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Machine Translation: The process of automatically converting 
a text from one language to another.



Machine translation is 
increasingly ubiquitous, but 
also challenging for many 
reasons.
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Structural and lexical 
differences between languages

Differences in word order

Morphological differences

Stylistic and cultural 
differences



Cross-Linguistic Similarities 
and Differences

• Typological Differences: 
• Systematic structural differences between languages

• Morphological Differences:
• Number of morphemes per word

• Isolating languages: Each word generally has 
one morpheme

• Polysynthetic languages: Each word may have 
many morphemes

• Degree to which morphemes can be segmented
• Agglutinative languages: Morphemes have 

well-defined boundaries
• Fusion languages: Morphemes may be 

conflated with one another
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Cross-
Linguistic 
Similarities 
and 
Differences

• Syntactic Differences:
• Primary difference between languages: Word order

• SVO languages: Verb tends to come between the subject 
and object

• SOV languages: Verb tends to come at the end of basic 
clauses

• VSO languages: Verb tends to come at the beginning of 
basic clauses

• Languages with similar basic word order also tend to share other 
similarities

• SVO languages generally have prepositions
• SOV languages generally have postpositions

• Differences in Argument Structure and Linking
• Verb-framed languages: Mark the direction of motion on the verb, 

leaving its satellites (particles, prepositional phrases, and adverbial 
phrases) to mark the manner of motion

• Satellite-framed languages: Mark the direction of motion on the 
satellite, leaving the verb to mark the manner of motion

Natalie Parde - UIC CS 521 5

The bottle floated out. La botella salió flotando.

The bottle exited floating.



Cross-
Linguistic 
Similarities 
and 
Differences

• Differences in Permissible Omissions:
• Pro-Drop languages: Can omit pronouns when talking about 

certain referents
• Some pro-drop languages permit more pronoun omission than 

others
• Referentially dense and sparse languages

• Converting text from pro-drop languages (e.g., Japanese) to 
non-pro-drop languages (e.g., English) requires that all missing 
pronoun locations are identified and their appropriate 
anaphors recovered

• Differences in noun-adjective order
• Blue house → Maison bleue

• Differences in homonymy and polysemy
• Differences in grammatical constraints

• Some languages require gender for nouns
• Some languages require gender for pronouns

• Lexical gaps
• No word or phrase in the target language can express the 

meaning of a word in the source language
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Machine 
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models
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Classical 
Machine 

Translation

• Direct translation
1. Take a large bilingual dictionary
2. Proceed through the source text word by word
3. Translate each word according to the dictionary

• No intermediate structures
• Simple reordering rules may be applied

• For example, moving adjectives so that they are after nouns 
when translating from English to French

• Dictionary entries may be relatively complex
• Rule-based programs for translating a word to the target 

language

blue house
t1 t2

bleue maison
t1 t2
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Classical Machine Translation
• Transfer approaches

• Parse the input text
• Apply rules to transform the source language parse structure into a target 

language parse structure
• Two subcategories of transformations:

• Syntactic transfer
• Lexical transfer
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blue house

amod

maison bleue

amod



Transfer Approaches

Adjective Noun

Nominal

Noun Adjective

Nominal • Syntactic Transfer: Modifies the source 
parse tree to resemble the target parse tree

• For some languages, may also include 
thematic structures

• Directional or locative 
prepositional phrases vs. recipient 
prepositional phrases

• Lexical Transfer: Generally based on a 
bilingual dictionary

• As with direct translation, dictionary 
entries can be complex to 
accommodate many possible 
translations
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Classical 
Machine 
Translation

• Interlingua approaches
• Convert the source language text into an abstract 

meaning representation
• Generate the target language text based on the 

abstract meaning representation
• Require more analysis work than transfer approaches

• Semantic analysis
• Sentiment analysis

• No need for syntactic or lexical transformations
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blue house maison bleue



Interlingua Approaches

• Goal: Represent all sentences that mean the same 
thing in the same way, regardless of language

• What kind of representation scheme should be used?
• Classical approaches:

• First-order logic
• Semantic primitives
• Event-based representation

• More recently, neural machine translation models 
follow a similar intuition

blue house

maison bleue

casa azul

청와대
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When to use 
each 
classical 
approach?
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• Pros:
• Simple
• Easy to implement

• Cons:
• Cannot reliably handle long-distance reorderings
• Cannot handle reorderings involving phrases or larger structures
• Too focused on individual words

Direct Translation

• Pros:
• Can handle more complex language phenomena than direct translation

• Cons:
• Still not sufficient for many cases!

Transfer Approaches

• Pros:
• Direct mapping between meaning representation and lexical realization
• No need for transformation rules

• Cons:
• Extra (often unnecessary) work

• Classical approaches require an exhaustive analysis and formalization of the 
semantics of the domain

Interlingua Approaches



Statistical 
Machine 
Translation

• Models automatically learn to map from the source 
language to the target language

• No need for intermediate transformation rules
• No need for an explicitly defined internal meaning 

representation
• Goal: Produce an output that maximizes some function 

representing translation faithfulness and fluency
• One possible approach: Bayesian noisy channel 

model
• Assume a possible target language translation ti

and a source language sentence s
• Select the translation t’ from the set of all possible 

translations ti ∈ T that maximizes the probability 
P(ti|s), using Bayes’ rule
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The 
Phrase-
Based 
Translation 
Model

• Computes the probability that a given 
translation ti generates the original 
sentence s based on its constituent 
phrases

• Stages of phrase-based translation:
1. Group the words from the source sentence 

into phrases
2. Translate each source phrase into a target 

language phrase
3. (Optionally) reorder the target language 

phrases
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Probability in Phrase-Based Translation 
Models
• Relies on two probabilities:

• Translation probability
• Probability of generating a source language phrase from a target 

language phrase, 𝜙 "𝑡! , "𝑠!
• Distortion probability

• Probability of two consecutive target language phrases being separated in 
the source language by a word span of a particular length, 𝑑(𝑎! − 𝑏!"#)

• To learn these probabilities, we need to train two sets of parameters:
• 𝜙 "𝑡! , "𝑠!
• 𝑑(𝑎! − 𝑏!"#)

• We learn these using phrase-aligned bilingual training sets
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Decoding for 
Phrase-Based 
Machine Translation

• Aligned phrases can be stored in a phrase-translation
table

• Decoding algorithms can then search through this 
table to find the overall translation that maximizes the 
phrase translation probabilities

Mina did not slap the green witch

Mina no dió una bofetada a la bruja verde

NULL
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Machine 
Translation
• Classical Machine Translation

• Direct translation
• Transfer approaches
• Interlingua approaches
• Statistical methods

• Modern Machine Translation
• Encoder-decoder models
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Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length output sequences
• Basic premise:

• Use a neural network to encode an input to an internal representation
• Pass that internal representation as input to a second neural network
• Use that neural network to decode the internal representation to a task-

specific output sequence
• This method allows networks to be trained in an end-to-end fashion
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Where did this 
idea come from?

Recall our discussion of 
autoregressive generation:
• Start with a seed token (e.g., 

<s>)
• Predict the most likely next 

word in the sequence

• Use that word as input at the 
next timestep

• Repeat until an end token (or 
max length) is reached

<s> RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network
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This setup can be 
extended to generate text 
given a specific prefix….
• Pass the specified prefix through the 

language model, in sequence
• End with the hidden state 

corresponding to the last word of the 
prefix

• Start the autoregressive process at 
that point

• Goal: Output sequence should be 
a reasonable completion of the 
prefix

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN
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We can build upon this idea to transform 
one type of sequence to another.

• Machine translation example:
1. Take a sequence of text from Language #1
2. Take the translation of that text from Language #2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated 

sequence (text from Language #1) and checking to see what the 
generated completion (text from Language #2) looks like
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.
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Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Intuition: Machine Translation

Hi, I’m Mina.

Hi, I’m Mina. </s>

Hi, RNN I’m RNN Mina. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Mina. RNN

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Key 
Elements of 
an Encoder-

Decoder 
Network

• Encoder
• Accepts an input sequence, 𝑥!"
• Generates a sequence of contextualized 

representations, ℎ!"

• Context vector
• A function, 𝑐, of ℎ!" that conveys the basic 

meaning of 𝑥!" to the decoder
• (Might just be equivalent to ℎ!")

• Decoder
• Accepts 𝑐 as input
• Generates an arbitrary-length sequence of 

hidden states, ℎ!#, from which a corresponding 
sequence of output states 𝑦!# can be obtained
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Encoders

• Can be any type of neural network
• Feedforward network
• CNN
• RNN
• LSTM/BiLSTM
• GRU/BiGRU
• Transformer

• These networks can be stacked on top of one another

More common
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Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)
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Final hidden state of the encoder

First hidden state of the decoder



Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)
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Some type of 
sequence 
processing model

Embedding for the output 
sampled from the previous step



Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN
• LSTM
• GRU
• Transformer

• Formally….
• 𝑐 = ℎ!"

• ℎ#$ = 𝑐

• ℎ%$ = 𝑔('𝑦%&', ℎ%&'$ )
• 𝑧% = 𝑓(ℎ%$)
• 𝑦% = softmax(𝑧%)
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Regular ending steps (activation function 
applied to hidden state outputs, and 
softmax applied to activation outputs)



A couple useful extensions….

• Formally….
• 𝑐 = ℎ$%

• ℎ&' = 𝑐

• ℎ(' = 𝑔(0𝑦("#, ℎ("#' ) → ℎ(' = 𝑔(0𝑦("#, ℎ("#' , 𝑐)
• 𝑧( = 𝑓(ℎ(')
• 𝑦( = softmax(𝑧()

Make the context vector available at each 
timestep when decoding, so that its 
influence doesn’t diminish over time
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A couple useful extensions….

• Formally….
• 𝑐 = ℎ$%

• ℎ&' = 𝑐

• ℎ(' = 𝑔(0𝑦("#, ℎ("#' ) → ℎ(' = 𝑔(0𝑦("#, ℎ("#' , 𝑐)
• 𝑧( = 𝑓(ℎ(')
• 𝑦( = softmax(𝑧() → 𝑦( = softmax(0𝑦("#, 𝑧( , 𝑐)

Condition output on not only the hidden state, but 
the previous output and encoder context (easier 
to keep track of what’s been generated already)
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What other ways can we improve the 
decoder’s output quality?

• Beam search
• Improved context vector

• Final hidden state tends to be more focused on the end of the 
input sequence

• Can be addressed by using bidirectional RNNs, summing the 
encoder hidden states, or averaging the encoder hidden states
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Beam Search
• Selects from multiple possible outputs by framing the 

task as a state space search
• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed 
size (beam width)

• Results in a set of b hypotheses, where b is the beam 
width
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How does beam search work?

Decoder

Beam Size = 3
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"#

𝑦!"#
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#
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How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>
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How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder
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How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"%
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

𝑦!"#

𝑦!"# Decoder

Decoder

Decoder

Decoder𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

Decoder

Decoder

Decoder

𝑦!"% =</s>

𝑦!"% Decoder 𝑦!"# =</s>
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How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦!

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder Decoder

𝑦!"#

𝑦!"#

𝑦!"#

𝑦!"$

𝑦!"$

𝑦!"$ =</s>

𝑦!"% =</s>

𝑦!"% 𝑦!"# =</s>
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How do we 
choose a best 

hypothesis?

• Probabilistic scoring scheme
• Pass all or a subset of hypotheses to a 

downstream application
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So far, the encoder context 
vectors we’ve seen have 
been simple and static.
• Can we do better?

• Yes!



Attention 
Mechanism

• Takes entire encoder context into 
account

• Can be embodied in a fixed-size vector
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Recall….

• We’ve already made our context vector 
available at each timestep when decoding

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐)
• The first step in creating our attention 

mechanism is to update our hidden state 
such that it is conditioned on an updated 
context vector with each decoding step

• ℎ&' = 𝑔((𝑦&(!, ℎ&(!' , 𝑐&)
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How do we 
dynamically 
create a new 
context 
vector at 
each step?

• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder hidden 
state, ℎ4567

• 𝑠𝑐𝑜𝑟𝑒 ℎ)(!' , ℎ*+ = ℎ)(!' / ℎ*+
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*

54Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ&'#( , ℎ)* = ℎ&'#( 3 ℎ)*
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How can we 
make use of 

context scores?

• Parameterize these scores with weights
• This allows the model to learn which 

aspects of similarity between the encoder 
and decoder states are important
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Attention 
Weights

• Normalize context scores to create a 
vector of weights, 𝛼)*

• 𝛼)* = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ)(!' , ℎ*+)∀𝑗 ∈ 𝑒)
• Provides the proportional relevance of 

each encoder hidden state 𝑗 to the 
current decoder state 𝑖

• Finally, take a weighted average over all 
the encoder hidden states to create a 
fixed-length context vector for the current 
decoder state

• 𝑐) = ∑* 𝛼)*ℎ*+
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN
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Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN I’m RNN Natalie. RNN </s> RNN

Bonjour RNN je RNN m’appelle RNN Natalie. RNN

𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&)) 𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$% , ℎ"&))
𝛼!" = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ!#$

% , ℎ"
&))

Σ
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Other 
Attention 
Weights

• More sophisticated scoring functions can be used 
as well

• Common: Parameterize the attention score with its 
own set of trainable weights

• score 𝐡(&'$ , 𝐡)" = 𝐡%&'$ 𝐖*𝐡)"

• Advantage: Allows the encoder and decoder to 
use vectors with different dimensionality (dot-
product attention requires the encoder and 
decoder hidden states to have the same 
dimensionality)
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Advanced RNNs are a powerful tool, 
but they are not without their 
limitations.
• Remaining challenges:

• Even with sophisticated architectures, processing 
long-distance dependencies through many 
recurrences can eventually lead to loss of valuable 
information

• Recurrent models cannot productively leverage 
parallel resources
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Transformers
• Entirely do away with recurrences
• Stacks of:

• Linear layers
• Feedforward layers
• Self-attention layers

• For a given element in a sequence, determines which 
other element(s) up to that point are most relevant to it

• Each computation is independent of other 
computations → easy parallelization

• Each computation only considers elements up to 
that point in the sequence → easy language 
modeling

• Goal: Map sequences of input (𝑥$, … , 𝑥%) to sequences of output 
(𝑦$, … , 𝑦%) of the same length
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Self-Attention
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Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention 
Computation

65



Self-Attention
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Self-Attention
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Computing Self-Attention

68



How do Transformers learn?
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• Continually updating weight matrices applied to inputs
• Weight matrices are learned for each of three roles when computing self-attention:

• Query: The focus of attention when it is being compared to inputs up until that 
point, 𝑊+

• Key: An input that is being compared to the focus of attention, 𝑊,

• Value: A value being used to compute the output for the current focus of 
attention, 𝑊-
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Training 
Transformers

• Weight matrices are applied to inputs in the context of 
their respective roles

• 𝑞( = 𝑊+𝑥(
• 𝑘( = 𝑊,𝑥(
• 𝑣( = 𝑊-𝑥(

• Then, we can update our equations for computing self-
attention so that these roles are reflected in them:

• score 𝑥(, 𝑥) = 𝑞( ⋅ 𝑘)
• 𝛼() = softmax score 𝑥(, 𝑥) ∀𝑗 ≤ 𝑖
• 𝑦( = ∑).( 𝛼()𝑣)
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is

Self-Attention
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CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis

𝛼!" = softmax score 𝑥!, 𝑥"

𝑦! =2
"#!

𝛼!"𝑣"

k521

v521
q521

kCS

vCS
qCS
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Practical 
Considerations

• Combining a dot product with an exponential (as in 
softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the 
dimensionality of the key (and query) vectors, 𝑑3

• score 𝑥4 , 𝑥5 =
6!⋅3"
8#

• Each 𝑦4 is computed independently, so we can parallelize 
computations using efficient matrix multiplication routines 
where 𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊9𝑋
• 𝐾 = 𝑊:𝑋
• 𝑉 = 𝑊;𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax 9:$

8#
𝑉

• Make sure to avoid including knowledge of 
future words in language modeling settings!
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Transformer Blocks

• Self-attention is the central component of a Transformer block, which also 
includes:

• Feedforward layers
• Residual connections
• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output
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Multihead Attention

• Each self-attention layer represents a single attention 
head

• Multihead attention places multiple attention heads in 
parallel in the Transformer model

• Since each attention head has its own set of weights, 
each one can learn different aspects of the relations 
between input elements at the same level of 
abstraction

Natalie Parde - UIC CS 521

Attention

Attention

Attention
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Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights
• 𝑄 = 𝑊!

.𝑋
• 𝐾 = 𝑊!

/𝑋
• 𝑉 = 𝑊!

0𝑋
• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors 

of equal length
• These heads are concatenated and then reduced to the original input/output 

dimensionality
• head! = SelfAttention(𝑊!

.𝑋,𝑊!
/𝑋,𝑊!

0𝑋)
• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊1(head#⨁head2⨁…⨁head$)
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Multihead Attention

Natalie Parde - UIC CS 521

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

⨁

Self-Attention Layer

𝑊! Output
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Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead 
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position
• Update weights during the training process
• Input embedding with positional information = word embedding + positional 

embedding
• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
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Transformers as Autoregressive 
Language Models

Natalie Parde - UIC CS 521

Transformers Transformer 
Block softmax

are

are
softmax

fun

fun </s>

softmax

Transformer 
Block

Transformer 
Block

loss

loss

loss
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Encoder-
Decoder 
Models with 
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps 

sequential input to an output representation
• Decoder (Transformer model) attends to the 

encoder representation and generates 
sequential output autoregressively

• However….
• Transformer blocks in the decoder include 

an extra cross-attention layer
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Cross-
Attention

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

• Same form as multiheaded self-attention in a normal Transformer 
block, with one difference: queries come from the previous layer of the 
decoder as usual, but keys and values come from the output of the 
encoder

• 𝐐 = 𝐖𝐐𝐇%&([!#$]

• 𝐊 = 𝐖𝐐𝐇&+(

• 𝐕 = 𝐖𝐕𝐇&+(

• 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐐, 𝐊, 𝐕 = softmax 𝐐𝐊/

%0
𝐕

Reminder: Normal Transformer block
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Updated Decoder Transformer Block

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize
Output

C
ross-Attention 

Layer

Add and N
orm

alize
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Encoder-
Decoder 
Models with 
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to 

the entire encoder sequence
• Training Transformer-based 

encoder-decoders is similar to 
training RNN-based encoder-
decoders

• Use teacher forcing
• Train autoregressively
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Practical Details for Building MT 
Systems

• MT systems typically use a fixed vocabulary generated using byte pair encoding 
or other wordpiece algorithms

• Vocabulary is usually shared across the source and target languages

Vocabulary

• Parallel corpora with the same content communicated in multiple languages
• Common sources:

• Government documents for nations with multiple official languages
• Subtitles for movies and TV shows

• Often, text from the source and target language(s) is aligned at the sentence 
level

Corpora
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What if we 
don’t 
have 
much 
training 
data?

• Parallel corpora are difficult to find, especially 
for lower-resource language pairs

• Backtranslation:
1. Train an intermediate target-to-source 

MT system on a small parallel corpus
2. Translate additional monolingual data 

from the target language to the source 
language using this intermediate system

3. Consider this new, synthetic parallel data 
as additional training data

4. Train a source-to-target MT system on 
the expanded training dataset
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Summary: 
Machine 

Translation 
Methods and 

Encoder-
Decoder 

Models

• Machine translation is challenging due to many 
typological, morphological, and other differences 
between languages

• Classical machine translation used dictionary-based, 
direct transfer, and interlingua approaches

• A popular statistical MT model is the Bayesian noisy 
channel approach, which relies on phrase-based 
translation

• Encoder-decoder models draw upon similar techniques 
for autoregressive language modeling to convert input to 
an intermediate vector representation and then convert 
that intermediate representation to output

• One newer architecture that can be used in encoder-
decoder settings is the Transformer model



How do we 
evaluate 
machine 

translation 
models?

• Translation quality tends to be 
very subjective!

• Two common approaches:
• Human ratings
• Automated metrics
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Evaluating 
Machine 

Translation 
Using Human 

Ratings

• Typically evaluated along multiple 
dimensions

• Tend to check for both fluency and 
adequacy

• Fluency:
• Clarity
• Naturalness
• Style

• Adequacy:
• Fidelity
• Informativeness
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Evaluating 
Machine 
Translation 
Using Human 
Ratings

• How to get quantitative measures of 
fluency?

• Ask humans to rate different 
aspects of fluency along a scale

• Measure how long it takes humans 
to read a segment of text

• Ask humans to guess the identity of 
the missing word

• “After such a late night working 
on my project, it was hard to 
wake up this _____!”
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Evaluating Machine Translation Using 
Human Ratings

• How to get quantitative measures of adequacy?
• Ask bilingual raters to rate how much information was preserved in the 

translation
• Ask monolingual raters to do the same, given access to a gold standard 

reference translation
• Ask raters to answer multiple-choice questions about content present in a 

translation
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Another set 
of human 

evaluation 
metrics 

considers 
post-

editing.

• Ask a human to post-edit or “fix” a 
translation

• Compute the number of edits required to 
correct the output to an acceptable level

• Can be measured via number of word changes, 
number of keystrokes, amount of time taken, etc.
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Automated 
Metrics

• Less accurate than human 
evaluation, but:

• Useful for iteratively testing 
system improvements

• Can be used as an automatic 
loss function

• Two main families:
• Character- or word-overlap
• Embedding similarity
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Popular Lexical Overlap Metrics

• BLEU
• Measure of word overlap

• METEOR
• Measure of word overlap, considering stemming and synonymy

• Character F-Score (chrF)
• Measure of character n-gram overlap
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BLEU

N
atalie Parde - U

IC
 C

S 521

• Weighted average of the number of n-gram overlaps with 
human translations

• Precision-based metric
• What percentage of words in the candidate translation also 

occur in the gold standard translation(s)?
• To compute BLEU:

• Count how many times each n-gram is used in the 
candidate translation, c ngram

• Clip that amount so that the highest it can be is 
cmax(ngram), defined as the maximum number of times it 
is used in a reference translation

• Compute precision for each word in the candidate 
translation: 

• prec$ =
∑
1∈{Candidates} ∑ngram∈5&'((c ngram ,cmax(ngram))

∑
1∈{Candidates} ∑ngram∈5 c(ngram)

• Take the geometric mean of the modified n-gram 
precisions for unigrams, bigrams, trigrams, and 4-grams
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Then, add a penalty for translation 
brevity….

• Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!
• The penalty is based on:

• The sum of the lengths of the reference sentences, r
• The sum of the lengths of the candidate translations, c

• Formally, the penalty is set to:

• 𝐵𝑃 = K
1 𝑖𝑓 𝑐 > 𝑟

𝑒('&
5
6) 𝑖𝑓 𝑐 ≤ 𝑟

• The full BLEU score for a set of translations is then:

• 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (∏$3#
4 prec$)

1
2

94Natalie Parde - UIC CS 521



Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation
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Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)
𝐵𝑃 = J

1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?
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Example: Computing BLEU
Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

Unigram Unigram Frequency 
(Candidate)

Unigram Frequency 
(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟
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Example: Computing BLEU

𝑝: =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

Unigram Unigram Frequency 
(Candidate)

Unigram Frequency 
(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟
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Example: Computing BLEU

Bigram Bigram Frequency 
(Candidate)

Bigram Frequency 
(Reference)

Mina did 1 0

did not 1 0

not give 1 0

give a 1 0

a slap 1 0

slap to 1 0

to the 1 0

the green 1 1

green witch 1 1

witch . 1 1

𝑝@ =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

=
3
10

𝑝: =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

6
11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟
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Example: Computing BLEU

Trigram Trigram Frequency 
(Candidate)

Trigram Frequency 
(Reference)

Mina did not 1 0

did not give 1 0

not give a 1 0

give a slap 1 0

a slap to 1 0

slap to the 1 0

to the green 1 0

the green witch 1 1

green witch . 1 1

𝑝: =
6
11

𝑝@ =
3
10

𝑝A =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

2
9

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟
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Example: Computing BLEU

4-gram 4-gram Frequency 
(Candidate)

4-gram Frequency 
(Reference)

Mina did not give 1 0

did not give a 1 0

not give a slap 1 0

give a slap to 1 0

a slap to the 1 0

slap to the green 1 0

to the green witch 1 0

the green witch . 1 1

𝑝: =
6
11

𝑝@ =
3
10

𝑝A =
2
9

𝑝? =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 =

1
8

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟
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Example: Computing BLEU

𝑝: =
6
11

𝑝@ =
3
10 𝑝A =

2
9 𝑝? =

1
8

r = 7

c = 11

𝐵𝑃 = 1

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec3 =
∑4∈{Candidates}∑ngram∈8min(c ngram , cmax(ngram))

∑4∈{Candidates}∑ngram∈8 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃	 ∗ (U
3>:

?

prec3)
:
?

𝐵𝑃 = J
1	 𝑖𝑓	𝑐 > 𝑟

𝑒(:;
<
4)	𝑖𝑓	𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 1	 ∗ (∏3>:
? prec3)

%
&= 1 ∗ ( B

::
∗ A
:C
∗ @
D
∗ :
E
)
%
&= 1 ∗ 0.00454545454

%
& = 1 ∗ 0.25965358893 = 0.26
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What are 
good 
BLEU 

scores?



Limitations of BLEU
• Word or phrase order is of minimal importance

• When computing unigram precision, a word can exist anywhere in the 
translation!

• Does not consider word similarity
• Relatively low correlation with human ratings
• Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric 

is needed to assess translation performance
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Character 
F-Score 
(chrF)



How is chrF computed?



Example: Computing chrF
CS 521 is the best
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Example: Computing chrF
CS 521 is the best CS 521 is great
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-grams 
in the hypothesis that are also in the reference k=3

chrR: averaged % of character unigrams, bigrams, …, k-grams 
in the reference that are also in the hypothesis
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Example: Computing chrF
CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS S5 52 21 1i is st th he eb be es st

CS S5 52 21 1i is sg gr re ea at

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42

chrP: C.HFIC.FFIC.F
A

= 0.6
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Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: ⁄D :@ = 0.75 Unigram chrR: ⁄D :? = 0.64

Bigram chrP: ⁄B :: = 0.55 Bigram chrR: ⁄B :A = 0.46

Trigram chrP: ⁄F :C = 0.5 Trigram chrR: ⁄F :@ = 0.42

chrP: C.HFIC.FFIC.F
A

= 0.6 chrR: C.B?IC.?BIC.?@
A

= 0.51
119Natalie Parde - UIC CS 521



Example: Computing chrF
CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-
grams in the hypothesis that are also in the reference k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

chrP: C.HFIC.FFIC.F
A

= 0.6 chrR: C.B?IC.?BIC.?@
A

= 0.51

chrF2 =
5 ∗ chrP ∗ chrR
4 ∗ chrP + chrR =

5 ∗ 0.6 ∗ 0.51
4 ∗ 0.6 + 0.51 = 0.53
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Limitations 
of chrF

• Focuses on differences at a very local scale 
(i.e., character n-grams)

• Doesn’t measure discourse coherence
• Best at measuring performance for different 

versions of the same system, rather than 
comparing different systems
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Embedding
-Based 
Evaluation 
Methods

• Measuring exact word- or character-level 
overlap might be overly strict

• Good translations may use words that 
are synonymous to those in the 
reference!

• Embedding-based methods measure the 
semantic overlap between reference and 
hypothesis translations
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Popular Embedding-Based Methods 
for Evaluating MT Systems

• https://github.com/Unbabel/COMET

COMET

• https://github.com/google-research/bleurt

BLEURT

• https://github.com/Tiiiger/bert_score

BERTScore
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What is question 
answering?

• The process of automatically retrieving compact 
quantities of correct, relevant information in response 
to a user’s query
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People have been interested in question answering 
systems nearly as long as computers have existed.

How many games did the Yankees play in 
July?1

1Bert F. Green Jr., Alice K. Wolf, Carol Chomsku, and Kenneth 
Laughery. 1961. Baseball: An Automatic Question Answerer. 
Link: https://web.stanford.edu/class/linguist289/p219-green.pdf

20

What is the answer to the Ultimate 
Question Of Life, The Universe, and 

Everything?1

1The Hitchhiker’s Guide to the Galaxy

42
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Question 
Answering 
Systems

• Typically focus on factoid 
questions

• Factoid Questions: Questions 
that can be answered with simple 
facts expressed in short texts

When was UIC 
founded?

What is the average 
CS class size?

How far is UIC from 
the University of 

Chicago?
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Question Answering 
Systems



Information 
Retrieval-based 

Question Answering

• Relies on text from the web or from 
large corpora

• Given a user question:
1. Find relevant documents and 

passages of text
2. Read the retrieved documents 

or passages
3. Extract an answer to the 

question directly from spans of 
text
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How does information retrieval work?

Index

Search
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How are 
documents 
represented?

• Two common term weighting schemes:
• TF-IDF

• tf!,# = log$%(count 𝑡, 𝑑 + 1)
• idf! = log$%

&
df7

• tYidf 𝑡, 𝑑 = tf!,# ∗ idf!
• BM25

• BM25 𝑡, 𝑑 = tf7,8
' $()*) 8

89:;
*tf7,8

∗ idf!
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Balance between term frequency 
and inverse document frequency

Importance of document 
length normalization



Document 
Scoring

• Create document and query vectors using 
term weights

• Compute cosine similarity between a 
document, 𝑑, and query, 𝑞

• score 𝑞, 𝑑 = cos q, 𝐝 = 𝐪⋅𝐝
𝐪 |𝐝|

• Simplify since the query won’t vary between 
documents

• score 𝑞, 𝑑 = 𝐪⋅𝐝
𝐪 |𝐝|

= ∑(∈:
t[idf((,')

|'|
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Natalie Parde - UIC CS 521 132



Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 1 0.301 1 0.477 0.144

521 0 0 2 0.176 0

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 0 0 1 0.477 0

Document 1
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 1 0.301 1 0.477 0.144

521 0 0 2 0.176 0

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 0 0 1 0.477 0

word count TF # docs IDF TF-IDF
CS 1 0.301 2 0.176 0.053

is 0 0 2 0.176 0

the 0 0 2 0.176 0

best 0 0 2 0.176 0

topic 0 0 1 0.477 0

521 1 0.301 2 0.176 0.053

covers 1 0.301 1 0.477 0.144

statistical 1 0.301 1 0.477 0.144

NLP 1 0.301 1 0.477 0.144

class 0 0 1 0.477 0

word count TF # docs IDF TF-IDF
CS 0 0 2 0.176 0

is 1 0.301 2 0.176 0.053

the 1 0.301 2 0.176 0.053

best 1 0.301 2 0.176 0.053

topic 0 0 1 0.477 0

521 1 0.301 2 0.176 0.053

covers 0 0 1 0.477 0

statistical 0 0 1 0.477 0

NLP 0 0 1 0.477 0

class 1 0.301 1 0.477 0.144
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

word Doc. 1
CS 0.053

is 0.053

the 0.053

best 0.053

topic 0.144

521 0

covers 0

statistical 0

NLP 0

class 0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc. |d| TF-
IDF(“CS”)

TF-
IDF(“521”)

Score
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

0.053@ + 0.053@ + 0.053@ + 0.053@ + 0.144@ + 0@ + 0@ + 0@ + 0@ + 0@ = 0.179
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

0.053@ + 0@ + 0@ + 0@ + 0@ + 0.053@ + 0.144@ + 0.144@ + 0.144@ + 0@ = 0.260
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

3 0.179 0 0.053 0.296

0@ + 0.053@ + 0.053@ + 0.053@ + 0@ + 0.053@ + 0@ + 0@ + 0@ + 0.144@ = 0.179
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Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

t[idf 𝑡, 𝑑 = log#&(count 𝑡, 𝑑 + 1) ∗ log#&
𝑁
df(

Doc. 1
0.053

0.053

0.053

0.053

0.144

0

0

0

0

0

Doc. 2
0.053

0

0

0

0

0.053

0.144

0.144

0.144

0

Doc. 3
0

0.053

0.053

0.053

0

0.053

0

0

0

0.144

score 𝑞, 𝑑 =`
(∈:

t[idf(𝑡, 𝑑)
|𝑑|

Doc |d| TF-IDF(“CS”) TF-IDF(“521”) Score

1 0.179 0.053 0 0.296

2 0.260 0.053 0.053 0.408

3 0.179 0 0.053 0.296
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IR with 
Dense 

Vectors

• Recent work has explored dense vectors as an 
alternative to TF-IDF or BM25 vectors

• Advantage:
• More capable of handling synonymy

• Disadvantage:
• Less efficient

• Typically done by:
• Separately encoding the document and queries

• ℎ+ = Encoder, 𝑞
• ℎ# = Encoder-(𝑑)

• Computing the dot product between a given 
document and query to find the document score

• score 𝑞, 𝑑 = ℎ+ ⋅ ℎ#
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IR-based Factoid Question Answering

Retrieve 
and Read

Dominant Paradigm: Retrieve and read model
• Retrieve relevant documents for the given query
• Read those documents to find text segments that answer the query

Goal Goal: Find relevant answers to questions by searching 
through documents in a corpus
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Retrieve and Read Model

Information 
Retrieval 
System

Reading 
Comprehension 

System

…
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Step #1: 
Retrieve

Index

Search
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Step #2: Read
• Performed using a reading 

comprehension model
• Reading comprehension: Given a 

document and a query, select (if 
available) the span of text from the 
document that answers the query

• Designed to measure natural language 
understanding performance
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Reading Comprehension 
Datasets

• Stanford Question Answering Dataset (SQuAD)
• English
• Passages from Wikipedia
• Associated questions

• Many have answers that are spans 
from the passage

• Some are designed to be 
unanswerable

• https://rajpurkar.github.io/SQuAD-explorer/

• HotpotQA
• English
• Question-answer pairs based on multiple 

context documents
• https://hotpotqa.github.io/

• Natural Questions
• English
• Based on real, anonymized queries to 

Google Search
• https://ai.google.com/research/NaturalQuesti

ons

• TyDi QA
• Question-answer pairs from typologically 

diverse languages
• https://ai.google.com/research/tydiqa
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Answer 
Span 

Extraction

• Goal: Compute, for each token, the 
probability that it is:

• The start of the answer span
• The end of the answer span

How many floors are in the Science and 
Engineering Offices building?

Although there are 13 floors in SEO, the elevator only goes 
to the 12th floor since the architect didn’t like how elevator 
boxes look on the top of buildings.

Pstart(“13”) Pend(“13”)
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Answer 
Span 
Extraction

• Common extractive QA approach
• Concatenate the query and passage, separated by 

a [SEP] token
• Encode the concatenated sequence
• Add a linear layer 
• Compute span-start and span-end probabilities for 

each token 𝑝4 in a passage 𝑃, making use of 
special span-start (S) and span-end (E) vectors 
learned during fine-tuning

• 𝑃FGHIG! =
J'⋅)!

∑"*+
|-| J'⋅)"

• 𝑃LMN! =
J.⋅)!

∑"*+
|-| J.⋅)"

• Compute a score for each passage from position i
to j

• 𝑠𝑐𝑜𝑟𝑒 𝑖, 𝑗 = 𝑆 ⋅ 𝑝4 + 𝐸 ⋅ 𝑝5
• Select the highest-scoring passage for which 𝑗 ≥ 𝑖
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Knowledge-based Question Answering

• Builds a semantic representation of the 
user’s query

• When was UIC founded? → 
founded(UIC, x)

• Uses these representations to query a 
database of facts
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Where is UIC’s computer science 
department located?

UIC CS → {
   Location → SEO

}

SEO



Knowledge-based 
Question 
Answering
• Two common paradigms:

• Graph-based question answering
• Question answering by semantic 

parsing
• Both require entity linking
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Entity 
Linking

• Entity linking: Associating mentions 
in text with the concepts to which they 
correspond in a structured knowledge 
base

• Typically done using a two-stage 
process:

• Mention detection: Detecting that 
a concept has been mentioned

• Mention disambiguation: 
Determining which concept has 
been mentioned

The coolest department at UIC is the 
Department of Computer Science.
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Neural 
Graph-based 
Entity 
Linking

• Modern approaches often make use of 
bidirectional Transformer encoders

• One encoder is trained to encode a 
candidate mention

• One encoder is trained to encode an 
entity (e.g., a Wikipedia page)

• The dot product between the two 
encoded representations is computed

• Require annotated data indicating mention 
boundaries and corresponding entity links

• WebQuestionsSP:
https://www.microsoft.com/en-
us/download/details.aspx?id=52763

• GraphQuestions:
https://github.com/ysu1989/GraphQuesti
ons
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Graph-
based 
Question 
Answering

• Facts are stored as (subject, predicate, 
object) triples

• Sometimes referred to as RDF 
(resource description framework) triples

• Entity mentions are linked to entities in a 
knowledge graph

• Queries are mapped to canonical relations
• “Where is UIC’s computer science 

department located?” → 
LOCATIONOF(“UIC CS”, ?x)

• Triples matching the canonical relations 
are identified and ranked based on entity 
graph structure
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Question Answering 
by Semantic Parsing

• Maps questions directly to logical form 
using a semantic parser

• First-order logic
• SQL

• Logical form is used to query a 
knowledge base directly
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How did classical QA work?

N
atalie Parde - U

IC
 C

S 521

154

Rule-based 
question 

answering

Feature-based 
question 

answering

Hybrid 
techniques that 

incorporated 
both approaches



Hybrid Rule-
and Feature-
based 
Question 
Answering

• Until recently, a popular question answering 
paradigm involved leveraging a combination of 
rule-based methods and feature-based 
classification techniques

• Question answering component of Watson 
(DeepQA)

• Four stages:
1. Question processing
2. Candidate answer generation
3. Candidate answer scoring
4. Answer merging and scoring
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Case Example: DeepQA

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring
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Stage 1: Question Preprocessing

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Parsing Coreference 
Resolution

Named Entity 
Recognition

Relation 
Extraction

Focus 
Detection

Answer Type 
Detection

Question 
Classification
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Stage 1: Question Preprocessing

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Parsing Coreference 
Resolution

Named Entity 
Recognition

Relation 
Extraction

Focus 
Detection

Answer Type 
Detection

Question 
Classification

Standard 
NLP 
Pipeline

Techniques 
from IR-
based QA 
Systems
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Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.
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Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.
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Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Focus Detection: Which part of the 
question co-refers with the answer?

Extracted using handwritten rules in DeepQA
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Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Answer Type Detection: Which word tells 
us about the semantic type of answer to 
expect?

DeepQA extracts roughly 5000 possible 
answer types (some questions may take 
multiple answer types), using a rule-based 
approach
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Stage 1: Question Preprocessing
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Question Classification: What type of 
question is this (multiple choice, fill-in-the-
blank, definition, etc.)?

Generally done using pattern-
matching regular expressions 
over words or parse trees

Definition
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Stage 2: Candidate Answer Generation

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Document and 
Passage Retrieval

Answer 
Extraction

Relation 
Retrieval
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Stage 2: Candidate Answer Generation

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Document and 
Passage Retrieval

Answer 
Extraction

Relation 
Retrieval

Techniques 
from 
Knowledge-
based QA 
Systems

Techniques 
from IR-
based QA 
Systems
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Stage 2: Candidate Answer Generation
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Document and 
Passage Retrieval

In 2007, Peepolykus Theatre Company premiered a new adaptation 
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound 
of the Baskervilles (1901).
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Stage 2: Candidate Answer Generation
Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Document and 
Passage Retrieval

In 2007, Peepolykus Theatre Company premiered a new adaptation 
of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds.

The play is an adaptation of the Arthur Conan Doyle's novel: The Hound 
of the Baskervilles (1901).

Answer 
Extraction

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Natalie Parde - UIC CS 521 167



Stage 2: Candidate Answer Generation
Jeopardy! Example:
basedOn(x, “Sir Arthur Conan Doyle canine classic”)

Relation Retrieval

The Hound of the Baskervilles

Natalie Parde - UIC CS 521 168



Stage 3: Candidate Answer Scoring

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Evidence Retrieval 
and Scoring

Based on 
many 
different 
sources of 
evidence
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Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
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Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…
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Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…
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Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…

0.9

0.9

0.6
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Stage 4: Answer Merging and Scoring

Question 
Processing

Candidate 
Answer 

Generation

Candidate 
Answer 
Scoring

…
Answer 

Merging and 
Scoring

Merge Equivalent 
Answers

Rank Answers
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Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

The Hound of the Baskervilles
Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…

0.9

0.9

0.6

Natalie Parde - UIC CS 521 175



Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…

0.9

0.6
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Stage 4: Answer Merging and Scoring

The Hound of the Baskervilles

Expected Answer Type: BOOK

Information extracted from structured 
knowledge bases

Retrieved passages with terms matching 
the question

…

0.9
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Where are we 
today?
• Moving towards language 

model-based question 
answering

• In pretraining, train an 
encoder-decoder 
architecture to fill in 
masked spans of text

• In finetuning, train the 
decoder to output an 
answer for a given 
question
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• Advantages:
• Simple approach
• Decent performance

• Disadvantages:
• Often lower accuracy in 

answers
• Poor interpretability



How are 
question 
answering 
systems 
evaluated?

Where is UIC located?

Illinois

Chicago
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Mean 
Reciprocal 
Rank

• Scores each question according to the 
reciprocal of the rank of the first correct 
answer

• Highest ranked correct answer is 
ranked fourth → reciprocal rank = ¼

• Assigns a score of 0 to questions with no 
correct answers returned

• System’s overall score is the average of all 
individual question scores

• MRR = #
=
∑!3#= #

>J
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal 
Rank = 1/3
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal 
Rank = 1/3

Who is the head of 
UIC’s Department of 
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal 
Rank = 1/3

Who is the head of 
UIC’s Department of 
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4

Reciprocal 
Rank = 1/2
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Mean Reciprocal Rank

Where is UIC located?

Chicago

Question

Gold Standard

Prediction Rank
Illinois 1
West Loop 2
Chicago 3
Little Italy 4

Reciprocal 
Rank = 1/3

Who is the head of 
UIC’s Department of 
Computer Science?

Robert Sloan

Question

Gold Standard

Prediction Rank
Peter Nelson 1
Robert Sloan 2
Natalie Parde 3
Grace Hopper 4

Reciprocal 
Rank = 1/2

MRR = 
%
/I

%
0

@
 = 0.417
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Other Evaluation 
Metrics for Question 
Answering Systems
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Other Evaluation 
Metrics for Question 
Answering Systems
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Computing F1 for Question Answering 
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Actual 
True

Actual 
False

Predicted 
True
Predicted 
False
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Computing F1 for Question Answering 
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Actual 
True

Actual 
False

Predicted 
True 1 1

Predicted 
False 0
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Computing F1 for Question Answering 
Systems

Where is UIC located?

Chicago

Question

Gold Standard

Chicago, IllinoisPrediction

Precision = KL
KLIML

= :
:I:

 = 0.5 Recall = KL
KLIMN

= :
:IC

 = 1

Actual 
True

Actual 
False

Predicted 
True 1 1

Predicted 
False 0

F1 = @∗L∗P
LIP

= @∗C.F∗:
C.FI:

 = 0.67
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Summary: 
Question 
Answering 
and 
Evaluating 
MT Systems

• MT systems are commonly evaluated 
using both human ratings and 
automated metrics

• Popular automated metrics include 
BLEU, chrF, and embedding-based 
measures

• Question answering is the process of 
retrieving relevant information and 
fluently presenting it to users in response 
to their queries

• QA systems often use knowledge-based
or information retrieval methods to 
formulate answers to questions

• Some systems also use language 
modeling or rule-/feature-based 
approaches
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