences

Syntactic Differences:

» Primary difference between languages: Word order

and object
clauses

basic clauses

Verb tends to come between the subject
Verb tends to come at the end of basic

Verb tends to come at the beginning of

 Languages with similar basic word order also tend to share other

similarities

« SVO languages generally have prepositions
« SOV languages generally have postpositions

Differences in Argument Structure and Linking

Mark the direction of motion on the verb,

leaving its satellites (particles, prepositional phrases, and adverbial
mrasas).to mark the manner of motion

satellite, leaving the verb to mark the manner of motion =~
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The bottle floated out.

7

La botella sali6 flotando. «

S

The bottle exited floating.



Cross-
Linguistic
Similarities
and
Differences

Differences in Permissible Omissions:

Can omit pronouns when talking about
certain referents

Some pro-drop languages permit more pronoun omission than
others

and languages

Converting text from pro-drop languages (e.g., Japanese) to
non-pro-drop languages (e.g., English) requires that all missing

pronoun locations are identified and their appropriate
recovered

Differences in noun-adjective order
* Blue house — Maison bleue

Differences in homonymy and polysemy

Differences in grammatical constraints

« Some languages require gender for nouns

« Some languages require gender for pronouns
Lexical gaps

* No word or phrase in the target language can express the
meaning of a word in the source language



Machine
Translation

assical Machine Translatio
* Direct translation

» Transfer approaches

* Interlingua approaches
 Statistical methods

« Modern Machine Translation
 Encoder-decoder models
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Direct translation
1. Take a large bilingual dictionary
2. Proceed through the source text word by word
3. Translate each word according to the dictionary

No intermediate structures

Simple reordering rules may be applied

Classical
- « For example, moving adjectives so that they are after nouns
M ac h I n e when translating from English to French

Dictionary entries may be relatively complex

Tra n s I ati o n » Rule-based programs for translating a word to the target

language
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Classical Machine Translation

* Transfer approaches
» Parse the input text

* Apply rules to transform the source language parse structure into a target

language parse structure

« Two subcategories of transformations:

« Syntactic transfer
 Lexical transfer

amod

blue house

amod

N

maison | | bleue




Transfer Approaches

Nominal

Adjective |

« Syntactic Transfer: Modifies the source
parse tree to resemble the target parse tree

* For some languages, may also include
thematic structures

Nominal

Adjective |

» Directional or locative
prepositional phrases vs. recipient
prepositional phrases

* Lexical Transfer: Generally based on a
bilingual dictionary
» As with direct translation, dictionary
entries can be complex to
accommodate many possible
translations

Natalie Parde - UIC CS 521
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Classical
Machine
Translation

 Interlingua approaches

« Convert the source language text into an abstract

meaning representation

« Generate the target language text based on the
abstract meaning representation

« Require more analysis work than transfer approaches

« Semantic analysis
« Sentiment analysis

* No need for syntactic or lexical transformations

.mue‘

house

maison

bleue




Interlingua Approaches

» Goal: Represent all sentences that mean the same
thing in the same way, regardless of language

» What kind of representation scheme should be used?

» Classical approaches:
 First-order logic
« Semantic primitives
» Event-based representation

* More recently, neural machine translation models

follow a similar intuition
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When to use
each
classical
approach?

e Direct Translation

* Pros:
» Simple
» Easy to implement
» Cons:
+ Cannot reliably handle long-distance reorderings
« Cannot handle reorderings involving phrases or larger structures
+ Too focused on individual words

mmmm | ransfer Approaches

* Pros:

+ Can handle more complex language phenomena than direct translation
» Cons:

« Still not sufficient for many cases!

mmm INterlingua Approaches

* Pros:
 Direct mapping between meaning representation and lexical realization
* No need for transformation rules

» Cons:
 Extra (often unnecessary) work

« Classical approaches require an exhaustive analysis and formalization of the
semantics of the domain

Natalie Parde - UIC CS 521
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« Models automatically learn to map from the source

L language to the target language
Statls_tlcal * No need for intermediate transformation rules
Machine » No need for an explicitly defined internal meaning
Translation representation

» Goal: Produce an output that maximizes some function
representing translation faithfulness and fluency

* One possible approach: Bayesian noisy channel
model

« Assume a possible target language translation ;
and a source language sentence s

« Select the translation t’ from the set of all possible
translations ¢, € T that maximizes the probability
P(t|s), using Bayes’ rule

* t' = argmaxP(s|t;)P(t;)
t;€T

« Often a phrase-based translation model is used



Th e « Computes the probability that a given
translation t; generates the original

- sentence s based on its constituent
Phrase sentenc

Based » Stages of phrase-based translation:
1. Group the words from the source sentence
into phrases

|
I ra n s I atl O n 2. Translate each source phrase into a target
language phrase
3. (Optionally) reorder the target language
Model




Probability in Phrase-Based Translation
Models

» Relies on two probabilities:

* Translation probability
* Probability of generating a source language phrase from a target
language phrase, ¢(t;, 5;)
« Distortion probability
« Probability of two consecutive target language phrases being separated in
the source language by a word span of a particular length, d(a; — b;_;)

 To learn these probabilities, we need to train two sets of parameters:
* d(t;,5)
* d(a; — bj—1)

* We learn these using phrase-aligned bilingual training sets



Decoding for
Phrase-Based
Machine Translation

Mina did
Mina no di6

 Aligned phrases can be stored in a phrase-translation
table

* Decoding algorithms can then search through this
table to find the overall translation that maximizes the
phrase translation probabilities

una

bofetada la bruja verde
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Machine
Translation

» Classical Machine Translation
 Direct translation
» Transfer approaches
* Interlingua approaches
o Statisticalaas SIS

delern Machine Translation
 Encoder-decoder models

Natalie Parde - UIC CS 521
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Encoder-Decoder Models

» Generate contextually-appropriate, arbitrary-length output sequences

» Basic premise:
« Use a neural network to encode an input to an internal representation

« Pass that internal representation as input to a second neural network

« Use that neural network to decode the internal representation to a task-
specific output sequence

* This method allows networks to be trained in an end-to-end fashion

Natalie Parde - UIC CS 521
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Where did this
idea come from?

Recall our discussion of
autoregressive generation:

Start with a seed token (e.g.,
<s>)

Predict the most likely next
word in the sequence

Use that word as input at the
next timestep

Repeat until an end token (or
max length) is reached

<S> =p

Qrent —>

n

llIlI —> recurrent

softmax

.II'I —> neural

softmax

eural >
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This setup can be
extended to generate text ] _@
given a specific prefix....

/
* Pass the specified prefix through the
language rﬁodel inpsequence ’ bidirectional » —@- 'ljl _> re(b
’ softmax
 End with the hidden state

corresponding to the last word of the I
prefix recurrent . .l I— neural
. softmax
« Start the autoregressive process at
that point
» Goal: Output sequence should be neural _I —> network
a reasonable completion of the

prefix
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We can build upon this idea to transform
one type of sequence to another.

* Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
3

. Test the model by passing in only the first part of a concatenated
sequence (text from Language #1) and checking to see what the
generated completion (text from Language #2) looks like
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Intuition: Machine Translation

"LHi, I’m Natalie. J Boaour, je m'appelle Natalie.




Intuition: Machine Translation

‘LHi, I’m Natalie. é BonTour, je m'appelle Natalie.

‘ﬁc.

1\ - \
Hi, | P'm | Natalie. | </s> | Bonjour, |je | mappelle | Natalie.
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Intuition: Machine Translation

"LHi, I’m Natalie. J BonTour, je m'appelle Natalie.

‘ﬁ‘:

1\ \
Hi, | P'm | Natalie. | </s> | Bonjour, |je | mappelle | Natalie.

l
l —_~—— . _1_ —
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Intuition: Machine Translation

J Hi, I'm Mina.

Bonjour »

| ) )
Hi, | P'm | Mina. | </s>_

—_ e -



 Encoder
 Accepts an input sequence, x7*

« Generates a sequence of contextualized
representations, ht

 Context vector

* A function, c, of h{ that conveys the basic
meaning of xi' to the decoder

Key * (Might just be equivalent to h})
Elements of - Decoder

an Encoder- » Accepts c as input
« Generates an arbitrary-length sequence of
Decoder

hidden states, h", from which a corresponding
sequence of output states yI"™ can be obtained
Network k ; ¢
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Encoders

» Can be any type of neural network
* Feedforward network

CNN

RNN

LSTM/BILSTM

GRU/BIGRU

* Transformer

More common

» These networks can be stacked on top of one another



D e CO d e rs * Need to perform autoregressive generation

to produce the output sequence

« Can be any type of sequence processing
network

« RNN

« LSTM

- GRU

* Transformer

* Formally....
yhe - Final hidden state of the encoder
n

e Cc = /
=

~ ﬁ — = First hidden state of the decoder

DI
« hWI'=yg(y,—1, he 1)

* 7, = f(h{)

* y; = softmax(z;)
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D e CO d e rs * Need to perform autoregressive generation

to produce the output sequence

« Can be any type of sequence processing
network

« RNN

« LSTM

- GRU

* Transformer

 Formally.... Embedding for the output

-

s ¢ =hf ¢ | sampled from the previous step

« h¢=c 4

* hi 5 QE)’/t—\L he_
. 7, = f(hD) Some type of
.+, = softmax(zy — ~ ] seduence

Y = softmax(z, processing model

Natalie Parde - UIC CS 521 30



D e CO d e rs * Need to perform autoregressive generation

to produce the output sequence

« Can be any type of sequence processing
network

« RNN

« LSTM

- GRU

* Transformer

 Formally....
e c=h{
. hg =

Regular ending steps (activation function e h8 = 9(Vi—1, hg_l)
applied to hidden state outputs, and .« 7, = f(hff)
( {

softmax applied to activation outputs
b puts) * y; = softmax(z;)

Natalie Parde - UIC CS 521 31



A couple useful extensions....

« Formally....
e c=h
e hq =

b = gL h) —|hf = 9O by, O

* 2 = f(h{)
* y; = softmax(z;)

\

I
/

’

\ | Make the context vector available at each
™ timestep when decoding, so that its
influence doesn’t diminish over time

Natalie Parde - UIC CS 521
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A couple useful extensions....

« Formally....
e c=h
e hq =

* hi = g—1, hi1) — hi = g(—1, hi-1, ©)

.+ 7, = f(hY)
e y; = softmax(z;) — y; = Eoftmax(ﬁ_\l, Zs, c;)]v»
)

-

g

/
\ | Condition output on not only the hidden state, but

| the previous output and encoder context (easier
to keep track of what's been generated already)
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What other ways can we improve the

decoder’s output quality?

« Beam search

* Improved context vector

* Final hidden state tends to be more focused on the end of the
Input sequence

« Can be addressed by using bidirectional RNNs, summing the
encoder hidden states, or averaging the encoder hidden states

Natalie Parde - UIC CS 521 34



Beam Search

» Selects from multiple possible outputs by framing the
task as a state space search

« Combines breadth-first search with a heuristic filter

» Continually prunes search space to stay a fixed
size (beam width)

» Results in a set of b hypotheses, where b is the beam
width




How does beam search work?

Beam Size = 3




How does beam search work?

\——_—

Beam Size = 3
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How does beam search work?

Beam Size = 3

Decoder

Decoder

-

Natalie Parde - UIC CS 521
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How does beam search work?

Beam Size = 3

Decoder

Decoder

-
Natalie Parde - UIC CS 521
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How does beam search work?

Decoder . E

& ]
'-
_____ - ]
| Vit2 I
'-
~ —-— - - ~ -
-————_\___—.H--—--rﬂ— o

i }’ \
A = \
Beam Slze(—z o

\___—’
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How does beam search work?

Beam Size = 2

Decoder

Decode Yeip =<I8>

Natalie Parde - UIC CS 521
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How does beam search work?

\ | ¢
: 4_ \\ Decode yt+ :</S>
Beam Siza = 1 N - \

Natalie Parde - UIC CS 521
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How does beam search work?

Beam Size(= 0

Decoder

\___—’

Viig =</s>

Natalie Parde - UIC CS 521
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--=

Vt+4 =</s>
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How does beam search work?

Decoder

Beam Size = 0

Natalie Parde - UIC CS 521 44



How do we
choose a best
hypothesis?

 Probabilistic scoring scheme

« Pass all or a subset of hypotheses to a
downstream application

Natalie Parde - UIC CS 521
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So far, the encoder context
vectors we’ve seen have
been simple and static.

« Can we do better?
* Yes!

Natalie Parde - UIC CS 521
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Attention

Mechanism

 Takes entire encoder context into
account

 Can be embodied in a fixed-size vector

Natalie Parde - UIC CS 521
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* We've already made our context vector
available at each timestep when decoding

* hic'fl — g(}Tt-—\li h?—l; C)
Reca" * The first step in creating our attention

mechanism is to update our hidden state
such that it is conditioned on an updated
context vector with each decoding step

* hi = g(e—1, hi-1, cr)

Natalie Parde - UIC CS 521



How do we
dynamically
create a new

context
vector at
each step?

 Compute a vector of scores that

capture the relevance of each encoder
hidden state to the decoder hidden

state, h? ,
» score(h |, he) = he - h;

Natalie Parde - UIC CS 521



Vector of Context Scores

~_
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Vector of Context Scores

Natalie. »

_————

m’appelle Natalie.
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Vector of Context Scores

Natalie. » </s> =»
m’appelle Natalie.

Bonjour »
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Vector of Context Scores

m’appelle Natalie.
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Vector of Context Scores

m’appelle Natalie.
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Vector of Context Scores

-
=
_———
_____—___———_—_—__

Natalie. »

R

m’appelle Natalie.
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How can we
make use of
context scores?

» Parameterize these scores with weights

* This allows the model to learn which
aspects of similarity between the encoder
and decoder states are important

Natalie Parde - UIC CS 521
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* Normalize context scores to create a
vector of weights, «a;;

* ajj = softmax(score(h 4, hi)Vj € e)
* Provides the proportional relevance of

Atte ntiOn each encoder hidden state j to the

current decoder state i

Welg hts * Finally, take a weighted average over all
the encoder hidden states to create a
fixed-length context vector for the current
decoder state

[ J . . x e
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Thus, we finally have an encoder-
decoder model with attention!

: Natalie. » </s> =»
Hi, = 'm = / / @
! / - -
s YNm e ==

-
~—————
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—
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-
-
-
—
___——————_—
——_—
-
—-—
f—
-

m’appelle Natalie.
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Thus, we finally have an encoder-
decoder model with attention!

Natalie. » </s> =»

|

f’;?

&//

--———

m’appelle Natalie.
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« More sophisticated scoring functions can be used
as well

Oth « Common: Parameterize the attention score with its
er own set of trainable weights

Atte ntiOn . score(h?_l,hje) = h?_lwshf

« Advantage: Allows the encoder and decoder to

We i g hts use vectors with different dimensionality (dot-

product attention requires the encoder and
decoder hidden states to have the same
dimensionality)




Advanced RNNs are a powerful tool,
but they are not without their
limitations.

« Remaining challenges:

« Even with sophisticated architectures, processing
long-distance dependencies through many
recurrences can eventually lead to loss of valuable
information

» Recurrent models cannot productively leverage
parallel resources
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Transformers

« Entirely do away with recurrences

» Stacks of:
* Linear layers
« Feedforward layers

« Self-attention layers

* For a given element in a sequence, determines which
other element(s) up to that point are most relevant to it

« Each computation is independent of other
computations — easy parallelization

« Each computation only considers elements up to
that point in the sequence — easy language

modeling

« Goal: Map sequences of input (x4, ..., x,,) to sequences of output
(1, -, Yn) Of the same length
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Self-Attention
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Self-Attention
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Self-Attention
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Self-Attention
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Computing Self-Attention

« Simplest method:

» Take the dot product between a given input element x; and each input element
(x4, ..., x;) up until that point

* Apply softmax normalization to create a vector of weights, «;, indicating proportional

relevance of each sequence element to the current focus of attention, x;

« Take the sum of inputs thus far weighted by «a; to produce an output y;

Natalie Parde - UIC CS 521
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How do Transformers learn?

» Continually updating weight matrices applied to inputs

« Weight matrices are learned for each of three roles when computing self-attention:
« Query: The focus of attention when it is being compared to inputs up until that
point, W¢
- Key: An input that is being compared to the focus of attention, WX

- Value: A value being used to compute the output for the current focus of
attention, WV



« Weight matrices are applied to inputs in the context of
their respective roles

* qi = WCx;
, i e ki = WKXL'
Training c v =Wy,
« Then, we can update our equations for computing self-
TranSfO rmers attention so that these roles are reflected in them:

. score(xi,xj) = q; * k;
* @;; = softmax (score(xi,xj)) Vi<1

* Vi = Nj<i AijV




Self-Attention
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« Combining a dot product with an exponential (as in
softmax) may lead to arbitrarily large values

* It is common to scale the scoring function based on the
dimensionality of the key (and query) vectors, d;

° SCOI‘G(XL',X]') - C\I/ldik]

« Each y; is computed independently, so we can parallelize

Practical computations using efficient matrix multiplication routines
. . where X is a matrix containing all input embeddings
Considerations = 179
. K = WKX
e V=WVX
» SelfAttention(Q, K, V) = softmax (Q—KT) V
) ) — @

« Make sure to avoid including knowledge of
future words in language modeling settings!




Transformer Blocks

» Self-attention is the central component of a Transformer block, which also
includes: RN

» Feedforward layers N
» Residual connections
* Normalizing layers \

» Transformer blocks can be stacked, just like RNN layers

' 1oke uonueny-4es |
9ZI|eWION pue ppy '

——
e A

| Joke psemioypas ‘
| azIlewlIoN pue ppy '




Multihead Attention

« Each self-attention layer represents a single attention
head

« Multihead attention places multiple attention heads in
parallel in the Transformer model

« Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction




Computing Multihead Attention

« Each head in the self-attention layer is parameterized with its own weights

°Q=WiQX
- K = WfX
- V=Ww'X

* The output of a multihead attention layer with n heads comprises n vectors
of equal length

* These heads are concatenated and then reduced to the original input/output
dimensionality

* head; = SelfAttention(I/l/iQX, WiKX, Wl-VX)
e MultiheadAttention(Q, K,V) = W9 (head;®head, @... ®head,,)

Natalie Parde - UIC CS 521



Multihead Attention

' Add and Normalize |
il et

, Feedforward Layer
————
L A——
' Add and Normalize |
e —

e

‘_____—________—___—

—/- Self-Attention _lmv\mq. 7 Self-Attention _|m<®q. |
N — /

Input

76
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Positional Embeddings

« Since Transformers don’'t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

« Randomly initialize an embedding for each input position

» Update weights during the training process

* Input embedding with positional information = word embedding + positional
embedding

« Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
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Transformers as Autoregressive
Language Models

gz
\ ‘ are
Transformers Traréﬁ%:(mer | IIII M,

softmax loss
/£
Transformer | |III\ ‘M fun
are
— softmax loss

/
fun TraréT:)(():Lmer IIII\ ‘M </s>

softmax loss




» Similar to other encoder-decoder models
* Encoder (Transformer model) maps

Encoder- sequential input to an output representation
» Decoder (Transformer model) attends to the

Decoder . encoder representation and generates

Models with sequential output autoregressively

Transformers - However....

« Transformer blocks in the decoder include
an extra cross-attention layer

Natalie Parde - UIC CS 521 79



Reminder: Normal Transformer block

7/

« Same form as multiheaded self-attention in a normal Transformer
block, with one difference: queries come from the previous layer of the
decoder as usual, but keys and values come from the output of the

encoder
. Q = WQHdeC[i_l]
« K= WQH"
e V= WVHenC
QKT

* CrossAttention(Q,K,V) = softmax (ﬁ) \Y

Natalie Parde - UIC CS 521
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Updated Decoder Transformer Block

|

Input

Jaken
UONUANY-SS01D
| azIjeWION pUE ppY .
| 1aAe psemuoypas .
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Encoder-

Decoder

* Why is cross-attention useful?

» Allows the decoder to attend to
the entire encoder sequence

* Training Transformer-based
encoder-decoders is similar to
training RNN-based encoder-

Models with decoders

« Use teacher forcing

TranSfo rmers  Train autoregressively

—
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Practical Details for Building MT
Systems

vOCapuldary

* MT systems typically use a fixed vocabulary generated using byte pair encoding
or other wordpiece algorithms

» Vocabulary is usually shared across the source and target languages

 Parallel corpora with the same content communicated in multiple languages
« Common sources:

« Government documents for nations with multiple official languages

» Subtitles for movies and TV shows

« Often, text from the source and target language(s) is aligned at the sentence
level

Natalie Parde - UIC CS 521
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Wh at if we » Parallel corpora are difficult to find, especially
, for lower-resource language pairs
don’t slation:
1. Train an intermediate target-to-source

h ave MT system on a small parallel corpus
2. Translate additional monolingual data

h from the target language to the source
m U C language using this intermediate system

3. Consider this new, synthetic parallel data

tral n I n g | as additional training data

4. Train a source-to-target MT system on
d ata? the expanded training dataset



Summary:
Machine

Translation
Methods and

Encoder-
Decoder
Models

Machine translation is challenging due to many
typological, morphological, and other differences
between languages

Classical machine translation used dictionary-based,
direct transfer, and interlingua approaches

A popular statistical MT model is the Bayesian noisy
channel approach, which relies on phrase-based
translation

Encoder-decoder models draw upon similar techniques
for autoregressive language modeling to convert input to
an intermediate vector representation and then convert
that intermediate representation to output

One newer architecture that can be used in encoder-
decoder settings is the Transformer model
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How do we
evaluate
machine

translation
models?

 Translation quality tends to be

very subjective!

 Two common approaches:

 Human ratings
 Automated metrics



* Typically evaluated along multiple
dimensions

 Tend to check for both fluency and
adequacy

* Fluency:
* Clarity
 Naturalness

Evaluating
Translation . Adequacy:
Using Human .+ Fidelity
Ratings . Informativeness
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« How to get quantitative measures of

Evaluating fluency?

 Ask humans to rate different

MaCh i ne aspects of fluency along a scale

----- » Measure how long it takes humans

~ - TranSIation to read a segment of text

..... « Ask humans to guess the identity of

Using Human the missing word
* “After such a late night working

Rati ngS on my project, it was hard to

wake up this I”




Evaluating Machine Translation Using
Human Ratings

* How to get quantitative measures of adequacy?

 Ask bilingual raters to rate how much information was preserved in the
translation

« Ask monolingual raters to do the same, given access to a gold standard
reference translation

» Ask raters to answer multiple-choice questions about content present in a
translation
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Another set
of human -
* Ask a human to post-edit or “fix” a

evaluation translation

metrics « Compute the number of edits required to
correct the output to an acceptable level

COnSiderS - Can be measured via number of word changes,

t number of keystrokes, amount of time taken, etc.

editing.
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 Less accurate than human
evaluation, but:

« Useful for iteratively testing

AUtOmated system improvements

« Can be used as an automatic

Metri CS loss function

 Two main families:
» Character- or word-overlap
« Embedding similarity




Popular Lexical Overlap Metrics

- BLEU
» Measure of word overlap

« METEOR
« Measure of word overlap, considering stemming and synonymy

« Character F-Score (chrF)
» Measure of character n-gram overlap

Natalie Parde - UIC CS 521
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» Weighted average of the number of n-gram overlaps with
human translations

Z
=
Qo
=
U
)

ol
)

1

<
O
O
wn
o1
R
—_—

* Precision-based metric

» What percentage of words in the candidate translation also
occur in the gold standard translation(s)?

» To compute BLEU:

« Count how many times each n-gram is used in the
candidate translation, c(ngram)

 Clip that amount so that the highest it can be is
cmax(ngram) defined as the maximum number of times it
is used in a reference translation

» Compute precision for each word in the candidate
translation:

Zce{CandidateS}
Zce{CandidateS} Zngramec C(MEram)
« Take the geometric mean of the modified n-gram
precisions for unigrams, bigrams, trigrams, and 4-grams

Ingramec min(C(Ngram),cmax(ngram))

* prec, =

93



Then, add a penalty for translation
brevity....

Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!

The penalty is based on:
» The sum of the lengths of the reference sentences, r
» The sum of the lengths of the candidate translations, ¢

Formally, the penalty is set to:
1 ifc>r

e BP = r
e17d ifc<r

The full BLEU score for a set of translations is then:
1

e BLEU = BP * ([[+-prec,)s
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Example: Computing BLEU

Mina no di6 una bofetada a la bruja verde. Source Sentence
Mina didn’t slap the green witch. Reference Translation
Mina did not give a slap to the green witch. Candidate Translation

Natalie Parde - UIC CS 521
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Example: Computing BLEU

Mina no di6 una bofetada a la bruja verde. Source Sentence
Mina didn’t slap the green witch. Reference Translation
Mina did not give a slap to the green witch. Candidate Translation
Zce{CandidateS}anFamEC min(c(ngram), cypax(ngram)) 5p 1 ifc>r
prec, = — Iy,
" Zce{CandidateS}anl"amec c(ngram) e Pifc<r

e

4
1
BLEU = BP * (1_[ prec,, )4

n=1




Example: Computing BLEU

Mina didn'’t slap the green witch.

prec, =

L

e (Candidates} anramec min(c(ngram), cmax (ngram))

Z:ce{CandidateS} anramec c(ngram)

Unigram Frequency Unigram Frequency
(Candidate) (Reference)

Mina
did
not
give
a
slap
to

the
green

witch

1

- a4 A Aa A Aa A A A A
- A A A O -~ O O o o
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Mina did not give a slap to the green witch.

N

BLEU = BP *(

S/




Example: Computing BLEU

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.
Zce{CandidateS}anramEC min(c(ngram), cmax (ngram)) 1 ifc>r
prec, = BP = -0y .
2 eiCandidatesy 2ngramec ¢(ngram) e clifcsr
(e | et |
(Candidate) (Reference) 7! )
Mina 1 1 BLEU = BP *( prec, )4
did 1 0 n=1
not 1 0
give 1 0 14+0+0+0+0+1+0+1+1+1+1 6
4 1 0 P I 1+ 1+ 141 +1+1+1+1+1 11
slap 1 1
to 1 0
the 1 1
green 1 1
witch 1 1
1 1
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Example: Computing BLEU

Mina didn'’t slap the green witch. Mina did not give a slap to the green witch.
Zce{Candidates}anramec min(c(ngram), cmax (ngram)) 1 ifc>r
prec, = > 5 BP=1{ .1
ce{Candidates} ~ngramec c(ngram) e cifc<r

N

Bigram Bigram Frequency Bigram Frequency 1
(Candidate) (Reference) BLEU = BP * (| | prec,)4

A A

Mina did 1 0 n=1

did not 1 0

IS ! 0 1+04+40+0+0+1+0+1+1+1+1 6
give a 1 ! L 1+ 1+1+1+141+1+1+1 11
a slap 1 0

slap to 1 0

to the 1 0 0+0+0+O+0+0+0+1+1+1 3
the green 1 1 P 141+l +1+1+1+1+1+1_ 10
green witch 1 1

witch . 1 1
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Example: Computing BLEU

Mina didn'’t slap the green witch.

e (Candidates} anramec min(c(ngram), cmax (ngram))

prec, =

Z:ce{CandidateS} anramec c(ngram)

Trigram Trigram Frequency Trigram Frequency
(Candidate) (Reference)

Mina did not
did not give
not give a

give a slap

a slap to

slap to the

to the green
the green witch

green witch .

UL NG, N S . O N G U

0

- = O O O O O o

6

p1:H

Mina did not give a slap to the green witch.

N

P2

3
10

0+0+0+0+0+0+0+1+1 2

p3

Natalie Parde - UIC CS 521
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Example: Computing BLEU

Mina didn'’t slap the green witch. Mina did not give a slap to the green witch.
Zce{Candidates}anramec min(c(ngram), cmax (ngram)) 1 ifc>r
prec, = BP=1{ .1
Zce{CandidateS}anl‘amEC c(ngram) e Cifc<r

N

4-gram Frequency | 4-gram Frequency 1
(Candidate) (Reference) BLEU = BP *( prec, )4

Mina did not give 1 0 n=1
did not give a 1 0
not give a slap 1 0
give a slap to 1 0 _ i _ i _ z
a slap to the 1 0 P1= 11 P2 10 P3 9
slap to the green 1 0
Sl 0+0+0+0+0+0+0+1 1
to the green witch 1 0 Ds = = —
: 1+1+1+1+1+1+1+1 8
the green witch . 1 1
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Example: Computing BLEU

Mina didn'’t slap the green witch.

e (Candidates} anramec min(c(ngram), cmax (ngram))

prec, =
' Z:ce{CandidateS} anramec c(ngram)
_ & _3 2 1
PL=97 P2779 PsT45 PaTg
BP =1

Mina did not give a slap to the green witch.

N

BLEU = BP *(

1 1 1
BLEU =1 * ([Th—y precy)i= 1% (== * = * = x )a= 1% 000454545454 = 1 x 0.25965358893 = 0.26




What are
good

BLEU
scores?

* No formal score ranges, but in
general:

» <10: Very poor
* 10-19: Difficult to understand

« 20-29: Understandable but with
many grammatical errors

« 30-39: Understandable and
reasonable quality

* 40-49: High quality

« 50-59: Very high quality

« >60: May exceed human
translators

103
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Limitations of BLEU

Word or phrase order is of minimal importance

 When computing unigram precision, a word can exist anywhere in the
translation!

Does not consider word similarity
Relatively low correlation with human ratings

Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric
is needed to assess translation performance




Character

F-Score
(chrF)

e Same intuition as BLEU: Good
machine translations tend to contain
the same words and characters as
human translations

« Ranks a candidate translation by a
function of the number of character n-
gram overlaps with a human reference
translation

 Less sensitive to differences in
wordform than BLEU (e.g., “gives”
versus “is giving”)

105
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How is chrF computed?

« Similarly to “regular” F-score

« chrP: averaged % of character unigrams, bigrams, ..., k-grams in the hypothesis that o
also occur in the reference

« chrR: averaged % of character unigrams, bigrams, ..., k-grams in the reference that
also occur in the hypothesis

* B: weighting parameter (similarly to F-score) that determines the relative impacts of
chrP and chrR on the overall F-score

. _ oy ChrP xchrR __ 5xchrP xchrR
chrFg = (1 + B*) 57 x chrP + chrR’ or for example, chrF2 = 7 chrP 1 chrR
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Example: Computing chrF



Example: Computing chrF

& CS 521 is great D

Natalie Parde - UIC CS 521 108



Example: Computing chrF

& CS 521 is great D

Cls 52 1]ilsltlhlelblels |t
Ccls 52 1]ilslglrlelalt
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Example: Computing chrF

& CS 521 is great D

I 0 I N N FE N «—— 14 unigramss, 13 bigrams
Cls 52 1]ilslglrlelalty 12 unigrams, 11 bigrams
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Example: Computing chrF

& CS 521 is great D

I 0 I N N FE N «—— 14 unigramss, 13 bigrams
Cls 52 1]ilslglrlelalty 12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, ..., k-grams
in the hypothesis that are also in the reference

chrR: averaged % of character unigrams, bigrams, ..., k-grams
in the reference that are also in the hypothesis

Natalie Parde - UIC CS 521
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Example: Computing chrF

o,

CiS 521 is great D

R TR I3 N R N N R IER N ——— 14 unigrams, 13 bigrams

Cls 52 1]ilslglrlelalty

chrP: averaged % of character unigrams, bigrams, ..., k-
grams in the hypothesis that are also in the reference

chrR: averaged % of character unigrams, bigrams, ..., k-grams
in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

Natalie Parde - UIC CS 521

12 unigrams, 11 bigrams

(o)
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Example: Computing chrF

o,

CiS 521 is great D

CS 855221 | 1i | is [ st th | he eb | bees | st punERN LSRR LS

CS|S5/52 21 1i |is [sglor re ea at

chrP: averaged % of character unigrams, bigrams, ..., k-
grams in the hypothesis are also in the reference

chrR: averaged % of character unigrams, bigrams, ..., k-grams
in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

Natalie Parde - UIC CS 521

12 unigrams, 11 bigrams

(o)

113



Example: Computing chrF

& CS 521 is great D

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams
grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference
6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference
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Example: Computing chrF

o,

CiS 521 is great D

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

grams in the hypothesis that are also in the reference

chrP: averaged % of character unigrams, bigrams, ..., k-

in the reference that are also in the hypothesis

chrR: averaged % of character unigrams, bigrams, ..., k-grams @

9 unigrams are in both the hypothesis and the reference | Unigram chrP: %/;, = 0.75

Unigram chrR: %/,, = 0.64

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Natalie Parde - UIC CS 521
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Example: Computing chrF

& CS 521 is great D

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams @

9 unigrams are in both the hypothesis and the reference
6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: °/;, = 0.75

Unigram chrR: %/,, = 0.64

Bigram chrP: °/,; = 0.55

Egram chrR:¢/,. = 0.46

Natalie Parde - UIC CS 521
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Example: Computing chrF

& CS 521 is great D

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams @

9 unigrams are in both the hypothesis and the reference
6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: °/;, = 0.75

Unigram chrR: %/,, = 0.64

Bigram chrP: °/,; = 0.55

Egram chrR:¢/,. = 0.46

Trigram chrP: >/,, = 0.5

Trigram chrR: 5/, = 0.42

Natalie Parde - UIC CS 521
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Example: Computing chrF
cif, -

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams
grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis

Unigram chrP: %/;, = 0.75 Unigram chrR: °/;, = 0.64

Bigram chrP: 6/,; = 0.55 lBigram chrR: ¢/,; = 0.46

Trigram chrP: 5/w = 0.5 Trigram chrR:5/;, = 0.42

0.75+0.55+0.5
chrP: = 0.6

—
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Example: Computing chrF

& CS 521 is great D

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams @
grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis

Unigram chrP: %/;, = 0.75 Unigram chrR: °/;, = 0.64

Bigram chrP: 6/;, = 0.55 Egram chrR:¢/,. = 0.46

Trigram chrP: 3/, = 0.5 Trigram chrR: >/}, = 0.42

chrp- &75+0.55+0.5 _ 1WM - 0.514
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Example: Computing chrF
cif, -

BRI ERER I ETE LI PR — 14 unigrams, 13 bigrams
EEEEIEIERN IR ——— 12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, ..., k- chrR: averaged % of character unigrams, bigrams, ..., k-grams

grams in the hypothesis that are also in the reference in the reference that are also in the hypothesis
0.75+0.55+0.5 06440464042 ~]

chrP: ; = 0.6 | chrR: ; = 0.51 ,

5*chrP*chrR_5*O.6*O.51_ - -
4 % chrP + chrR  4x0.6+0.51

( chrF2 =
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* Focuses on differences at a very local scale
(i.e., character n-grams)

LI m Itatl o ns  Doesn’t measure discourse coherence

of Ch rF » Best at measuring performance for different
versions of the same system, rather than
comparing different systems



E m bed d i N « Measuring exact word- or character-level
g overlap might be overly strict
_Based « Good translations may use words that
are synonymous to those in the
reference!

Eva I U atl on - Embedding-based methods measure the

semantic overlap between reference and
M Eth OdS hypothesis translations




Popular Embedding-Based Methods
for Evaluating MT Systems

mam COMET

* https://github.com/Unbabel/ COMET

mam BLEURT

e https://github.com/google-research/bleurt

= BERTScore

e https://github.com/Tiiiger/bert score
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https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt
https://github.com/Tiiiger/bert_score

What iS question » The process of automatically retrieving compact

quantities of correct, relevant information in response

answe ring? to a user’s query

What is UIC's mascot? X

(=

Q Al [ Images ) Shopping Q® Maps [E News : More Settings To

About 167,000 results (1.07 seconds)

University of lllinois at Chicago / Mascot What iS UIC,S maSCOt?
Sparky D. Dragon

People also search for

@ . 2B Lojola a B The University of Illinois at Chicago's mascot is Sparky D. Dragon.

of Chica... University University
Phil the Chicago DIBS
Phoenix LU Wolf

Feedb

dos.uic.edu > About > Student Handbook v

UIC History, Traditions, Symbols | Office of the Dean of ...

UIC Symbols: School Colors, Mascot, Song. Our athletic teams are known as the “Flames,” a
name chosen by UIC students in honor of the Great Chicago Fire.
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People have been interested in question answering
systems nearly as long as computers have existed.

How many games did the Yankees play in What is the answer to the Ultimate
‘ July? Question Of Life, The Universe, and
Everything?'

1Bert F. Green Jr., Alice K. Wolf, Carol Chomsku, and Kenneth
Laughery. 1961. Baseball: An Automatic Question Answerer.

Link: https://web.stanford.edu/class/linguist289/p219-green.pdf 'The Hitchhiker's Guide to the Galaxy

— —E—— —
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Question

Answering
Systems

 Typically focus on

Questions
that can be answered with simple
facts expressed in short texts

When was UIC
founded?

What is the average
CS class size?
How far is UIC from
the University of
Chicago?
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Question Answering
Systems .

* Up until recently, QA systems operated under two
paradigms:

* Information retrieval-based question answering
 Knowledge-based question answering

* More recently, we've seen many systems using:
 Language model-based question answering

* Further back in time, we also saw:
« Classic rule- or feature-based question answering
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Information

Retrieval-based
Question Answering

* Relies on text from the web or from
large corpora

« Given a user question:

1. Find relevant documents and
passages of text

2. Read the retrieved documents
or passages

3. Extract an answer to the
question directly from spans of
text
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How does information retrieval work?




« Two common term weighting schemes:

 TF-IDF
* tf; g = logio(count(t,d) + 1)

How are
documents

. idf, = 1og10dift
o tfidf(¢t, d) = tf; 4 * idf;
represented? - BM25

« BM25(t,d) = thea * 1df;

)
i

Balance between term frequency Importance of document
and inverse document frequency length normalization
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« Create document and query vectors using
term weights

« Compute cosine similarity between a

Docu ment document, d, and query, q o

. score(q, d) = cos(q,d) = Iq||d|

SCO rl n g « Simplify since the query won’t vary between

documents

-d
+ score(q, ) = 4 = Sie,

tfidf(¢,q)
|d|




Document Scoring: Case Example

N
| CS is the best topic! tfidf(¢, d) = log;o(count(t,d) + 1) * log4, -
| t

CS 521 covers statistical NLP.

EZ1 is the best class.

CS 521




Document Scoring: Case Example

N
| CS is the best topic! tfidf(¢, d) = log;o(count(t,d) + 1) * log4, -
| t

Document 1

CS 521 covers statistical NLP. mm-mm

1 0301 2 0.176  0.053
is 1 0301 2 0.176  0.053
Eﬂ is the best class. the 1 0301 2 0.176  0.053
best 1 0301 2 0.176  0.053
topic 1 0301 1 0.477  0.144
521 0 0 2 0176 0
LCS o2 covers 0 0 1 0.477 0
statistical 0 0 1 0477 0
NLP 0 0 1 0477 0
class 0 0 1 0.477 0



Document Scoring: Case Example

N
| CS is the best topic! tfidf(¢, d) = log;o(count(t,d) + 1) * log4, -
| t

CS 521 covers statistical NLP. \word |count |TF  [#docs [IDF | TF-DF _

mmﬁrmm-m 0.053
T m-m-mm-

1
621 is the best class. s 0 0 CS 0 2 0.176
the 0 0 is 1 0.301 2 0.176 0.053
best 0 0 the 1 0.301 2 0.176 0.053
. best 1 0.301 2 0.176 0.053
CS 52 — - - topi 0 0 1 0.477 0
— 521 1 0.301 OPC :
covers 1 0301 921 1 0.301 2 0.176 0.053
statistical 1 0,301 I I 0 1 0.477 0
NLP 1 0.301 statistical 0 0 1 0.477 0
NLP 0 0 1 0.477 0
class 0 0
class 1 0.301 1 0.477 0.144



Document Scoring: Case Example

N
| CS is the best topic! tfidf(¢t,d) = log,y,(count(t,d) + 1) = log, d_ft
CS 521 covers statistical NLP. (mmmm tfidf(¢, d)
0.053 0.053 SCOT@(CI; ) = 2 d|
is 0.053 0 0.053 teq
621 is the best class. the 0.053 0 0.053
best 0.053 0 0.053
- TF- TF-
opo 0l 0 B
521 0 0.053 0.053
LCS 521
covers 0 0.144 0
statistical O 0.144 0
NLP 0 0.144 0
class 0 0 0.144



Document Scoring: Case Example

LCS is the best topic!

CS 521 covers statistical NLP.

621 is the best class.

LCS 521

N
tfidf(t, d) = log o (count(t,d) + 1) * loglod_f
t

tfidf(t, d
score(q,d)zE ldiit, d)

0.053
0.053
0.053
0.053
0.144

o O O O

0.053
0
0
0
0
0.053
0.144
0.144
0.144
0

0

0.053
0.053
0.053

0.053
0
0
0
0.144

|d|

teq

m“ TF-IDF(“CS”) | TF-DF(“521”) m

0.179

J/0.0532 + 0.0532 + 0.0532 + 0.0532 + 0.1442 + 02 + 02 + 02 + 02 +

02 =0.179

0.053 0.296



Document Scoring: Case Example

LCS is the best topic!

CS 521 covers statistical NLP.

N
tfidf(t, d) = log o (count(t,d) + 1) * loglod_f
t

tfidf(t, d
score(q,d)zE ldiit, d)

|d|

teq

m“ TF-IDF(“CS”) | TF-DF(“521”) m

0.053 0.053 0
0.053 0 0.053
EZ'] is the best class. 0.053 0 0.053
0.053 0 0.053
0.144 0 0
LCS 591 0 0.053 0.053 0.179
0 0144 0 T T
0 0.144 0
0 0.144 0
0 0 0.144
V0.0532 4+ 02 + 02 + 02 + 02 4 0.0532 + 0.1442 + 0.1442 + 0.1442 + 02 = 0.260

0.053 0.296

0.053 0.053 0.408



Document Scoring: Case Example

LCS is the best topic!

CS 521 covers statistical NLP.

621 is the best class.

LCS 521

N
tfidf(t, d) = log o (count(t,d) + 1) * loglod_f
t

0.053
0.053
0.053
0.053
0.144

o O O O

0.053
0
0
0
0
0.053
0.144
0.144
0.144
0

0

0.053
0.053
0.053

0.053
0
0
0
0.144

tfidf(t, d
score(qg,d) = 2 c(l )
= |d|

m“ TF-IDF(“CS”) | TF-DF(“521”) m

0.179  0.053 0.296
2 0.260 0.053 0.053 0.408
3 0179 O 0.053 0.296

V02 + 0.0532 + 0.0532 + 0.0532 + 02 + 0.0532 + 02 + 02 + 02 + 0.1442 = 0.179

D




Document Scoring: Case Example

LCS is the best topic!

CS 521 covers statistical NLP.

621 is the best class.

LCS 521

N
tfidf(t, d) = log o (count(t,d) + 1) * loglod_f
t

0.053
0.053
0.053
0.053
0.144

o O O O

0

0.053
0.053
0.053

0.053

0.144

tfidf(t, d
score(qg,d) = 2 c(l )
= |d|

m“ TF-IDF(“CS”) | TF-DF(“521”) m

0.179  0.053 0.296
2 0.260 0.053 0.053 0.408
3 0179 O 0.053 0.296



* Recent work has explored dense vectors as an
alternative to TF-IDF or BM25 vectors

« Advantage:
« More capable of handling synonymy

IR With - Disadvantage:
D * Less efficient
ense  Typically done by:
Vecto S « Separately encoding the document and queries

* hy, = Encoder((q)
* hy; = Encoderp(d)

« Computing the dot product between a given
document and query to find the document score

* score(q,d) = hg - hy




IR-based Factoid Question Answering

Goal: Find relevant answers to questions by searching
through documents in a corpus

Dominant Paradigm: Retrieve and read model

Retrieve
and Read * Read those documents to find text segments that answer the query

* Retrieve relevant documents for the given query




Retrieve and Read Model




Step #1:
Retrieve

* Performed using a
standard information
retrieval architecture




4

Step #2: Read

« Performed using a reading
comprehension model

 Reading comprehension: Given a
document and a query, select (if
available) the span of text from the
document that answers the query

* Designed to measure natural language
understanding performance
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Prime_number
The Stanford Question Answering Dataset

A prime number (or a prime) is a natural number greater than 1 that has no What is the only divisor besides 1 that a prime number can have? Stanford Question Answering Dataset (SQUAD)
positive divisors other than 1 and itself. A natural number greater than 1 that is Ground Truth Answers: itself itself itself itself itself . English
not a prime number is called a composite number. For example, 5 is prime
because 1 and 5 are its only positive integer factors, whereas 6 is composite + Passages from Wikipedia
because it has the divisors 2 and 3 in addition to 1 and 6. The fundamental What are numbers greater than 1 that can be divided by 3 or more R i
+ Associated questions
theorem of arithmetic establishes the central role of primes in number theory: numbers called?
any integer greater than 1 can be expressed as a product of primes that is unique Ground Truth Answers: composite number composite ° Many have answers that are spans
up to ordering. The uniqueness in this theorem requires excluding 1 as a prime number composite number primes from the passage
because one can include arbitrarily many instances of 1 in any factorization, e.g., Some are designed to be
3,1-3,1-1- 3, etc. are all valid factorizations of 3. What theorem defines the main role of primes in number theory? unanswerable

Ground Truth Answers: The fundamental theorem of https://raipurkar.github.io/SQuAD-explorer/
. . Q . Q g . = 9

arithmetic fundamental theorem of

arithmetic arithmetic fundamental theorem of HotpotQA

arithmetic fundamental theorem of arithmetic s English

* Question-answer pairs based on multiple

Any number larger than 1 can be represented as a product of what?
context documents

Ground Truth Answers: a product of primes product of primes that is
unique up to ordering primes primes primes that is unique up to https://hotpotaa.github.io/

ordering .
Natural Questions
Why must one be excluded in order to preserve the uniqueness of th: * English

o e N » Based on real, anonymized queries to
Google Search

https://ai.google.com/research/NaturalQuesti
ons

TyDi QA

* Question-answer pairs from typologically
diverse languages

https://ai.google.com/research/tydiga

Reading Comprehension

Datasets
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Answer
Span
Extraction

» Goal: Compute, for each token, the
probability that it is:

* The start of the answer span
* The end of the answer span

How many floors are in the Science and
Engineering Offices building? 7

-

Although there are oors in SEO, the elevator only goes
to the 12t floor sincg%Qe architect didn’t like how elevator

boxes look on the tpp of

Pepa(f137) |

1
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Answer
Span
Extraction

« Common extractive QA approach

Concatenate the query and passage, separated by
a [SEP] token

Encode the concatenated sequence
Add a linear layer

Compute span-start and span-end probabilities for
each token p; in a passage P, making use of
special span-start (S) and span-end (E) vectors
learned during fine-tuning

eSS Pi
Pstarti - Z|P| oSPj
j=0
efPi
° =
end; Z|P| ED;

Compute a score for each passage from position i
toj

* score(i,j) =S -p; + E - p;
Select the highest-scoring passage for which j > i



Knowledge-based Question Answering

» Builds a semantic representation of the
user’'s query
 When was UIC founded? —
founded(UIC, x)

» Uses these representations to query a
database of facts

Where is UIC’s computer science
department located?

SEO




Knowledge-based
Question
Answering

 Two common paradigms:
» Graph-based question answering
* Question answering by semantic
parsing

» Both require entity linking




« Entity linking: Associating mentions
In text with the concepts to which they
correspond in a structured knowledge
base

* Typically done using a two-stage
process:

* Mention detection: Detecting that
a concept has been mentioned

* Mention disambiguation:
Determining which concept has
been mentioned

The coolest department a s the
Department of Computer Science.

[
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N e u ral * Modern approaches often make use of

bidirectional Transformer encoders
G I’a p h 'based * One encoder is trained to encode a
- candidate mention
E ntlty * One encoder is trained to encode an
. . entity (e.g., a Wikipedia page)
Ll n kl n g » The dot product between the two

encoded representations is computed

* Require annotated data indicating mention
boundaries and corresponding entity links

e WebQuestionsSP:

https://www.microsoft.com/en-
us/download/details.aspx?id=52763

* GraphQuestions:
https://github.com/ysu1989/GraphQuesti
ons
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Graph-
based

Question
Answering

* Facts are stored as (subject, predicate,
object) triples
« Sometimes referred to as RDF
(resource description framework) triples

 Entity mentions are linked to entities in a
knowledge graph

* Queries are mapped to canonical relations

* “Where is UIC’s computer science
department located?” —
LOCATIONOF(“UIC CS”, ?x)

 Triples matching the canonical relations
are identified and ranked based on entity
graph structure



Question Answering
by Semantic Parsing

» Maps questions directly to logical form
using a semantic parser

 First-order logic
« SQL

 Logical form is used to query a
knowledge base directly




How did classical QA work?

1ZG SO DIN - 8pJed dljejeN

Hybrid
techniques that
Incorporated
both approaches

Feature-based
guestion
answering

Rule-based
guestion
answering




« Until recently, a popular question answering
paradigm involved leveraging a combination of

Hybrld Ru Ie' rule-based methods and feature-based
classification techniques
and Featu re- * Question answering component of Watson
DeepQA
based Deephh)
_ « Four stages:
QueStIOn 1. Question processing
A . 2. Candidate answer generation
nsweri ng 3. Candidate answer scoring
4. Answer merging and scoring



Case Example: DeepQA

Candidate
Answer
Generation

Question
Processing

Candidate Answer
Answer Merging and
Scoring Scoring
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Stage 1: Question Preprocessing

Parsin ‘ Coreference .
9 Resolution
Named Entity . Relation ‘

Recognition Extraction

Focus Answer Type
Detectlon Detectlon

Question

P

(I Question k
'l Processing ’

N

Candidate
Answer
Scoring

CIaSS|f|cat|on
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Stage 1: Question Preprocessing

[
|

P

Question k
Processing ’

N

Candidate

Answer
Scoring

Parsin ‘ Coreference .
9 Resolution
Named Entity . Relation ‘

Recognition Extraction
Focus . Answer Type .

Detection Detection
Question ‘

Classification

Standard
<+— NLP
Pipeline

Techniques
from IR-
based QA
Systems

Natalie Parde - UIC CS 521
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Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.
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Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

punct
nmod
case
det
/ compound nmod
f / compound nmod
compound case

det compound / det
i 4-amod aClﬂVBN EJ N'N Nv Nt‘P rN_N—F-( ”a-amoc JJ/-aCHA‘-\TBﬁ E @( m&compoun% @i—bcase g
1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

'DATE

[PERSON [CITY 12007 |

- 1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

object
object

subject object ~7Entity] \ i
@osubject Relation ¥ object WEnﬂ m -
. 1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .
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Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

unct.
m

4
det

p
ompound nmod
compound case
det compound / det
E/;A.amou NN ac{ﬁVBN N @r/ i+3modYyy,-aclhyE N E{%compound mrocase N

1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 . Focus DeteCtion : WhTCh part Of the
question co-refers with the answer?
DATE
[PERSON| [CITY 2007 1
1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 . T
: Extracted using handwritten rules in DeepQA
objec{e“
ms:zsr;%mf — oo — \‘j\m‘
1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .
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Stage 1: Question Preprocessing

Jeopardy! Example:

A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

punct

oooooo §§ %—n
oooooo
x / / mp nd et \
JJ A—amo NN lﬁVBN N @r/ 7 amoa JJ/EH"VBN N Ef/— compound N acase

1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

DATE

[PERSON] [CITY 2007
I A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

Answer Type Detection: Which word tells
us about the semantic type of answer to

bject

object \
ENTIty™—subject bject —[Entity] Entity
sub]eA bect E—
Entity \Relation “|Entity|

1 A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

expect?

DeepQA extracts roughly 5000 possible
answer types (some questions may take
multiple answer types), using a rule-based
approach
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Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

punct

ompound mod
oooooo nmod
pcompounn case
detx ooooooo d / det
Eﬁ.amoa NN ac{ﬁVB"N‘ N BT [P [NNP NNE|  (NNP +3modRy;-aclhyE N :ompouna W N Yep b

Definition

A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .
S . DATE
|PERSON]| CITY 2007

A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 .

Question Classification: What type of
Z — O\ mm question is this (multiple choice, fill-in-the

Enti bject
Ty™—subjec CR

[Entimy *“Y*“\Reiation A ...
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007 . blan k’ defl n |t|0n, etC )?

A

Generally done using pattern-
matching regular expressions
over words or parse trees
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Stage 2: Candidate Answer Generation

Document and ‘ Answer ‘
Passage Retrieval Extraction Candidate ‘

, Answer
Generation ’
Relation ‘
Retrieval

Candidate Answer
Answer Merging and
Scoring Scoring
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Stage 2: Candidate Answer Generation

Techniques

from IR- Document and ‘ Answer | - =
based QA Passage Retrieval Extraction ff Candidat
Systems | | andidare l

, Answer
Generation ’

Techniques

from _
Knowledge- —t RReIe}tlonI ‘
based QA etrieva
Systems

Candidate Answer
Merging and

Scoring

Answer
Scoring
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Stage 2: Candidate Answer Generation

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

In 2007, Peepolykus Theatre Company premiered a new adaptation
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

Document and
Passage Retrieval

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound
of the Baskervilles (1901).
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Stage 2: Candidate Answer Generation

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

In 2007, Peepolykus Theatre Company premiered a new adaptation
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

Document and
Passage Retrieval

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound
of the Baskervilles (1901).

Answer The Hound of the Baskervilles

Extraction
The Hound of the Baskervilles (1901)
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Stage 2: Candidate Answer Generation

Jeopardy! Example:

basedOn(x, “Sir Arthur Conan Doyle canine cIassD

Relation Retrieval

»| The Hound of the Baskervilles
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Stage 3: Candidate Answer Scoring

Candidate
Answer
Generation

Question

Processing

Based on

/ Evidence Retrieval many
different

Candidate ‘ _ and Scoring ) sources of
Answer ’ evidence
Scoring Scoring

N
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Stage 3: Candidate Answer Scoring

-

The Hound of the Baskervilles

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)
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Stage 3: Candidate Answer Scoring

- Expected Answer Type: BOOK
The Hound of the Baskervilles

Information extracted from structured
knowledge bases

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Retrieved passages with terms matching
the question
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Stage 3: Candidate Answer Scoring

- Expected Answer Type: BOOK
The Hound of the Baskervilles

—

Information extracted from structured
knowledge bases

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Retrieved passages with terms matching
the question
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0.9

0.9

0.6

Stage 3: Candidate Answer Scoring

- Expected Answer Type: BOOK
The Hound of the Baskervilles

—

Information extracted from structured
knowledge bases

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Retrieved passages with terms matching
the question
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Stage 4: Answer Merging and Scoring

Candidate
Answer

Question
Processing

Generation

Merge Equivalent ‘ o

Answers

P—

1 Answer k
Merging and
Scoring ’

Rank Answers ‘

g
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0.9

0.9

0.6

Stage 4: Answer Merging and Scoring

- Expected Answer Type: BOOK
The Hound of the Baskervilles

—

Information extracted from structured
knowledge bases

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Retrieved passages with terms matching
the question
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0.9

0.6

Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

Expected Answer Type: BOOK

The Hound of the Baskervilles (1901)

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question
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0.9

Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

/ Expected Answer Type: BOOK

©

__ Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question
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PA How do question answering systems work today?

to d ay ? Today's question answering systems typically use a combination of natural language
| |

processing (NLP) and machine learning (ML) techniques to understand the user's

question and generate an answer. The process usually involves the following steps:

® MOV| ng towa I’dS Iang uage 1. Question understanding: The system converts the text of the user's question into a
m ode | _based q uestion machine-readable format and analyzes it to identify the intent and extract relevant
information.

answerin
g 2. Information retrieval: The system searches a pre-defined knowledge source (such as a
° I N pretra 18] ng ; tra IN an database, a web page, or a large corpus of text) to find information that may answer

encoder_d ecoder the user's question.
. T 3. Answer generation: The system selects the most relevant information from the
architecture to fill in . o y
retrieved data and generates an answer. In some systems, this may involve additional
maSked Spans Of teXt NLP and ML techniques, such as summarization or text generation, to produce a
| N fl netu N | ng tral N the concise and coherent answer.
J
4. Answer ranking: The system uses various methods, such as word overlaps, word
decoder to output an . .
l embeddings, or neural networks, to rank the answers and select the most likely
answer for a given candidate.
question

Overall, the accuracy and effectiveness of today's question answering systems depend on
the quality and scope of their training data, the sophistication of their NLP and ML

models, and the ability to handle complex and ambiguous questions.
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Language Model-based
Question Answering

- Advantages:
« Simple approach
« Decent performance

« Disadvantages:

« Often lower accuracy in
answers

* Poor interpretability

179




How are
question
answering
systems
evaluated?

« Common metric for factoid question answering:

« Assumes that gold standard answers are
available for test questions

* Assumes that systems return a short ranked list of
answers

) Where is UIC located?

lllinois

Q Chicago




« Scores each question according to the
reciprocal of the rank of the first correct
answer

» Highest ranked correct answer is
ranked fourth — reciprocal rank = %4

ReCI p ro cal  Assigns a score of 0 to questions with no

correct answers returned

Ra n k « System’s overall score is the average of all
individual question scores

1 1
* MRR = — Iiv=1r_i

Mean




Mean Reciprocal Rank

) Where is UIC located? J¢— Question

Gold Standard = Chicago
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Mean Reciprocal Rank

) Where is UIC located? J¢— Question

Gold Standard = Chicago

Prediction | Rank_

lllinois 1
West Loop 2
Chicago 3
Little Italy 4
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Mean Reciprocal Rank

) Where is UIC located? J¢— Question

Gold Standard = Chicago

Prediction | Rank_

lllinois 1
West Loop 2
C-Fu_c_-:é_g?) _______ 3 \I
Little Italy 4
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Mean Reciprocal Rank

) Where is UIC located? J¢— Question

Gold Standard = Chicago

Prediction | Rank_

lllinois 1
West Loop 2
C-Fu_c_-:-a_g?) _______ 3 \I
Little Italy 4
Reciprocal
Rank = 1/3
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Mean Reciprocal Rank

Who is the head of

) Where is UIC located? [ Question UIC’s Department of  [<= Question
Computer Science?

Gold Standard = Chicago Gold Standard = Robert Sloan

Prediction | Rank_ m

lllinois 1 Peter Nelson
West Loop 2 Robert Sloan 2
"'C-Fuc-:-ago_ 3 \I Natalie Parde 3
Little Italy 4 Grace Hopper 4
Reciprocal

Rank = 1/3



Mean Reciprocal Rank

Who is the head of

) Where is UIC located?

UIC’s Department of +— Question

<+— Question

Gold Standard = Chicago

Prediction | Rank_

lllinois

West Loop
&

L|ttIe ltaly

Reciprocal
Rank = 1/3

Computer Science?

Gold Standard =—> Robert Sloan

m

Peter Nelson

3 \I Natalle Parde 3

4 Grace Hopper 4
Reciprocal
Rank = 1/2



Mean Reciprocal Rank

) Where is UIC located?

<+— Question

Gold Standard = Chicago

Prediction | Rank_

lllinois 1
West Loop 2
"C'Fuc'%_g% _______ ,
Little ltaly 4
Reciprocal
Rank = 1/3

Who is the head of
UIC’s Department of
Computer Science?

N Question

Iﬂ!

Peter Nelson

Natalle Parde
Grace Hopper

Reciprocal
Rank = 1/2
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Other Evaluation
Metrics for Question
Answering Systems

 Exact Match

« Remove punctuation
and articles

 Compute the
percentage of
predicted answers
that match the gold
standard answer
exactly

Leaderboard

SQuUADZ2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph.

Rank

1
Jun 04, 2021

2
Feb 21, 2021

3
May 16, 2021

4
Apr 06, 2020

Natalie Parde -

Model

Human Performance

Stanford University
(Rajpurkar & Jia et al. '18)

IE-Net (ensemble)
RICOH_SRCB_DML

FPNet (ensemble)
Ant Service Intelligence Team

IE-NetV2 (ensemble)
RICOH_SRCB_DML

SA-Net on Albert (ensemble)
QIANXIN

UIC CS 521

)

86.831

90.939
20.871
90.860

90.724

F1

89.452

93.214

93.183

93.100

93.011
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Other Evaluation
Metrics for Question
Answering Systems

 F, Score

 Remove punctuation
and articles

» Treat the predicted and
gold standard answers
as bags of tokens

* True positives: Tokens
that exist in both the
gold standard and
predicted answers

» Average F, over all
questions

Leaderboard

SQuUADZ2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph.

Rank

1
Jun 04, 2021

2
Feb 21, 2021

3
May 16, 2021

4
Apr 06, 2020

Natalie Parde -

Model

Human Performance

Stanford University
(Rajpurkar & Jia et al. '18)

IE-Net (ensemble)
RICOH_SRCB_DML

FPNet (ensemble)
Ant Service Intelligence Team

IE-NetV2 (ensemble)
RICOH_SRCB_DML

SA-Net on Albert (ensemble)
QIANXIN

UIC CS 521

EM

86.831

90.939

20.871

90.860

90.724

)

89.452

93.214
93.183
93.100

93.011
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Computing F, for Question Answering
Systems

Actual Actual
) Where is UIC located? j¢= Question True False
Predicted
Gold Standard —> Chicago True

- Predicted
Prediction Chicago, lllinois L False
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Computing F, for Question Answering
Systems

) Where is UIC located? j*=— Question True False
T
Gold Standard = Chicago True
: Predicted
Prediction Chicago, lllinois L 0 -
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Computing F, for Question Answering
Systems

) Where is UIC located? j*=— Question True False
T
Gold Standard = Chicago True
: Predicted
Prediction Chicago, lllinois L 0 -

. . TP 1
F’recmon = = = O.;)
TP+FP 1+1

E1 — 2*%PxR _ 2%x0.5%1 = 067

P+R 0.5+1
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Summary:
Question
Answering
and
Evaluating
MT Systems

MT systems are commonly evaluated
using both human ratings and
automated metrics

Popular automated metrics include
BLEU, chrF, and embedding-based

measures

Question answering is the process of
retrieving relevant information and
fluently presenting it to users in response
to their queries

QA systems often use knowledge-based
or information retrieval methods to
formulate answers to questions

Some systems also use language
modeling or rule-/feature-based

approaches



