
Machine Translation,
Question Answering
and Encoder-Decoder
Models
Natalie Parde
UIC CS 521

2Natalie Parde - UIC CS 521

Machine Translation: The process of automatically converting
a text from one language to another.

Machine translation is
increasingly ubiquitous, but
also challenging for many
reasons.

Natalie Parde - UIC CS 521 3

Structural and lexical
differences between languages

Differences in word order

Morphological differences

Stylistic and cultural
differences

Cross-Linguistic Similarities
and Differences

• Typological Differences:
• Systematic structural differences between languages

• Morphological Differences:
• Number of morphemes per word

• Isolating languages: Each word generally has
one morpheme

• Polysynthetic languages: Each word may have
many morphemes

• Degree to which morphemes can be segmented
• Agglutinative languages: Morphemes have

well-defined boundaries
• Fusion languages: Morphemes may be

conflated with one another

Natalie Parde - UIC CS 521 4

Cross-
Linguistic
Similarities
and
Differences

• Syntactic Differences:
• Primary difference between languages: Word order

• SVO languages: Verb tends to come between the subject
and object

• SOV languages: Verb tends to come at the end of basic
clauses

• VSO languages: Verb tends to come at the beginning of
basic clauses

• Languages with similar basic word order also tend to share other
similarities

• SVO languages generally have prepositions
• SOV languages generally have postpositions

• Differences in Argument Structure and Linking
• Verb-framed languages: Mark the direction of motion on the verb,

leaving its satellites (particles, prepositional phrases, and adverbial
phrases) to mark the manner of motion

• Satellite-framed languages: Mark the direction of motion on the
satellite, leaving the verb to mark the manner of motion

Natalie Parde - UIC CS 521 5

The bottle floated out. La botella salió flotando.

The bottle exited floating.

Cross-
Linguistic
Similarities
and
Differences

• Differences in Permissible Omissions:
• Pro-Drop languages: Can omit pronouns when talking about

certain referents
• Some pro-drop languages permit more pronoun omission than

others
• Referentially dense and sparse languages

• Converting text from pro-drop languages (e.g., Japanese) to
non-pro-drop languages (e.g., English) requires that all missing
pronoun locations are identified and their appropriate
anaphors recovered

• Differences in noun-adjective order
• Blue house → Maison bleue

• Differences in homonymy and polysemy
• Differences in grammatical constraints

• Some languages require gender for nouns
• Some languages require gender for pronouns

• Lexical gaps
• No word or phrase in the target language can express the

meaning of a word in the source language

Natalie Parde - UIC CS 521 6

Machine
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models

7Natalie Parde - UIC CS 521

Classical
Machine

Translation

• Direct translation
1. Take a large bilingual dictionary
2. Proceed through the source text word by word
3. Translate each word according to the dictionary

• No intermediate structures
• Simple reordering rules may be applied

• For example, moving adjectives so that they are after nouns
when translating from English to French

• Dictionary entries may be relatively complex
• Rule-based programs for translating a word to the target

language

blue house
t1 t2

bleue maison
t1 t2

8Natalie Parde - UIC CS 521

Classical Machine Translation
• Transfer approaches

• Parse the input text
• Apply rules to transform the source language parse structure into a target

language parse structure
• Two subcategories of transformations:

• Syntactic transfer
• Lexical transfer

Natalie Parde - UIC CS 521 9

blue house

amod

maison bleue

amod

Transfer Approaches

Adjective Noun

Nominal

Noun Adjective

Nominal • Syntactic Transfer: Modifies the source
parse tree to resemble the target parse tree

• For some languages, may also include
thematic structures

• Directional or locative
prepositional phrases vs. recipient
prepositional phrases

• Lexical Transfer: Generally based on a
bilingual dictionary

• As with direct translation, dictionary
entries can be complex to
accommodate many possible
translations

Natalie Parde - UIC CS 521 10

Classical
Machine
Translation

• Interlingua approaches
• Convert the source language text into an abstract

meaning representation
• Generate the target language text based on the

abstract meaning representation
• Require more analysis work than transfer approaches

• Semantic analysis
• Sentiment analysis

• No need for syntactic or lexical transformations

Natalie Parde - UIC CS 521 11

blue house maison bleue

Interlingua Approaches

• Goal: Represent all sentences that mean the same
thing in the same way, regardless of language

• What kind of representation scheme should be used?
• Classical approaches:

• First-order logic
• Semantic primitives
• Event-based representation

• More recently, neural machine translation models
follow a similar intuition

blue house

maison bleue

casa azul

청와대

12Natalie Parde - UIC CS 521

When to use
each
classical
approach?

13

Natalie Parde - UIC CS 521

• Pros:
• Simple
• Easy to implement

• Cons:
• Cannot reliably handle long-distance reorderings
• Cannot handle reorderings involving phrases or larger structures
• Too focused on individual words

Direct Translation

• Pros:
• Can handle more complex language phenomena than direct translation

• Cons:
• Still not sufficient for many cases!

Transfer Approaches

• Pros:
• Direct mapping between meaning representation and lexical realization
• No need for transformation rules

• Cons:
• Extra (often unnecessary) work

• Classical approaches require an exhaustive analysis and formalization of the
semantics of the domain

Interlingua Approaches

Statistical
Machine
Translation

• Models automatically learn to map from the source
language to the target language

• No need for intermediate transformation rules
• No need for an explicitly defined internal meaning

representation
• Goal: Produce an output that maximizes some function

representing translation faithfulness and fluency
• One possible approach: Bayesian noisy channel

model
• Assume a possible target language translation ti

and a source language sentence s
• Select the translation t’ from the set of all possible

translations ti ∈ T that maximizes the probability
P(ti|s), using Bayes’ rule

Natalie Parde - UIC CS 521 14

The
Phrase-
Based
Translation
Model

• Computes the probability that a given
translation ti generates the original
sentence s based on its constituent
phrases

• Stages of phrase-based translation:
1. Group the words from the source sentence

into phrases
2. Translate each source phrase into a target

language phrase
3. (Optionally) reorder the target language

phrases

15Natalie Parde - UIC CS 521

Probability in Phrase-Based Translation
Models
• Relies on two probabilities:

• Translation probability
• Probability of generating a source language phrase from a target

language phrase, 𝜙 "𝑡! , "𝑠!
• Distortion probability

• Probability of two consecutive target language phrases being separated in
the source language by a word span of a particular length, 𝑑(𝑎! − 𝑏!"#)

• To learn these probabilities, we need to train two sets of parameters:
• 𝜙 "𝑡! , "𝑠!
• 𝑑(𝑎! − 𝑏!"#)

• We learn these using phrase-aligned bilingual training sets

Natalie Parde - UIC CS 521 16

Decoding for
Phrase-Based
Machine Translation

• Aligned phrases can be stored in a phrase-translation
table

• Decoding algorithms can then search through this
table to find the overall translation that maximizes the
phrase translation probabilities

Mina did not slap the green witch

Mina no dió una bofetada a la bruja verde

NULL

Natalie Parde - UIC CS 521 17

Machine
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models

18Natalie Parde - UIC CS 521

Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length output sequences
• Basic premise:

• Use a neural network to encode an input to an internal representation
• Pass that internal representation as input to a second neural network
• Use that neural network to decode the internal representation to a task-

specific output sequence
• This method allows networks to be trained in an end-to-end fashion

Natalie Parde - UIC CS 521 19

Where did this
idea come from?

Recall our discussion of
autoregressive generation:
• Start with a seed token (e.g.,

<s>)
• Predict the most likely next

word in the sequence

• Use that word as input at the
next timestep

• Repeat until an end token (or
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

20Natalie Parde - UIC CS 521

This setup can be
extended to generate text
given a specific prefix….
• Pass the specified prefix through the

language model, in sequence
• End with the hidden state

corresponding to the last word of the
prefix

• Start the autoregressive process at
that point

• Goal: Output sequence should be
a reasonable completion of the
prefix

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN

Natalie Parde - UIC CS 521 21

We can build upon this idea to transform
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated

sequence (text from Language #1) and checking to see what the
generated completion (text from Language #2) looks like

22Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

23Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

24Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

25Natalie Parde - UIC CS 521

Intuition: Machine Translation

Hi, I’m Mina.

Hi, I’m Mina. </s>

Hi, RNN I’m RNN Mina. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Mina. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

26Natalie Parde - UIC CS 521

Key
Elements of
an Encoder-

Decoder
Network

• Encoder
• Accepts an input sequence, 𝑥!"
• Generates a sequence of contextualized

representations, ℎ!"

• Context vector
• A function, 𝑐, of ℎ!" that conveys the basic

meaning of 𝑥!" to the decoder
• (Might just be equivalent to ℎ!")

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of

hidden states, ℎ!#, from which a corresponding
sequence of output states 𝑦!# can be obtained

27Natalie Parde - UIC CS 521

Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM/BiLSTM
• GRU/BiGRU
• Transformer

• These networks can be stacked on top of one another

More common

28Natalie Parde - UIC CS 521

Decoders • Need to perform autoregressive generation
to produce the output sequence

• Can be any type of sequence processing
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Natalie Parde - UIC CS 521 29

Final hidden state of the encoder

First hidden state of the decoder

Decoders • Need to perform autoregressive generation
to produce the output sequence

• Can be any type of sequence processing
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Natalie Parde - UIC CS 521 30

Some type of
sequence
processing model

Embedding for the output
sampled from the previous step

Decoders • Need to perform autoregressive generation
to produce the output sequence

• Can be any type of sequence processing
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$)
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)

Natalie Parde - UIC CS 521 31

Regular ending steps (activation function
applied to hidden state outputs, and
softmax applied to activation outputs)

A couple useful extensions….

• Formally….
• 𝑐 = ℎ$%

• ℎ&' = 𝑐

• ℎ(' = 𝑔(0𝑦("#, ℎ("#') → ℎ(' = 𝑔(0𝑦("#, ℎ("#' , 𝑐)
• 𝑧(= 𝑓(ℎ(')
• 𝑦(= softmax(𝑧()

Make the context vector available at each
timestep when decoding, so that its
influence doesn’t diminish over time

32Natalie Parde - UIC CS 521

A couple useful extensions….

• Formally….
• 𝑐 = ℎ$%

• ℎ&' = 𝑐

• ℎ(' = 𝑔(0𝑦("#, ℎ("#') → ℎ(' = 𝑔(0𝑦("#, ℎ("#' , 𝑐)
• 𝑧(= 𝑓(ℎ(')
• 𝑦(= softmax(𝑧() → 𝑦(= softmax(0𝑦("#, 𝑧(, 𝑐)

Condition output on not only the hidden state, but
the previous output and encoder context (easier
to keep track of what’s been generated already)

33Natalie Parde - UIC CS 521

What other ways can we improve the
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the
input sequence

• Can be addressed by using bidirectional RNNs, summing the
encoder hidden states, or averaging the encoder hidden states

34Natalie Parde - UIC CS 521

Beam Search
• Selects from multiple possible outputs by framing the

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed
size (beam width)

• Results in a set of b hypotheses, where b is the beam
width

35Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

36Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"#

𝑦!"#

37Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

38Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

39Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

40Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

41Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"%

42Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"% Decoder 𝑦!"# =</s>

43Natalie Parde - UIC CS 521

How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder Decoder

𝑦!"#

𝑦!"#

𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

𝑦!"% =</s>

𝑦!"% 𝑦!"# =</s>

44Natalie Parde - UIC CS 521

How do we
choose a best

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a

downstream application

45Natalie Parde - UIC CS 521

So far, the encoder context
vectors we’ve seen have
been simple and static.
• Can we do better?

• Yes!

Attention
Mechanism

• Takes entire encoder context into
account

• Can be embodied in a fixed-size vector

47Natalie Parde - UIC CS 521

Recall….

• We’ve already made our context vector
available at each timestep when decoding

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐)
• The first step in creating our attention

mechanism is to update our hidden state
such that it is conditioned on an updated
context vector with each decoding step

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐&)

48Natalie Parde - UIC CS 521

How do we
dynamically
create a new
context
vector at
each step?

• Compute a vector of scores that
capture the relevance of each encoder
hidden state to the decoder hidden
state, ℎ4567

• 𝑠𝑐𝑜𝑟𝑒 ℎ)(!' , ℎ*+ = ℎ)(!' / ℎ*+

49Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

50Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

51Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

52Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

53Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

54Natalie Parde - UIC CS 521

Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#(, ℎ)* = ℎ&'#(3 ℎ)*

55Natalie Parde - UIC CS 521

How can we
make use of

context scores?

• Parameterize these scores with weights
• This allows the model to learn which

aspects of similarity between the encoder
and decoder states are important

56Natalie Parde - UIC CS 521

Attention
Weights

• Normalize context scores to create a
vector of weights, 𝛼)*

• 𝛼)* = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ)(!' , ℎ*+)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of

each encoder hidden state 𝑗 to the
current decoder state 𝑖

• Finally, take a weighted average over all
the encoder hidden states to create a
fixed-length context vector for the current
decoder state

• 𝑐) = ∑* 𝛼)*ℎ*+

57Natalie Parde - UIC CS 521

Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

58Natalie Parde - UIC CS 521

Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&))
𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$

% , ℎ"
&))

Σ

59Natalie Parde - UIC CS 521

Other
Attention
Weights

• More sophisticated scoring functions can be used
as well

• Common: Parameterize the attention score with its
own set of trainable weights

• score 𝐡(&'$, 𝐡)" = 𝐡%&'$ 𝐖*𝐡)"

• Advantage: Allows the encoder and decoder to
use vectors with different dimensionality (dot-
product attention requires the encoder and
decoder hidden states to have the same
dimensionality)

60Natalie Parde - UIC CS 521

Advanced RNNs are a powerful tool,
but they are not without their
limitations.
• Remaining challenges:

• Even with sophisticated architectures, processing
long-distance dependencies through many
recurrences can eventually lead to loss of valuable
information

• Recurrent models cannot productively leverage
parallel resources

Natalie Parde - UIC CS 521 61

Transformers
• Entirely do away with recurrences
• Stacks of:

• Linear layers
• Feedforward layers
• Self-attention layers

• For a given element in a sequence, determines which
other element(s) up to that point are most relevant to it

• Each computation is independent of other
computations → easy parallelization

• Each computation only considers elements up to
that point in the sequence → easy language
modeling

• Goal: Map sequences of input (𝑥$, … , 𝑥%) to sequences of output
(𝑦$, … , 𝑦%) of the same length

Natalie Parde - UIC CS 521 62

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

63

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

64

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

65

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

66

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention
Computation

67

Computing Self-Attention

68

How do Transformers learn?

Natalie Parde - UIC CS 521

• Continually updating weight matrices applied to inputs
• Weight matrices are learned for each of three roles when computing self-attention:

• Query: The focus of attention when it is being compared to inputs up until that
point, 𝑊+

• Key: An input that is being compared to the focus of attention, 𝑊,

• Value: A value being used to compute the output for the current focus of
attention, 𝑊-

69

Training
Transformers

• Weight matrices are applied to inputs in the context of
their respective roles

• 𝑞(= 𝑊+𝑥(
• 𝑘(= 𝑊,𝑥(
• 𝑣(= 𝑊-𝑥(

• Then, we can update our equations for computing self-
attention so that these roles are reflected in them:

• score 𝑥(, 𝑥) = 𝑞(⋅ 𝑘)
• 𝛼() = softmax score 𝑥(, 𝑥) ∀𝑗 ≤ 𝑖
• 𝑦(= ∑).(𝛼()𝑣)

Natalie Parde - UIC CS 521 70

is

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis

𝛼!" = softmax score 𝑥!, 𝑥"

𝑦! =2
"#!

𝛼!"𝑣"

k521

v521
q521

kCS

vCS
qCS

71

Practical
Considerations

• Combining a dot product with an exponential (as in
softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the
dimensionality of the key (and query) vectors, 𝑑3

• score 𝑥4 , 𝑥5 =
6!⋅3"
8#

• Each 𝑦4 is computed independently, so we can parallelize
computations using efficient matrix multiplication routines
where 𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊9𝑋
• 𝐾 = 𝑊:𝑋
• 𝑉 = 𝑊;𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax 9:$

8#
𝑉

• Make sure to avoid including knowledge of
future words in language modeling settings!

Natalie Parde - UIC CS 521 72

Transformer Blocks

• Self-attention is the central component of a Transformer block, which also
includes:

• Feedforward layers
• Residual connections
• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 521 73

Multihead Attention

• Each self-attention layer represents a single attention
head

• Multihead attention places multiple attention heads in
parallel in the Transformer model

• Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction

Natalie Parde - UIC CS 521

Attention

Attention

Attention

74

Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights
• 𝑄 = 𝑊!

.𝑋
• 𝐾 = 𝑊!

/𝑋
• 𝑉 = 𝑊!

0𝑋
• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors

of equal length
• These heads are concatenated and then reduced to the original input/output

dimensionality
• head! = SelfAttention(𝑊!

.𝑋,𝑊!
/𝑋,𝑊!

0𝑋)
• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊1(head#⨁head2⨁…⨁head$)

75

Multihead Attention

Natalie Parde - UIC CS 521

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

⨁

Self-Attention Layer

𝑊! Output

76

Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position
• Update weights during the training process
• Input embedding with positional information = word embedding + positional

embedding
• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
77

Transformers as Autoregressive
Language Models

Natalie Parde - UIC CS 521

Transformers Transformer
Block softmax

are

are
softmax

fun

fun </s>

softmax

Transformer
Block

Transformer
Block

loss

loss

loss

78

Encoder-
Decoder
Models with
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps

sequential input to an output representation
• Decoder (Transformer model) attends to the

encoder representation and generates
sequential output autoregressively

• However….
• Transformer blocks in the decoder include

an extra cross-attention layer

79Natalie Parde - UIC CS 521

Cross-
Attention

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

• Same form as multiheaded self-attention in a normal Transformer
block, with one difference: queries come from the previous layer of the
decoder as usual, but keys and values come from the output of the
encoder

• 𝐐 = 𝐖𝐐𝐇%&([!#$]

• 𝐊 = 𝐖𝐐𝐇&+(

• 𝐕 = 𝐖𝐕𝐇&+(

• 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐐, 𝐊, 𝐕 = softmax 𝐐𝐊/

%0
𝐕

Reminder: Normal Transformer block

80Natalie Parde - UIC CS 521

Updated Decoder Transformer Block

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize
Output

C
ross-Attention

Layer

Add and N
orm

alize

81Natalie Parde - UIC CS 521

Encoder-
Decoder
Models with
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to

the entire encoder sequence
• Training Transformer-based

encoder-decoders is similar to
training RNN-based encoder-
decoders

• Use teacher forcing
• Train autoregressively

82Natalie Parde - UIC CS 521

Practical Details for Building MT
Systems

• MT systems typically use a fixed vocabulary generated using byte pair encoding
or other wordpiece algorithms

• Vocabulary is usually shared across the source and target languages

Vocabulary

• Parallel corpora with the same content communicated in multiple languages
• Common sources:

• Government documents for nations with multiple official languages
• Subtitles for movies and TV shows

• Often, text from the source and target language(s) is aligned at the sentence
level

Corpora

83Natalie Parde - UIC CS 521

What if we
don’t
have
much
training
data?

• Parallel corpora are difficult to find, especially
for lower-resource language pairs

• Backtranslation:
1. Train an intermediate target-to-source

MT system on a small parallel corpus
2. Translate additional monolingual data

from the target language to the source
language using this intermediate system

3. Consider this new, synthetic parallel data
as additional training data

4. Train a source-to-target MT system on
the expanded training dataset

84Natalie Parde - UIC CS 521

Summary:
Machine

Translation
Methods and

Encoder-
Decoder

Models

• Machine translation is challenging due to many
typological, morphological, and other differences
between languages

• Classical machine translation used dictionary-based,
direct transfer, and interlingua approaches

• A popular statistical MT model is the Bayesian noisy
channel approach, which relies on phrase-based
translation

• Encoder-decoder models draw upon similar techniques
for autoregressive language modeling to convert input to
an intermediate vector representation and then convert
that intermediate representation to output

• One newer architecture that can be used in encoder-
decoder settings is the Transformer model

How do we
evaluate
machine

translation
models?

• Translation quality tends to be
very subjective!

• Two common approaches:
• Human ratings
• Automated metrics

86Natalie Parde - UIC CS 521

Evaluating
Machine

Translation
Using Human

Ratings

• Typically evaluated along multiple
dimensions

• Tend to check for both fluency and
adequacy

• Fluency:
• Clarity
• Naturalness
• Style

• Adequacy:
• Fidelity
• Informativeness

87Natalie Parde - UIC CS 521

Evaluating
Machine
Translation
Using Human
Ratings

• How to get quantitative measures of
fluency?

• Ask humans to rate different
aspects of fluency along a scale

• Measure how long it takes humans
to read a segment of text

• Ask humans to guess the identity of
the missing word

• “After such a late night working
on my project, it was hard to
wake up this _____!”

88Natalie Parde - UIC CS 521

Evaluating Machine Translation Using
Human Ratings

• How to get quantitative measures of adequacy?
• Ask bilingual raters to rate how much information was preserved in the

translation
• Ask monolingual raters to do the same, given access to a gold standard

reference translation
• Ask raters to answer multiple-choice questions about content present in a

translation

89Natalie Parde - UIC CS 521

Another set
of human

evaluation
metrics

considers
post-

editing.

• Ask a human to post-edit or “fix” a
translation

• Compute the number of edits required to
correct the output to an acceptable level

• Can be measured via number of word changes,
number of keystrokes, amount of time taken, etc.

90Natalie Parde - UIC CS 521

Automated
Metrics

• Less accurate than human
evaluation, but:

• Useful for iteratively testing
system improvements

• Can be used as an automatic
loss function

• Two main families:
• Character- or word-overlap
• Embedding similarity

91Natalie Parde - UIC CS 521

Popular Lexical Overlap Metrics

• BLEU
• Measure of word overlap

• METEOR
• Measure of word overlap, considering stemming and synonymy

• Character F-Score (chrF)
• Measure of character n-gram overlap

92Natalie Parde - UIC CS 521

BLEU

N
atalie Parde - U

IC
 C

S 521

• Weighted average of the number of n-gram overlaps with
human translations

• Precision-based metric
• What percentage of words in the candidate translation also

occur in the gold standard translation(s)?
• To compute BLEU:

• Count how many times each n-gram is used in the
candidate translation, c ngram

• Clip that amount so that the highest it can be is
cmax(ngram), defined as the maximum number of times it
is used in a reference translation

• Compute precision for each word in the candidate
translation:

• prec$ =
∑
1∈{Candidates} ∑ngram∈5&'((c ngram ,cmax(ngram))

∑
1∈{Candidates} ∑ngram∈5 c(ngram)

• Take the geometric mean of the modified n-gram
precisions for unigrams, bigrams, trigrams, and 4-grams

93

Then, add a penalty for translation
brevity….

• Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!
• The penalty is based on:

• The sum of the lengths of the reference sentences, r
• The sum of the lengths of the candidate translations, c

• Formally, the penalty is set to:

• 𝐵𝑃 = K
1 𝑖𝑓 𝑐 > 𝑟

𝑒('&
5
6) 𝑖𝑓 𝑐 ≤ 𝑟

• The full BLEU score for a set of translations is then:

• 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (∏$3#
4 prec$)

1
2

94Natalie Parde - UIC CS 521

Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

95Natalie Parde - UIC CS 521

Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)
𝐵𝑃 = J

1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

96Natalie Parde - UIC CS 521

Example: Computing BLEU
Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

Unigram Unigram Frequency
(Candidate)

Unigram Frequency
(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

97Natalie Parde - UIC CS 521

Example: Computing BLEU

𝑝: =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

Unigram Unigram Frequency
(Candidate)

Unigram Frequency
(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

98Natalie Parde - UIC CS 521

Example: Computing BLEU

Bigram Bigram Frequency
(Candidate)

Bigram Frequency
(Reference)

Mina did 1 0

did not 1 0

not give 1 0

give a 1 0

a slap 1 0

slap to 1 0

to the 1 0

the green 1 1

green witch 1 1

witch . 1 1

𝑝@ =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

=
3
10

𝑝: =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

99Natalie Parde - UIC CS 521

Example: Computing BLEU

Trigram Trigram Frequency
(Candidate)

Trigram Frequency
(Reference)

Mina did not 1 0

did not give 1 0

not give a 1 0

give a slap 1 0

a slap to 1 0

slap to the 1 0

to the green 1 0

the green witch 1 1

green witch . 1 1

𝑝: =
6
11

𝑝@ =
3
10

𝑝A =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

2
9

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

100Natalie Parde - UIC CS 521

Example: Computing BLEU

4-gram 4-gram Frequency
(Candidate)

4-gram Frequency
(Reference)

Mina did not give 1 0

did not give a 1 0

not give a slap 1 0

give a slap to 1 0

a slap to the 1 0

slap to the green 1 0

to the green witch 1 0

the green witch . 1 1

𝑝: =
6
11

𝑝@ =
3
10

𝑝A =
2
9

𝑝? =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

1
8

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

101Natalie Parde - UIC CS 521

Example: Computing BLEU

𝑝: =
6
11

𝑝@ =
3
10 𝑝A =

2
9 𝑝? =

1
8

r = 7

c = 11

𝐵𝑃 = 1

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 1	 ∗ (∏3>:
? prec3)

%
&= 1 ∗ (B

::
∗ A
:C
∗ @
D
∗ :
E
)
%
&= 1 ∗ 0.00454545454

%
& = 1 ∗ 0.25965358893 = 0.26

102Natalie Parde - UIC CS 521

What are
good
BLEU

scores?

Limitations of BLEU
• Word or phrase order is of minimal importance

• When computing unigram precision, a word can exist anywhere in the
translation!

• Does not consider word similarity
• Relatively low correlation with human ratings
• Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric

is needed to assess translation performance

104Natalie Parde - UIC CS 521

Character
F-Score
(chrF)

How is chrF computed?

Example: Computing chrF
CS 521 is the best

107Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

108Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

109Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

110Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-grams
in the hypothesis that are also in the reference k=3

chrR: averaged % of character unigrams, bigrams, …, k-grams
in the reference that are also in the hypothesis

111Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

112Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS S5 52 21 1i is st th he eb be es st

CS S5 52 21 1i is sg gr re ea at

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

113Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

114Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

115Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

116Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42

117Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42

chrP: C.HFIC.FFIC.F
A

= 0.6
118Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42

chrP: C.HFIC.FFIC.F
A

= 0.6 chrR: C.B?IC.?BIC.?@
A

= 0.51
119Natalie Parde - UIC CS 521

Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams

in the reference that are also in the hypothesis

chrP: C.HFIC.FFIC.F
A

= 0.6 chrR: C.B?IC.?BIC.?@
A

= 0.51

chrF2 =
5 ∗ chrP ∗ chrR
4 ∗ chrP + chrR =

5 ∗ 0.6 ∗ 0.51
4 ∗ 0.6 + 0.51 = 0.53

120Natalie Parde - UIC CS 521

Limitations
of chrF

• Focuses on differences at a very local scale
(i.e., character n-grams)

• Doesn’t measure discourse coherence
• Best at measuring performance for different

versions of the same system, rather than
comparing different systems

121Natalie Parde - UIC CS 521

Embedding
-Based
Evaluation
Methods

• Measuring exact word- or character-level
overlap might be overly strict

• Good translations may use words that
are synonymous to those in the
reference!

• Embedding-based methods measure the
semantic overlap between reference and
hypothesis translations

122Natalie Parde - UIC CS 521

Popular Embedding-Based Methods
for Evaluating MT Systems

• https://github.com/Unbabel/COMET

COMET

• https://github.com/google-research/bleurt

BLEURT

• https://github.com/Tiiiger/bert_score

BERTScore

123Natalie Parde - UIC CS 521

https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt
https://github.com/Tiiiger/bert_score

What is question
answering?

• The process of automatically retrieving compact
quantities of correct, relevant information in response
to a user’s query

Natalie Parde - UIC CS 521 124

People have been interested in question answering
systems nearly as long as computers have existed.

How many games did the Yankees play in
July?1

1Bert F. Green Jr., Alice K. Wolf, Carol Chomsku, and Kenneth
Laughery. 1961. Baseball: An Automatic Question Answerer.
Link: https://web.stanford.edu/class/linguist289/p219-green.pdf

20

What is the answer to the Ultimate
Question Of Life, The Universe, and

Everything?1

1The Hitchhiker’s Guide to the Galaxy

42

Natalie Parde - UIC CS 521 125

Question
Answering
Systems

• Typically focus on factoid
questions

• Factoid Questions: Questions
that can be answered with simple
facts expressed in short texts

When was UIC
founded?

What is the average
CS class size?

How far is UIC from
the University of

Chicago?

Natalie Parde - UIC CS 521 126

Question Answering
Systems

Information
Retrieval-based

Question Answering

• Relies on text from the web or from
large corpora

• Given a user question:
1. Find relevant documents and

passages of text
2. Read the retrieved documents

or passages
3. Extract an answer to the

question directly from spans of
text

Natalie Parde - UIC CS 521 128

How does information retrieval work?

Index

Search

Natalie Parde - UIC CS 521 129

How are
documents
represented?

• Two common term weighting schemes:
• TF-IDF

• tf!,# = log$%(count 𝑡, 𝑑 + 1)
• idf! = log$%

&
df7

• tYidf 𝑡, 𝑑 = tf!,# ∗ idf!
• BM25

• BM25 𝑡, 𝑑 = tf7,8
' $()*) 8

89:;
*tf7,8

∗ idf!

Natalie Parde - UIC CS 521 130

Balance between term frequency
and inverse document frequency

Importance of document
length normalization

Document
Scoring

• Create document and query vectors using
term weights

• Compute cosine similarity between a
document, 𝑑, and query, 𝑞

• score 𝑞, 𝑑 = cos q, 𝐝 = 𝐪⋅𝐝
𝐪 |𝐝|

• Simplify since the query won’t vary between
documents

• score 𝑞, 𝑑 = 𝐪⋅𝐝
𝐪 |𝐝|

= ∑(∈:
t[idf((,')

|'|

Natalie Parde - UIC CS 521 131

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Natalie Parde - UIC CS 521 132

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 1 0.301 1 0.477 0.144

521 0 0 2 0.176 0

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 0 0 1 0.477 0

Document 1

Natalie Parde - UIC CS 521 133

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 1 0.301 1 0.477 0.144

521 0 0 2 0.176 0

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 0 0 1 0.477 0

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 0 0 2 0.176 0

the 0 0 2 0.176 0

best 0 0 2 0.176 0

topic 0 0 1 0.477 0

521 1 0.301 2 0.176 0.053

covers 1 0.301 1 0.477 0.144

statistical 1 0.301 1 0.477 0.144

NLP 1 0.301 1 0.477 0.144

class 0 0 1 0.477 0

word count TF # docs IDF TF-IDF
CS 0 0 2 0.176 0

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 0 0 1 0.477 0

521 1 0.301 2 0.176 0.053

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 1 0.301 1 0.477 0.144
Natalie Parde - UIC CS 521 134

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word Doc. 1
CS 0.053

is 0.053

the 0.053

best 0.053

topic 0.144

521 0

covers 0

statistical 0

NLP 0

class 0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc. |d| TF-
IDF(“CS”)

TF-
IDF(“521”)

Score

Natalie Parde - UIC CS 521 135

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

0.053@ + 0.053@ + 0.053@ + 0.053@ + 0.144@ + 0@ + 0@ + 0@ + 0@ + 0@ = 0.179
Natalie Parde - UIC CS 521 136

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

0.053@ + 0@ + 0@ + 0@ + 0@ + 0.053@ + 0.144@ + 0.144@ + 0.144@ + 0@ = 0.260
Natalie Parde - UIC CS 521 137

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

3 0.179 0 0.053 0.296

0@ + 0.053@ + 0.053@ + 0.053@ + 0@ + 0.053@ + 0@ + 0@ + 0@ + 0.144@ = 0.179
Natalie Parde - UIC CS 521 138

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

3 0.179 0 0.053 0.296

Natalie Parde - UIC CS 521 139

IR with
Dense

Vectors

• Recent work has explored dense vectors as an
alternative to TF-IDF or BM25 vectors

• Advantage:
• More capable of handling synonymy

• Disadvantage:
• Less efficient

• Typically done by:
• Separately encoding the document and queries

• ℎ+ = Encoder, 𝑞
• ℎ# = Encoder-(𝑑)

• Computing the dot product between a given
document and query to find the document score

• score 𝑞, 𝑑 = ℎ+ ⋅ ℎ#

Natalie Parde - UIC CS 521 140

IR-based Factoid Question Answering

Retrieve
and Read

Dominant Paradigm: Retrieve and read model
• Retrieve relevant documents for the given query
• Read those documents to find text segments that answer the query

Goal Goal: Find relevant answers to questions by searching
through documents in a corpus

Natalie Parde - UIC CS 521 141

Retrieve and Read Model

Information
Retrieval
System

Reading
Comprehension

System

…

Natalie Parde - UIC CS 521 142

Step #1:
Retrieve

Index

Search

Natalie Parde - UIC CS 521 143

Step #2: Read
• Performed using a reading

comprehension model
• Reading comprehension: Given a

document and a query, select (if
available) the span of text from the
document that answers the query

• Designed to measure natural language
understanding performance

Natalie Parde - UIC CS 521 144

Reading Comprehension
Datasets

• Stanford Question Answering Dataset (SQuAD)
• English
• Passages from Wikipedia
• Associated questions

• Many have answers that are spans
from the passage

• Some are designed to be
unanswerable

• https://rajpurkar.github.io/SQuAD-explorer/

• HotpotQA
• English
• Question-answer pairs based on multiple

context documents
• https://hotpotqa.github.io/

• Natural Questions
• English
• Based on real, anonymized queries to

Google Search
• https://ai.google.com/research/NaturalQuesti

ons

• TyDi QA
• Question-answer pairs from typologically

diverse languages
• https://ai.google.com/research/tydiqa

Natalie Parde - UIC CS 521 145

https://rajpurkar.github.io/SQuAD-explorer/
https://hotpotqa.github.io/
https://ai.google.com/research/NaturalQuestions
https://ai.google.com/research/NaturalQuestions
https://ai.google.com/research/tydiqa

Answer
Span

Extraction

• Goal: Compute, for each token, the
probability that it is:

• The start of the answer span
• The end of the answer span

How many floors are in the Science and
Engineering Offices building?

Although there are 13 floors in SEO, the elevator only goes
to the 12th floor since the architect didn’t like how elevator
boxes look on the top of buildings.

Pstart(“13”) Pend(“13”)

Natalie Parde - UIC CS 521 146

Answer
Span
Extraction

• Common extractive QA approach
• Concatenate the query and passage, separated by

a [SEP] token
• Encode the concatenated sequence
• Add a linear layer
• Compute span-start and span-end probabilities for

each token 𝑝4 in a passage 𝑃, making use of
special span-start (S) and span-end (E) vectors
learned during fine-tuning

• 𝑃FGHIG! =
J'⋅)!

∑"*+
|-| J'⋅)"

• 𝑃LMN! =
J.⋅)!

∑"*+
|-| J.⋅)"

• Compute a score for each passage from position i
to j

• 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 = 𝑆 ⋅ 𝑝4 + 𝐸 ⋅ 𝑝5
• Select the highest-scoring passage for which 𝑗 ≥ 𝑖

Natalie Parde - UIC CS 521 147

Knowledge-based Question Answering

• Builds a semantic representation of the
user’s query

• When was UIC founded? →
founded(UIC, x)

• Uses these representations to query a
database of facts

Natalie Parde - UIC CS 521 148

Where is UIC’s computer science
department located?

UIC CS → {
 Location → SEO

}

SEO

Knowledge-based
Question
Answering
• Two common paradigms:

• Graph-based question answering
• Question answering by semantic

parsing
• Both require entity linking

Natalie Parde - UIC CS 521 149

Entity
Linking

• Entity linking: Associating mentions
in text with the concepts to which they
correspond in a structured knowledge
base

• Typically done using a two-stage
process:

• Mention detection: Detecting that
a concept has been mentioned

• Mention disambiguation:
Determining which concept has
been mentioned

The coolest department at UIC is the
Department of Computer Science.

Natalie Parde - UIC CS 521 150

Neural
Graph-based
Entity
Linking

• Modern approaches often make use of
bidirectional Transformer encoders

• One encoder is trained to encode a
candidate mention

• One encoder is trained to encode an
entity (e.g., a Wikipedia page)

• The dot product between the two
encoded representations is computed

• Require annotated data indicating mention
boundaries and corresponding entity links

• WebQuestionsSP:
https://www.microsoft.com/en-
us/download/details.aspx?id=52763

• GraphQuestions:
https://github.com/ysu1989/GraphQuesti
ons

Natalie Parde - UIC CS 521 151

https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://github.com/ysu1989/GraphQuestions
https://github.com/ysu1989/GraphQuestions

Graph-
based
Question
Answering

• Facts are stored as (subject, predicate,
object) triples

• Sometimes referred to as RDF
(resource description framework) triples

• Entity mentions are linked to entities in a
knowledge graph

• Queries are mapped to canonical relations
• “Where is UIC’s computer science

department located?” →
LOCATIONOF(“UIC CS”, ?x)

• Triples matching the canonical relations
are identified and ranked based on entity
graph structure

Natalie Parde - UIC CS 521 152

Question Answering
by Semantic Parsing

• Maps questions directly to logical form
using a semantic parser

• First-order logic
• SQL

• Logical form is used to query a
knowledge base directly

Natalie Parde - UIC CS 521 153

How did classical QA work?

N
atalie Parde - U

IC
 C

S 521

154

Rule-based
question

answering

Feature-based
question

answering

Hybrid
techniques that

incorporated
both approaches

Hybrid Rule-
and Feature-
based
Question
Answering

• Until recently, a popular question answering
paradigm involved leveraging a combination of
rule-based methods and feature-based
classification techniques

• Question answering component of Watson
(DeepQA)

• Four stages:
1. Question processing
2. Candidate answer generation
3. Candidate answer scoring
4. Answer merging and scoring

Natalie Parde - UIC CS 521 155

Case Example: DeepQA

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Natalie Parde - UIC CS 521 156

Stage 1: Question Preprocessing

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Parsing Coreference
Resolution

Named Entity
Recognition

Relation
Extraction

Focus
Detection

Answer Type
Detection

Question
Classification

Natalie Parde - UIC CS 521 157

Stage 1: Question Preprocessing

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Parsing Coreference
Resolution

Named Entity
Recognition

Relation
Extraction

Focus
Detection

Answer Type
Detection

Question
Classification

Standard
NLP
Pipeline

Techniques
from IR-
based QA
Systems

Natalie Parde - UIC CS 521 158

Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Natalie Parde - UIC CS 521 159

Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Natalie Parde - UIC CS 521 160

Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Focus Detection: Which part of the
question co-refers with the answer?

Extracted using handwritten rules in DeepQA

Natalie Parde - UIC CS 521 161

Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Answer Type Detection: Which word tells
us about the semantic type of answer to
expect?

DeepQA extracts roughly 5000 possible
answer types (some questions may take
multiple answer types), using a rule-based
approach

Natalie Parde - UIC CS 521 162

Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Question Classification: What type of
question is this (multiple choice, fill-in-the-
blank, definition, etc.)?

Generally done using pattern-
matching regular expressions
over words or parse trees

Definition

Natalie Parde - UIC CS 521 163

Stage 2: Candidate Answer Generation

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Document and
Passage Retrieval

Answer
Extraction

Relation
Retrieval

Natalie Parde - UIC CS 521 164

Stage 2: Candidate Answer Generation

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Document and
Passage Retrieval

Answer
Extraction

Relation
Retrieval

Techniques
from
Knowledge-
based QA
Systems

Techniques
from IR-
based QA
Systems

Natalie Parde - UIC CS 521 165

Stage 2: Candidate Answer Generation
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Document and
Passage Retrieval

In 2007, Peepolykus Theatre Company premiered a new adaptation
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound
of the Baskervilles (1901).

Natalie Parde - UIC CS 521 166

Stage 2: Candidate Answer Generation
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Document and
Passage Retrieval

In 2007, Peepolykus Theatre Company premiered a new adaptation
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound
of the Baskervilles (1901).

Answer
Extraction

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Natalie Parde - UIC CS 521 167

Stage 2: Candidate Answer Generation
Jeopardy! Example:
basedOn(x, “Sir Arthur Conan Doyle canine classic”)

Relation Retrieval

The Hound of the Baskervilles

Natalie Parde - UIC CS 521 168

Stage 3: Candidate Answer Scoring

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Evidence Retrieval
and Scoring

Based on
many
different
sources of
evidence

Natalie Parde - UIC CS 521 169

Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles

Natalie Parde - UIC CS 521 170

Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

Natalie Parde - UIC CS 521 171

Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

Natalie Parde - UIC CS 521 172

Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

0.9

0.9

0.6

Natalie Parde - UIC CS 521 173

Stage 4: Answer Merging and Scoring

Question
Processing

Candidate
Answer

Generation

Candidate
Answer
Scoring

…
Answer

Merging and
Scoring

Merge Equivalent
Answers

Rank Answers

Natalie Parde - UIC CS 521 174

Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

0.9

0.9

0.6

Natalie Parde - UIC CS 521 175

Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

0.9

0.6

Natalie Parde - UIC CS 521 176

Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

Expected Answer Type: BOOK

Information extracted from structured
knowledge bases

Retrieved passages with terms matching
the question

…

0.9

Natalie Parde - UIC CS 521 177

Where are we
today?
• Moving towards language

model-based question
answering

• In pretraining, train an
encoder-decoder
architecture to fill in
masked spans of text

• In finetuning, train the
decoder to output an
answer for a given
question

Natalie Parde - UIC CS 521 178

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

52
1

• Advantages:
• Simple approach
• Decent performance

• Disadvantages:
• Often lower accuracy in

answers
• Poor interpretability

How are
question
answering
systems
evaluated?

Where is UIC located?

Illinois

Chicago

Natalie Parde - UIC CS 521 180

Mean
Reciprocal
Rank

• Scores each question according to the
reciprocal of the rank of the first correct
answer

• Highest ranked correct answer is
ranked fourth → reciprocal rank = ¼

• Assigns a score of 0 to questions with no
correct answers returned

• System’s overall score is the average of all
individual question scores

• MRR = #
=
∑!3#= #

>J

Natalie Parde - UIC CS 521 181

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Natalie Parde - UIC CS 521 182

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Natalie Parde - UIC CS 521 183

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Natalie Parde - UIC CS 521 184

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal
Rank = 1/3

Natalie Parde - UIC CS 521 185

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal
Rank = 1/3

Who is the head of
UIC’s Department of
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4

Natalie Parde - UIC CS 521 186

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal
Rank = 1/3

Who is the head of
UIC’s Department of
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4

Reciprocal
Rank = 1/2

Natalie Parde - UIC CS 521 187

Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal
Rank = 1/3

Who is the head of
UIC’s Department of
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4

Reciprocal
Rank = 1/2

MRR =
%
/I

%
0

@
 = 0.417

Natalie Parde - UIC CS 521 188

Other Evaluation
Metrics for Question
Answering Systems

Natalie Parde - UIC CS 521 189

Other Evaluation
Metrics for Question
Answering Systems

Natalie Parde - UIC CS 521 190

Computing F1 for Question Answering
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Actual
True

Actual
False

Predicted
True
Predicted
False

Natalie Parde - UIC CS 521 191

Computing F1 for Question Answering
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Actual
True

Actual
False

Predicted
True 1 1

Predicted
False 0

Natalie Parde - UIC CS 521 192

Computing F1 for Question Answering
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Precision = KL
KLIML

= :
:I:

 = 0.5 Recall = KL
KLIMN

= :
:IC

 = 1

Actual
True

Actual
False

Predicted
True 1 1

Predicted
False 0

F1 = @∗L∗P
LIP

= @∗C.F∗:
C.FI:

 = 0.67

Natalie Parde - UIC CS 521 193

Summary:
Question
Answering
and
Evaluating
MT Systems

• MT systems are commonly evaluated
using both human ratings and
automated metrics

• Popular automated metrics include
BLEU, chrF, and embedding-based
measures

• Question answering is the process of
retrieving relevant information and
fluently presenting it to users in response
to their queries

• QA systems often use knowledge-based
or information retrieval methods to
formulate answers to questions

• Some systems also use language
modeling or rule-/feature-based
approaches

Natalie Parde - UIC CS 521 194

