Machine Translation, Question Answering and Encoder-Decoder Models

Natalie Parde UIC CS 521

Machine Translation: The process of automatically converting a text from one language to another.

Machine translation is increasingly ubiquitous, but also challenging for many reasons.

```
Structural and lexical differences between languages
```

Differences in word order

Morphological differences

Stylistic and cultural differences

Cross-Linguistic Similarities and Differences

- Typological Differences:
- Systematic structural differences between languages
- Morphological Differences:
- Number of morphemes per word
- Isolating languages: Each word generally has one morpheme
- Polysynthetic languages: Each word may have many morphemes
- Degree to which morphemes can be segmented
- Agglutinative languages: Morphemes have well-defined boundaries
- Fusion languages: Morphemes may be conflated with one another
- Syntactic Differences:
- Primary difference between languages: Word order
- SVO languages: Verb tends to come between the subject and object
- SOV languages: Verb tends to come at the end of basic clauses

CrossLinguistic Similarities and Differences

- VSO languages: Verb tends to come at the beginning of basic clauses
- Languages with similar basic word order also tend to share other similarities
- SVO languages generally have prepositions
- SOV languages generally have postpositions
- Differences in Argument Structure and Linking

The bottle exited floating.

- Differences in Permissible Omissions:
- Pro-Drop languages: Can omit pronouns when talking about certain referents
- Some pro-drop languages permit more pronoun omission than others
- Referentially dense and sparse languages
- Converting text from pro-drop languages (e.g., Japanese) to non-pro-drop languages (e.g., English) requires that all missing pronoun locations are identified and their appropriate anaphors recovered
- Differences in noun-adjective order
- Blue house \rightarrow Maison bleue
- Differences in homonymy and polysemy
- Differences in grammatical constraints
- Some languages require gender for nouns
- Some languages require gender for pronouns
- Lexical gaps
- No word or phrase in the target language can express the meaning of a word in the source language

Machine

Translation

- Llassical Machine Translatiot
- Direct translation
- Transfer approaches
- Interlingua approaches
- Statistical methods
- Modern Machine Translation
- Encoder-decoder models
- Direct translation

1. Take a large bilingual dictionary
2. Proceed through the source text word by word
3. Translate each word according to the dictionary

- No intermediate structures
- Simple reordering rules may be applied
- For example, moving adjectives so that they are after nouns when translating from English to French
- Dictionary entries may be relatively complex
- Rule-based programs for translating a word to the target language

Classical Machine Translation

- Transfer approaches
- Parse the input text
- Apply rules to transform the source language parse structure into a target language parse structure
- Two subcategories of transformations:
- Syntactic transfer
- Lexical transfer

Transfer Approaches

- Syntactic Transfer: Modifies the source parse tree to resemble the target parse tree
- For some languages, may also include thematic structures
- Directional or locative prepositional phrases vs. recipient prepositional phrases
- Lexical Transfer: Generally based on a bilingual dictionary
- As with direct translation, dictionary entries can be complex to accommodate many possible translations
- Interlingua approaches

Classical Machine Translation

- Convert the source language text into an abstract meaning representation
- Generate the target language text based on the abstract meaning representation
- Require more analysis work than transfer approaches
- Semantic analysis
- Sentiment analysis
- No need for syntactic or lexical transformations

Interlingua Approaches

- Goal: Represent all sentences that mean the same thing in the same way, regardless of language
- What kind of representation scheme should be used?
- Classical approaches:
- First-order logic
- Semantic primitives
- Event-based representation
- More recently, neural machine translation models follow a similar intuition

When to use each classical approach?

Direct Translation

- Pros:
- Simple
- Easy to implement
- Cons:
- Cannot reliably handle long-distance reorderings
- Cannot handle reorderings involving phrases or larger structures
- Too focused on individual words

Transfer Approaches

- Pros:
- Can handle more complex language phenomena than direct translation
- Cons:
- Still not sufficient for many cases!

Interlingua Approaches

- Pros:
- Direct mapping between meaning representation and lexical realization
- No need for transformation rules
- Cons:
- Extra (often unnecessary) work
- Classical approaches require an exhaustive analysis and formalization of the semantics of the domain

Statistical Machine Translation

- Models automatically learn to map from the source language to the target language
- No need for intermediate transformation rules
- No need for an explicitly defined internal meaning representation
- Goal: Produce an output that maximizes some function representing translation faithfulness and fluency
- One possible approach: Bayesian noisy channel model
- Assume a possible target language translation t_{i} and a source language sentence s
- Select the translation t ' from the set of all possible translations $t_{i} \in T$ that maximizes the probability $P\left(t_{i} \mid s\right)$, using Bayes' rule
- $t^{\prime}=\underset{t_{i} \in T}{\operatorname{argmax}} P\left(s \mid t_{i}\right) P\left(t_{i}\right)$
- Often a phrase-based translation model is used

The PhraseBased Translation Model

- Computes the probability that a given translation t_{i} generates the original sentence s based on its constituent phrases
- Stages of phrase-based translation:

1. Group the words from the source sentence into phrases
2. Translate each source phrase into a target language phrase
3. (Optionally) reorder the target language phrases

Probability in Phrase-Based Translation Models

- Relies on two probabilities:
- Translation probability
- Probability of generating a source language phrase from a target language phrase, $\phi\left(\overline{t_{i}}, \overline{s_{i}}\right)$
- Distortion probability
- Probability of two consecutive target language phrases being separated in the source language by a word span of a particular length, $d\left(a_{i}-b_{i-1}\right)$
- To learn these probabilities, we need to train two sets of parameters:
- $\phi\left(\overline{t_{i}}, \overline{s_{i}}\right)$
- $d\left(a_{i}-b_{i-1}\right)$
- We learn these using phrase-aligned bilingual training sets

Decoding for Phrase-Based Machine Translation

- Aligned phrases can be stored in a phrase-translation table
- Decoding algorithms can then search through this table to find the overall translation that maximizes the phrase translation probabilities

Machine Translation

- Classical Machine Translation
- Direct translation
- Transfer approaches
- Interlingua approaches
- Statistica modinur
- Modern Machine Translation
- Encoder-decoder models

Encoder-Decoder Models

- Generate contextually-appropriate, arbitrary-length output sequences
- Basic premise:
- Use a neural network to encode an input to an internal representation
- Pass that internal representation as input to a second neural network
- Use that neural network to decode the internal representation to a taskspecific output sequence
- This method allows networks to be trained in an end-to-end fashion

Where did this idea come from?

Recall our discussion of autoregressive generation:

- Start with a seed token (e.g., <s>)
- Predict the most likely next word in the sequence
- Use that word as input at the next timestep
- Repeat until an end token (or max length) is reached

This setup can be extended to generate text given a specific prefix....

- Pass the specified prefix through the language model, in sequence
- End with the hidden state corresponding to the last word of the prefix
- Start the autoregressive process at that point
- Goal: Output sequence should be a reasonable completion of the prefix

We can build upon this idea to transform one type of sequence to another.

- Machine translation example:

1. Take a sequence of text from Language \#1
2. Take the translation of that text from Language \#2
3. Concatenate the two sequences, separated by a marker
4. Use these concatenated sequences to train the autoregressive model
5. Test the model by passing in only the first part of a concatenated sequence (text from Language \#1) and checking to see what the generated completion (text from Language \#2) looks like

Intuition: Machine Translation

Intuition: Machine Translation

Intuition: Machine Translation

Intuition: Machine Translation

- Encoder

- Accepts an input sequence, x_{1}^{n}
- Generates a sequence of contextualized representations, h_{1}^{n}

- Context vector

- A function, c, of h_{1}^{n} that conveys the basic meaning of x_{1}^{n} to the decoder
- (Might just be equivalent to h_{1}^{n})
- Decoder
- Accepts c as input
- Generates an arbitrary-length sequence of hidden states, h_{1}^{m}, from which a corresponding sequence of output states y_{1}^{m} can be obtained

Encoders

- Can be any type of neural network
- Feedforward network
- CNN
- RNN
- LSTM/BiLSTM
- GRU/BiGRU
- Transformer

- These networks can be stacked on top of one another

Decoders

- Need to perform autoregressive generation to produce the output sequence
- Can be any type of sequence processing network
- RNN
- LSTM
- GRU
- Transformer
- Formally
- $c=h_{n}^{e} \quad$ Final hidden state of the encoder
- $h_{0}^{d}=c$ 1

First hidden state of the decoder

- $h_{t}^{d}=-g\left(\overline{y_{t-1}}, h_{t-1}^{d}\right)$
- $z_{t}=f\left(h_{t}^{d}\right)$
- $y_{t}=\operatorname{softmax}\left(z_{t}\right)$

Decoders

- Need to perform autoregressive generation to produce the output sequence
- Can be any type of sequence processing network
- RNN
- LSTM
- GRU
- Transformer
- Formally....

Embedding for the output

- $c=h_{n}^{e}$
sampled from the previous step
- $h_{0}^{d}=c$
- $h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}\right)$
- $z_{t}=f\left(h_{t}^{d}\right)$

Some type of

- $y_{t}=\operatorname{softmax}\left(z_{t}\right)$
sequence
processing model

Decoders

- Need to perform autoregressive generation to produce the output sequence
- Can be any type of sequence processing network
- RNN
- LSTM
- GRU
- Transformer
- Formally...
- $c=h_{n}^{e}$
- $h_{0}^{d}=c$

A couple useful extensions....

- Formally....
- $c=h_{n}^{e}$
- $h_{0}^{d}=c$
- $h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}\right) \rightarrow h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}, c\right)$
- $z_{t}=f\left(h_{t}^{d}\right)$
- $y_{t}=\operatorname{softmax}\left(z_{t}\right)$

A couple useful extensions....

- Formally....
- $c=h_{n}^{e}$
- $h_{0}^{d}=c$
- $h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}\right) \rightarrow h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}, c\right)$
- $z_{t}=f\left(h_{t}^{d}\right)$
- $y_{t}=\operatorname{softmax}\left(z_{t}\right) \rightarrow y_{t}=\operatorname{softmax}\left(\widehat{y_{t-1}}, z_{t}, c\right)$, the previous output and encoder context (easier to keep track of what's been generated already)

What other ways can we improve the decoder's output quality?

- Beam search
- Improved context vector
- Final hidden state tends to be more focused on the end of the input sequence
- Can be addressed by using bidirectional RNNs, summing the encoder hidden states, or averaging the encoder hidden states

Beam Search

- Selects from multiple possible outputs by framing the task as a state space search
- Combines breadth-first search with a heuristic filter
- Continually prunes search space to stay a fixed size (beam width)
- Results in a set of b hypotheses, where b is the beam width

How does beam search work?

How does beam search work?

Beam Size $=3$

How does beam search work?

How do we choose a best hypothesis?

- Probabilistic scoring scheme
- Pass all or a subset of hypotheses to a downstream application

So far, the encoder context vectors we've seen have been simple and static.

- Can we do better?
- Yes!

Attention Mechanism

- Takes entire encoder context into account
- Can be embodied in a fixed-size vector
- We've already made our context vector available at each timestep when decoding

$$
\cdot h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}, c\right)
$$

Recall....

- The first step in creating our attention mechanism is to update our hidden state such that it is conditioned on an updated context vector with each decoding step
- $h_{t}^{d}=g\left(\widehat{y_{t-1}}, h_{t-1}^{d}, c_{t}\right)$

How do we dynamically create a new context vector at each step?

- Compute a vector of scores that capture the relevance of each encoder hidden state to the decoder hidden state, h_{i-1}^{d}
- $\operatorname{score}\left(h_{i-1}^{d}, h_{j}^{e}\right)=h_{i-1}^{d} \cdot h_{j}^{e}$

Vector of Context Scores

$$
\operatorname{score}\left(h_{i-1}^{d}, h_{j}^{e}\right)=h_{i-1}^{d} \cdot h_{j}^{e}
$$

Vector of Context Scores

$$
\operatorname{score}\left(h_{i-1}^{d}, h_{j}^{e}\right)=h_{i-1}^{d} \cdot h_{j}^{e}
$$

How can we make use of context scores?

- Parameterize these scores with weights
- This allows the model to learn which aspects of similarity between the encoder and decoder states are important
- Normalize context scores to create a vector of weights, $\alpha_{i j}$
- $\alpha_{i j}=\operatorname{softmax}\left(\operatorname{score}\left(h_{i-1}^{d}, h_{j}^{e}\right) \forall j \in e\right)$
- Provides the proportional relevance of

Attention
 Weights

 each encoder hidden state j to the current decoder state i- Finally, take a weighted average over all the encoder hidden states to create a fixed-length context vector for the current decoder state
- $c_{i}=\sum_{j} \alpha_{i j} h_{j}^{e}$

Thus, we finally have an encoderdecoder model with attention!

Thus, we finally have an encoderdecoder model with attention!

- More sophisticated scoring functions can be used as well
- Common: Parameterize the attention score with its own set of trainable weights
- $\operatorname{score}\left(\mathbf{h}_{i-1}^{d}, \mathbf{h}_{j}^{e}\right)=\mathbf{h}_{t-1}^{d} \mathbf{W}_{s} \mathbf{h}_{j}^{e}$
- Advantage: Allows the encoder and decoder to use vectors with different dimensionality (dotproduct attention requires the encoder and decoder hidden states to have the same dimensionality)

Advanced RNNs are a powerful tool, but they are not without their limitations.

- Remaining challenges:
- Even with sophisticated architectures, processing long-distance dependencies through many recurrences can eventually lead to loss of valuable information
- Recurrent models cannot productively leverage parallel resources

Transformers

- Entirely do away with recurrences
- Stacks of:
- Linear layers
- Feedforward layers
- Self-attention layers
- For a given element in a sequence, determines which other element(s) up to that point are most relevant to it
- Each computation is independent of other computations \rightarrow easy parallelization
- Each computation only considers elements up to that point in the sequence \rightarrow easy language modeling

- Goal: Map sequences of input $\left(x_{1}, \ldots, x_{n}\right)$ to sequences of output $\left(y_{1}, \ldots, y_{n}\right)$ of the same length

Self-Attention

Self-Attention

Self-Attention

Self-Attention

Self-Attention

Computing Self-Attention

- Simplest method:
- Take the dot product between a given input element x_{i} and each input element (x_{1}, \ldots, x_{i}) up until that point
- $\operatorname{score}\left(x_{i}, x_{j}\right)=x_{i} \cdot x_{j}$
- Apply softmax normalization to create a vector of weights, α_{i}, indicating proportional relevance of each sequence element to the current focus of attention, x_{i}

$$
\text { - } \alpha_{i j}=\operatorname{softmax}\left(\operatorname{score}\left(x_{i}, x_{j}\right)\right) \forall j \leq i=\frac{e^{\operatorname{score}\left(x_{i} x_{j}\right)}}{\sum_{k=1}^{i} e^{\operatorname{score}\left(x_{i} x_{k}\right)}} \forall j \leq i
$$

- Take the sum of inputs thus far weighted by α_{i} to produce an output y_{i}

$$
\text { - } y_{i}=\sum_{j \leq i} \alpha_{i j} x_{j}
$$

How do Transformers learn?

- Continually updating weight matrices applied to inputs
- Weight matrices are learned for each of three roles when computing self-attention:
- Query: The focus of attention when it is being compared to inputs up until that point, W^{Q}
- Key: An input that is being compared to the focus of attention, W^{K}
- Value: A value being used to compute the output for the current focus of attention, W^{V}

Training Transformers

- Weight matrices are applied to inputs in the context of their respective roles
- $q_{i}=W^{Q} x_{i}$
- $k_{i}=W^{K} x_{i}$
- $v_{i}=W^{V} x_{i}$
- Then, we can update our equations for computing selfattention so that these roles are reflected in them:
- $\operatorname{score}\left(x_{i}, x_{j}\right)=q_{i} \cdot k_{j}$
- $\alpha_{i j}=\operatorname{softmax}\left(\operatorname{score}\left(x_{i}, x_{j}\right)\right) \forall j \leq i$
- $y_{i}=\sum_{j \leq i} \alpha_{i j} v_{j}$

Self-Attention

Practical Considerations

- Combining a dot product with an exponential (as in softmax) may lead to arbitrarily large values
- It is common to scale the scoring function based on the dimensionality of the key (and query) vectors, d_{k}
- $\operatorname{score}\left(x_{i}, x_{j}\right)=\frac{q_{i} \cdot k_{j}}{\sqrt{d_{k}}}$
- Each y_{i} is computed independently, so we can parallelize computations using efficient matrix multiplication routines where X is a matrix containing all input embeddings
- $Q=W^{Q} X$
- $K=W^{K} X$
- $V=W^{V} X$
- SelfAttention $(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$
- Make sure to avoid including knowledge of future words in language modeling settings!

Transformer Blocks

- Self-attention is the central component of a Transformer block, which also includes:
- Feedforward layers
- Residual connections
- Normalizing layers
- Transformer blocks can be stacked, just like RNN layers

Multihead Attention

- Each self-attention layer represents a single attention head
- Multihead attention places multiple attention heads in parallel in the Transformer model
- Since each attention head has its own set of weights, each one can learn different aspects of the relations between input elements at the same level of abstraction

Computing Multihead Attention

- Each head in the self-attention layer is parameterized with its own weights
- $Q=W_{i}^{Q} X$
- $K=W_{i}^{K} X$
- $V=W_{i}^{V} X$
- The output of a multihead attention layer with n heads comprises n vectors of equal length
- These heads are concatenated and then reduced to the original input/output dimensionality
- head $_{i}=\operatorname{SelfAttention}\left(W_{i}^{Q} X, W_{i}^{K} X, W_{i}^{V} X\right)$
- MultiheadAttention $(Q, K, V)=W^{O}\left(\right.$ head $_{1} \oplus$ head $\left._{2} \oplus \ldots \oplus \operatorname{head}_{n}\right)$

Multihead Attention

Positional Embeddings

- Since Transformers don't make use of recurrent connections, they instead employ separate positional embeddings to encode positionality
- Randomly initialize an embedding for each input position
- Update weights during the training process
- Input embedding with positional information = word embedding + positional embedding
- Static functions mapping positions to vectors can be used as an alternative

Transformers as Autoregressive Language Models

Encoder-
 Decoder Models with Transformers

- Similar to other encoder-decoder models
- Encoder (Transformer model) maps sequential input to an output representation
- Decoder (Transformer model) attends to the encoder representation and generates sequential output autoregressively
- However....
- Transformer blocks in the decoder include an extra cross-attention layer

- Same form as multiheaded self-attention in a normal Transformer

CrossAttention

 block, with one difference: queries come from the previous layer of the decoder as usual, but keys and values come from the output of the encoder- $\mathbf{Q}=\mathbf{W}^{\mathbf{Q}} \mathbf{H}^{\text {dec }[i-1]}$
- $\mathbf{K}=\mathbf{W}^{\mathbf{Q}} \mathbf{H}^{e n c}$
- $\mathbf{V}=\mathbf{W}^{\mathbf{V}} \mathbf{H}^{\text {enc }}$
- CrossAttention $(\mathbf{Q}, \mathbf{K}, \mathbf{V})=\operatorname{softmax}\left(\frac{\mathbf{Q} \mathbf{K}^{\mathbf{T}}}{\sqrt{d_{k}}}\right) \mathbf{V}$

Updated Decoder Transformer Block

EncoderDecoder Models with Transformers

-Why is cross-attention useful?

- Allows the decoder to attend to the entire encoder sequence
- Training Transformer-based encoder-decoders is similar to training RNN-based encoderdecoders
- Use teacher forcing
- Train autoregressively

Practical Details for Building MT Systems

Vocabulary

- MT systems typically use a fixed vocabulary generated using byte pair encoding or other wordpiece algorithms
- Vocabulary is usually shared across the source and target languages

Corpora

- Parallel corpora with the same content communicated in multiple languages
- Common sources:
- Government documents for nations with multiple official languages
- Subtitles for movies and TV shows
- Often, text from the source and target language(s) is aligned at the sentence level

What if we don't have much training data?

- Parallel corpora are difficult to find, especially for lower-resource language pairs
- Backtranslation:

1. Train an intermediate target-to-source MT system on a small parallel corpus
2. Translate additional monolingual data from the target language to the source language using this intermediate system
3. Consider this new, synthetic parallel data as additional training data
4. Train a source-to-target MT system on the expanded training dataset

Summary: Machine Translation Methods and EncoderDecoder Models

- Machine translation is challenging due to many typological, morphological, and other differences between languages
- Classical machine translation used dictionary-based, direct transfer, and interlingua approaches
- A popular statistical MT model is the Bayesian noisy channel approach, which relies on phrase-based translation
- Encoder-decoder models draw upon similar techniques for autoregressive language modeling to convert input to an intermediate vector representation and then convert that intermediate representation to output
- One newer architecture that can be used in encoderdecoder settings is the Transformer model

How do we evaluate machine translation models?

- Translation quality tends to be very subjective!
- Two common approaches:
- Human ratings
- Automated metrics

Evaluating Machine
 Translation Using Human Ratings

- Typically evaluated along multiple dimensions
- Tend to check for both fluency and adequacy
- Fluency:
- Clarity
- Naturalness
- Style
- Adequacy:
- Fidelity
- Informativeness
- How to get quantitative measures of

Evaluating Machine Translation Using Human Ratings

fluency?

- Ask humans to rate different aspects of fluency along a scale - Measure how long it takes humans to read a segment of text
- Ask humans to guess the identity of the missing word
- "After such a late night working on my project, it was hard to wake up this \qquad !"

Evaluating Machine Translation Using Human Ratings

- How to get quantitative measures of adequacy?
- Ask bilingual raters to rate how much information was preserved in the translation
- Ask monolingual raters to do the same, given access to a gold standard reference translation
- Ask raters to answer multiple-choice questions about content present in a translation

Another set

of human evaluation metrics considers postediting.

- Ask a human to post-edit or "fix" a translation
- Compute the number of edits required to correct the output to an acceptable level
- Can be measured via number of word changes, number of keystrokes, amount of time taken, etc.

Automated Metrics

- Less accurate than human evaluation, but:
- Useful for iteratively testing system improvements
- Can be used as an automatic loss function
- Two main families:
- Character- or word-overlap
- Embedding similarity

Popular Lexical Overlap Metrics

- BLEU
- Measure of word overlap
- METEOR
- Measure of word overlap, considering stemming and synonymy
- Character F-Score (chrF)
- Measure of character n-gram overlap
- Weighted average of the number of n-gram overlaps with human translations
- Precision-based metric
- What percentage of words in the candidate translation also occur in the gold standard translation(s)?
- To compute BLEU:
- Count how many times each n-gram is used in the candidate translation, c(ngram)

BLEU

- Clip that amount so that the highest it can be is $c_{\text {max }}$ (ngram), defined as the maximum number of times it is used in a reference translation
- Compute precision for each word in the candidate translation:
- $\operatorname{prec}_{n}=\frac{\Sigma_{c \in\{ } \text { Candidates } \Sigma_{\text {ngram } \in C} \min \left(\mathbf{C}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\Sigma_{c \in\{\text { Candidates }\}} \Sigma_{\text {ngram } \in C} \mathbf{C}(\text { ngram })}$
- Take the geometric mean of the modified n-gram precisions for unigrams, bigrams, trigrams, and 4-grams

Then, add a penalty for translation brevity....

- Otherwise, extremely short translations (e.g., "the") could receive perfect scores!
- The penalty is based on:
- The sum of the lengths of the reference sentences, r
- The sum of the lengths of the candidate translations, c
- Formally, the penalty is set to:
- $B P= \begin{cases}1 & \text { if } c>r \\ e^{\left(1-\frac{r}{c}\right)} \text { if } c \leq r\end{cases}$
- The full BLEU score for a set of translations is then:
- $B L E U=B P *\left(\prod_{n=1}^{4} \mathrm{prec}_{n}\right)^{\frac{1}{4}}$

Example: Computing BLEU

Mina no dió una bofetada a la bruja verde. Source Sentence
Mina didn't slap the green witch. Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

Example: Computing BLEU

Mina no dió una bofetada a la bruja verde. Source Sentence
Mina didn't slap the green witch. Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

$$
\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}
$$

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{\left(1-\frac{r}{c}\right)} & \text { if } c \leq r\end{cases}
$$

Example: Computing BLEU

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.
$\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}$

Unigram	Unigram Frequency (Candidate)	Unigram Frequency (Reference)
Mina	1	1
did	1	0
not	1	0
give	1	0
a	1	0
slap	1	1
to	1	0
the	1	1
green	1	1
witch	1	1
.	1	1

Example: Computing BLEU

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.
$\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}$

Unigram	Unigram Frequency (Candidate)	Unigram Frequency (Reference)
Mina	1	1
did	1	0
not	1	0
give	1	0
a	1	0
slap	1	1
to	1	0
the	1	1
green	1	1
witch	1	1
.	1	1

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{\left(1-\frac{r}{c}\right)} & \text { if } c \leq r\end{cases}
$$

$$
B L E U=B P *\left(\prod_{n=1}^{4} \operatorname{prec}_{n}\right)^{\frac{1}{4}}
$$

$$
p_{1}=\frac{1+0+0+0+0+1+0+1+1+1+1}{1+1+1+1+1+1+1+1+1+1+1}=\frac{6}{11}
$$

Example: Computing BLEU

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.

$$
\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}
$$

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{\left(1-\frac{r}{c}\right)} & \text { if } c \leq r\end{cases}
$$

Bigram	Bigram Frequency (Candidate)	Bigram Frequency (Reference)
Mina did	1	0
did not	1	0
not give	1	0
give a	1	0
a slap	1	0
slap to	1	0
to the	1	0
the green	1	1
green witch	1	1
witch .	1	1

$$
B L E U=B P *\left(\prod_{n=1}^{4} \operatorname{prec}_{n}\right)^{\frac{1}{4}}
$$

$$
\begin{gathered}
p_{1}=\frac{1+0+0+0+0+1+0+1+1+1+1}{1+1+1+1+1+1+1+1+1+1+1}=\frac{6}{11} \\
p_{2}=\frac{0+0+0+0+0+0+0+1+1+1}{1+1+1+1+1+1+1+1+1+1}=\frac{3}{10}
\end{gathered}
$$

Example: Computing BLEU

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.

$$
\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}
$$

$$
B P= \begin{cases}1 & \text { if } c>r \\ e^{\left(1-\frac{r}{c}\right)} & \text { if } c \leq r\end{cases}
$$

Trigram	Trigram Frequency (Candidate)	Trigram Frequency (Reference)
Mina did not	1	0
did not give	1	0
not give a	1	0
give a slap	1	0
a slap to	1	0
slap to the	1	0
to the green	1	0
the green witch	1	1
green witch .		1

$$
\begin{aligned}
p_{1} & =\frac{6}{11} \quad p_{2}=\frac{3}{10} \\
p_{3} & =\frac{0+0+0+0+0+0+0+1+1}{1+1+1+1+1+1+1+1+1}=\frac{2}{9}
\end{aligned}
$$

Example: Computing BLEU

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.

$$
\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}
$$

$$
B P=\left\{\begin{array}{lr}
1 & \text { if } c>r \\
e^{\left(1-\frac{r}{c}\right)} & \text { if } c \leq r
\end{array}\right.
$$

4-gram	4-gram Frequency (Candidate)	4-gram Frequency (Reference)
Mina did not give	1	0
did not give a	1	0
not give a slap	1	0
give a slap to	1	0
a slap to the	1	0
slap to the green	1	0
to the green witch	1	0
the green witch	1	1

$$
\begin{aligned}
& p_{1}=\frac{6}{11} \quad p_{2}=\frac{3}{10} \quad p_{3}=\frac{2}{9} \\
& p_{4}=\frac{0+0+0+0+0+0+0+1}{1+1+1+1+1+1+1+1}=\frac{1}{8}
\end{aligned}
$$

Example: Computing BLEU

$$
c=11
$$

Mina didn't slap the green witch.
Mina did not give a slap to the green witch.

$$
r=7
$$

$\operatorname{prec}_{n}=\frac{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \min \left(\mathrm{c}(\text { ngram }), \mathrm{c}_{\text {max }}(\text { ngram })\right)}{\sum_{c \in\{\text { Candidates }\}} \sum_{\text {ngram } \in C} \mathrm{c}(\text { ngram })}$

$p_{1}=\frac{6}{11} \quad p_{2}=\frac{3}{10} \quad p_{3}=\frac{2}{9} \quad p_{4}=\frac{1}{8}$
$B P=1$
$B L E U=1 *\left(\prod_{n=1}^{4} \operatorname{prec}_{n}\right)^{\frac{1}{4}}=1 *\left(\frac{6}{11} * \frac{3}{10} * \frac{2}{9} * \frac{1}{8} \frac{1}{4}=1 * 0.00454545454^{\frac{1}{4}}=1 * 0.25965358893=0.26\right.$

- No formal score ranges, but in general:
- < 10: Very poor
- 10-19: Difficult to understand
- 20-29: Understandable but with many grammatical errors
- 30-39: Understandable and reasonable quality
- 40-49: High quality
- 50-59: Very high quality
- >60: May exceed human translators

Limitations of BLEU

- Word or phrase order is of minimal importance
- When computing unigram precision, a word can exist anywhere in the translation!
- Does not consider word similarity
- Relatively low correlation with human ratings
- Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric is needed to assess translation performance
- Same intuition as BLEU: Good machine translations tend to contain the same words and characters as human translations
- Ranks a candidate translation by a function of the number of character ngram overlaps with a human reference translation
- Less sensitive to differences in wordform than BLEU (e.g., "gives" versus "is giving")

How is chrF computed?

- Similarly to "regular" F-score
- chrP: averaged \% of character unigrams, bigrams, ..., k-grams in the hypothesis that also occur in the reference
- chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that also occur in the hypothesis
- β : weighting parameter (similarly to F-score) that determines the relative impacts of chrP and chrR on the overall F-score
- $\operatorname{chrF} \beta=\left(1+\beta^{2}\right) \frac{\operatorname{chrP} \times \operatorname{chrR}}{\beta^{2} \times \operatorname{chrP}+\operatorname{chrR}}$, or for example, $\operatorname{chrF} 2=\frac{5 \times \operatorname{chrP} \times \operatorname{chrR}}{4 \times \operatorname{chrP}+\operatorname{chrR}}$

Example: Computing chrF

CS 521 is the best rira

Example: Computing chrF

Example: Computing chrF

C	S	5	2	1	i	s	t	h	e	b	e	s	t
C	S	5	2	1	i	s	g	r	e	a	t		

Example: Computing chrF

C	S	5	2	1	i	s	t	h	e	b	e	s	t	\longleftarrow
C	S	5	2	1	i	s	g	r	e	a	t	\longleftarrow		

Example: Computing chrF

chrP: averaged \% of character unigrams, bigrams, ..., k-grams in the hypothesis that are also in the reference

chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

Example: Computing chrF

C	S	5	2	1	i	s	t	h	e	b	e	s	t	14 unigrams, 13 bigrams
C	S	5	2	1	i	S	g	r	${ }^{-}$	a	t			12 unigrams, 11 bigrams

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference
chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

Example: Computing chrF

CS	S5	52	21	1 i	is	st	th	he	eb	be	es	st	\longleftarrow
CS	S5	52	21	14	unigrams, 13 bigrams								

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis are also in the reference in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference
6 bigrams are in both the hypothesis and the reference

Example: Computing chrF


```
CS 521 is great
```


CS5	S52	521	$21 i$	1 is	ist	sth	the	heb	ebe	bes		- 14 unigrams, 13 bigrams
CS5	S52	521	21	1 is	isg	sgr	gre	rea	eat		,	unigrams, 11 bigrams

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference
chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference
6 bigrams are in both the hypothesis and the reference
5 trigrams are in both the hypothesis and the reference

Example: Computing chrF


```
CS 521 is great
```


CS5	S52	521	21 i	1 is	ist	sth	the	heb	ebe	bes	est	- 14 unigrams, 13 bigrams
CS5	S52	521	21	1 is	isg	sgr	gre	rea	eat			2 unigrams, 11 bigrams

9 unigrams are in both the hypothesis and the reference
Unigram chrP: $9 / 12=0.75$
Unigram chrR: $9 / 14=0.64$
6 bigrams are in both the hypothesis and the reference
5 trigrams are in both the hypothesis and the reference

Example: Computing chrF


```
CS 521 is great
```


chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference
chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

$$
\text { Unigram chrP: } 9 / 12=0.75
$$

$$
\text { Unigram chrR: } 9 / 14=0.64
$$

6 bigrams are in both the hypothesis and the reference
Bigram chrP: $6 / 11=0.55$
Bigram chrR: $6 / 13=0.46$
5 trigrams are in both the hypothesis and the reference

Example: Computing chrF

CS 521 is great

| CS5 | S52 | 521 | $21 i$ | 1 is | isg | sgr | gre | rea | eat $\longleftarrow<12$ unigrams, 11 bigrams |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference
chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

$$
\text { Unigram chrP: } 9 / 12=0.75
$$

$$
\text { Unigram chrR: } 9 / 14=0.64
$$

6 bigrams are in both the hypothesis and the reference

$$
\text { Bigram chrP: } 6 / 11=0.55
$$

$$
\text { Bigram chrR: } 6 / 13=0.46
$$

5 trigrams are in both the hypothesis and the reference

Trigram chrR: $5 / 12=0.42$

Example: Computing chrF

CS5	S52	521	21 i	1 is	ist	sth	the	heb	ebe	bes	est	
CS5	S52	521	21	1 is	isg	sgr	gre	rea	eat		-	

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference

Unigram chrP: $9 / 12=0.75$
Bigram chrP: $6 / 11=0.55$
Trigram chrP: $5 / 10=0.5$

$$
\text { chrR: averaged } \% \text { of character unigrams, bigrams, ..., k-grams }
$$ in the reference that are also in the hypothesis

Unigram chrR: $9 / 14=0.64$
Bigram chrR: $6 / 13=0.46$
Trigram chrR: $5 / 12=0.42$
chrP: $\frac{0.75+0.55+0.5}{3}=0.6$

Example: Computing chrF

CS5	S52	521	21 i	1 is	ist	sth	the	heb	ebe	bes	est	
CS5	S52	521	21	1 is	isg	sgr	gre	rea	eat		-	

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference

Unigram chrP: $9 / 12=0.75$
Bigram chrP: $6 / 11=0.55$
Trigram chrP: $5 / 10=0.5$
chrP: $\frac{0.75+0.55+0.5}{3}=0.6$
chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

Unigram chrR: $9 / 14=0.64$
Bigram chrR: $6 / 13=0.46$
Trigram chrR: $5 / 12=0.42$
chrR: $\frac{0.64+0.46+0.42}{3}=0.51$
Natalie Parde - UIC CS 521

Example: Computing chrF

chrP: averaged \% of character unigrams, bigrams, ..., kgrams in the hypothesis that are also in the reference

$$
\operatorname{chrP}: \frac{0.75+0.55+0.5}{3}=0.6
$$

chrR: averaged \% of character unigrams, bigrams, ..., k-grams in the reference that are also in the hypothesis

$$
\text { chrR: } \frac{0.64+0.46+0.42}{3}=0.51
$$

$$
\operatorname{chrF} 2=\frac{5 * \operatorname{chrP} * \operatorname{chrR}}{4 * \operatorname{chrP}+\operatorname{chrR}}=\frac{5 * 0.6 * 0.51}{4 * 0.6+0.51}=0.53
$$

Limitations of chrF

- Focuses on differences at a very local scale (i.e., character n-grams)
- Doesn't measure discourse coherence
- Best at measuring performance for different versions of the same system, rather than comparing different systems

Embedding -Based Evaluation Methods

- Measuring exact word- or character-level overlap might be overly strict
- Good translations may use words that are synonymous to those in the reference!
- Embedding-based methods measure the semantic overlap between reference and hypothesis translations

Popular Embedding-Based Methods for Evaluating MT Systems

COMET

- https://github.com/Unbabel/COMET

BLEURT

- https://github.com/google-research/bleurt

BERTScore

- https://github.com/Tiiiger/bert score

What is question answering?

- The process of automatically retrieving compact quantities of correct, relevant information in response to a user's query
About 167,000 results (1.07 seconds)
University of Illinois at Chicago / Mascot
Sparky D. Dragon
People also search for

dos. uic.edu , About , Student Handbook v
UIC History, Traditions, Symbols | Office of the Dean of uIc Symbols: School Colors, Mascot, Song. Our athletic teams are known as the "Flames," a name chosen by UIC students in honor of the Great Chicago Fire.

What is UIC's mascot?

The University of Illinois at Chicago's mascot is Sparky D. Dragon.

People have been interested in question answering systems nearly as long as computers have existed.

Question Answering Systems

- Typically focus on factoid questions
- Factoid Questions: Questions that can be answered with simple facts expressed in short texts

When was UIC founded?

What is the average
CS class size?
How far is UIC from the University of

Chicago?

Question Answering Systems

- Up until recently, QA systems operated under two paradigms:
- Information retrieval-based question answering
- Knowledge-based question answering
- More recently, we've seen many systems using:
- Language model-based question answering
- Further back in time, we also saw:
- Classic rule- or feature-based question answering

Information Retrieval-based Question Answering

- Relies on text from the web or from large corpora
- Given a user question:

1. Find relevant documents and passages of text
2. Read the retrieved documents or passages
3. Extract an answer to the question directly from spans of text

- Two common term weighting schemes:
- TF-IDF

How are documents represented?

- $\mathrm{tf}_{t, d}=\log _{10}(\operatorname{count}(t, d)+1)$
- $\operatorname{idf}_{t}=\log _{10} \frac{N}{\mathrm{df}_{t}}$
- $\operatorname{tfidf}(t, d)=\operatorname{tf}_{t, d} * \operatorname{idf}_{t}$
- BM25

Document Scoring

- Create document and query vectors using term weights
- Compute cosine similarity between a document, d, and query, q
- $\operatorname{score}(q, d)=\cos (\mathbf{q}, \mathbf{d})=\frac{\mathbf{q} \cdot \mathbf{d}}{|\mathbf{q}||\mathbf{d}|}$
- Simplify since the query won't vary between documents
- $\operatorname{score}(q, d)=\frac{\mathbf{q} \cdot \mathbf{d}}{|\mathbf{q}||\mathbf{d}|}=\sum_{t \in q} \frac{\operatorname{tfidf}(t, d)}{|d|}$

Document Scoring: Case Example

CS is the best topic!

$$
\operatorname{tfidf}(t, d)=\log _{10}(\operatorname{count}(t, d)+1) * \log _{10} \frac{N}{\mathrm{df}_{t}}
$$

CS 521 covers statistical NLP.

521 is the best class.

CS 521

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

$$
\operatorname{tfidf}(t, d)=\log _{10}(\operatorname{count}(t, d)+1) * \log _{10} \frac{N}{\mathrm{df}_{t}}
$$

Document 1

word	count	TF	\# docs	IDF	TF-IDF
CS	1	0.301	2	0.176	0.053
is	1	0.301	2	0.176	0.053
the	1	0.301	2	0.176	0.053
best	1	0.301	2	0.176	0.053
topic	1	0.301	1	0.477	0.144
521	0	0	2	0.176	0
covers	0	0	1	0.477	0
statistical	0	0	1	0.477	0
NLP	0	0	1	0.477	0
class	0	0	1	0.477	0

Document Scoring: Case Example

CS is the best topic!

$$
\operatorname{tfidf}(t, d)=\log _{10}(\operatorname{count}(t, d)+1) * \log _{10} \frac{N}{\mathrm{df}_{t}}
$$

Document Scoring: Case Example

CS is the best topic!

$$
\operatorname{tfidf}(t, d)=\log _{10}(\operatorname{count}(t, d)+1) * \log _{10} \frac{N}{\mathrm{df}_{t}}
$$

CS 521 covers statistical NLP.

521 is the best class.

CS 521

word	Doc. 1	Doc. 2	Doc. 3
CS	0.053	0.053	0
is	0.053	0	0.053
the	0.053	0	0.053
best	0.053	0	0.053
topic	0.144	0	0
521	0	0.053	0.053
covers	0	0.144	0
statistical	0	0.144	0
NLP	0	0.144	0
class	0	0	0.144

$\operatorname{score}(q, d)=\sum_{t \in q} \frac{\operatorname{tfidf}(t, d)}{|d|}$

| Doc. | \|d| | TF-
 IDF("CS") | TF-
 IDF("521") | Score |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

$$
\sqrt{0^{2}+0.053^{2}+0.053^{2}+0.053^{2}+0^{2}+0.053^{2}+0^{2}+0^{2}+0^{2}+0.144^{2}}=0.179
$$

Document Scoring: Case Example

CS is the best topic!

CS 521 covers statistical NLP.

521 is the best class.

CS 521

$$
\operatorname{tfidf}(t, d)=\log _{10}(\operatorname{count}(t, d)+1) * \log _{10} \frac{N}{\mathrm{df}_{t}}
$$

Doc. 1	Doc. 2	Doc. 3
0.053	0.053	0
0.053	0	0.053
0.053	0	0.053
0.053	0	0.053
0.144	0	0
0	0.053	0.053
0	0.144	0
0	0.144	0
0	0.144	0
0	0	0.144

$\operatorname{score}(q, d)=\sum_{t \in q} \frac{\operatorname{tfidf}(t, d)}{|d|}$

Doc	$\|d\|$	TF-IDF("CS")	TF-IDF("521")	Score
1	0.179	0.053	0	0.296
2	0.260	0.053	0.053	0.408
3	0.179	0	0.053	0.296

IR with Dense Vectors

- Recent work has explored dense vectors as an alternative to TF-IDF or BM25 vectors
- Advantage:
- More capable of handling synonymy
- Disadvantage:
- Less efficient
- Typically done by:
- Separately encoding the document and queries
- $h_{q}=\operatorname{Encoder}_{Q}(q)$
- $h_{d}=\operatorname{Encoder}_{D}(d)$
- Computing the dot product between a given document and query to find the document score
- $\operatorname{score}(q, d)=h_{q} \cdot h_{d}$

IR-based Factoid Question Answering

Goal

Goal: Find relevant answers to questions by searching through documents in a corpus

Retrieve and Read

Dominant Paradigm: Retrieve and read model

- Retrieve relevant documents for the given query
- Read those documents to find text segments that answer the query

Retrieve and Read Model

Step \#1: Retrieve

- Performed using a standard information retrieval architecture

Step \#2: Read

- Performed using a reading comprehension model
- Reading comprehension: Given a document and a query, select (if available) the span of text from the document that answers the query
- Designed to measure natural language understanding performance

Prime_number

The Stanford Question Answering Dataset

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is called a composite number. For example, 5 is prime because 1 and 5 are its only positive integer factors, whereas 6 is composite because it has the divisors 2 and 3 in addition to 1 and 6 . The fundamenta theorem of arithmetic establishes the central role of primes in number theory: any integer greater than 1 can be expressed as a product of primes that is unique up to ordering. The uniqueness in this theorem requires excluding 1 as a prime because one can include arbitrarily many instances of 1 in any factorization, e.g., $3,1 \cdot 3,1 \cdot 1 \cdot 3$, etc. are all valid factorizations of 3 .

What is the only divisor besides 1 that a prime number can have? Ground Truth Answers: itself itself itself itself itself

What are numbers greater than 1 that can be divided by 3 or more numbers called?
Ground Truth Answers: composite number composite
number composite number primes

What theorem defines the main role of primes in number theory? Ground Truth Answers: The fundamental theorem of rithmetic fundamental theorem of
arithmetic arithmetic fundamental theorem of
arithmetic fundamental theorem of arithmetic

Any number larger than 1 can be represented as a product of what? Ground Truth Answers: a product of primes product of primes that is unique up to ordering primes primes primes that is unique up to ordering

Why must one be excluded in order to preserve the uniqueness of th

Reading Comprehension Datasets

- Goal: Compute, for each token, the probability that it is:
- The start of the answer span
- The end of the answer span

- Common extractive QA approach
- Concatenate the query and passage, separated by a [SEP] token
- Encode the concatenated sequence
- Add a linear layer

Answer Span Extraction

- Compute span-start and span-end probabilities for each token p_{i} in a passage P, making use of special span-start (S) and span-end (E) vectors learned during fine-tuning
$P_{\operatorname{start}_{i}}=\frac{e^{S \cdot p_{i}}}{\sum_{j=0}^{|P|} e^{S \cdot p_{j}}}$
- $P_{\operatorname{end}_{i}}=\frac{e^{E \cdot p_{i}}}{\sum_{j=0}^{|P|} e^{E \cdot p_{j}}}$
- Compute a score for each passage from position i to j

$$
\text { - } \operatorname{score}(i, j)=S \cdot p_{i}+E \cdot p_{j}
$$

- Select the highest-scoring passage for which $j \geq i$

Knowledge-based Question Answering

- Builds a semantic representation of the user's query
- When was UIC founded? \rightarrow founded(UIC, x)
- Uses these representations to query a database of facts

Where is UIC's computer science
department located?

Knowledge-based Question Answering

- Two common paradigms:
- Graph-based question answering
- Question answering by semantic parsing
- Both require entity linking

Entity Linking

- Entity linking: Associating mentions in text with the concepts to which they correspond in a structured knowledge base
- Typically done using a two-stage process:
- Mention detection: Detecting that a concept has been mentioned
- Mention disambiguation: Determining which concept has been mentioned

Neural Graph-based Entity Linking

- Modern approaches often make use of bidirectional Transformer encoders
- One encoder is trained to encode a candidate mention
- One encoder is trained to encode an entity (e.g., a Wikipedia page)
- The dot product between the two encoded representations is computed
- Require annotated data indicating mention boundaries and corresponding entity links
- WebQuestionsSP:
https://www.microsoft.com/enus/download/details.aspx?id=52763
- GraphQuestions:
https://github.com/ysu1989/GraphQuesti ons

Graphbased Question Answering

- Facts are stored as (subject, predicate, object) triples
- Sometimes referred to as RDF (resource description framework) triples
- Entity mentions are linked to entities in a knowledge graph
- Queries are mapped to canonical relations
- "Where is UIC's computer science department located?" \rightarrow LOCATIONOF("UIC CS", ?x)
- Triples matching the canonical relations are identified and ranked based on entity graph structure

Question Answering by Semantic Parsing

- Maps questions directly to logical form using a semantic parser
- First-order logic
- SQL
- Logical form is used to query a knowledge base directly

How did classical QA work?

Rule-based question answering

Feature-based question answering

Hybrid techniques that incorporated both approaches

Hybrid Ruleand Featurebased
 Question Answering

- Until recently, a popular question answering paradigm involved leveraging a combination of rule-based methods and feature-based classification techniques
- Question answering component of Watson (DeepQA)
- Four stages:

1. Question processing
2. Candidate answer generation
3. Candidate answer scoring
4. Answer merging and scoring

Case Example: DeepQA

Stage 1: Question Preprocessing

Stage 1: Question Preprocessing

Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Stage 1: Question Preprocessing

Stage 1: Question Preprocessing

Jeopardy! Example:

A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Answer Type Detection: Which word tells us about the semantic type of answer to expect?

DeepQA extracts roughly 5000 possible answer types (some questions may take multiple answer types), using a rule-based approach

Stage 1: Question Preprocessing

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Question Classification: What type of question is this (multiple choice, fill-in-theblank, definition, etc.)?

Generally done using patternmatching regular expressions over words or parse trees

Stage 2: Candidate Answer Generation

Stage 2: Candidate Answer Generation

Stage 2: Candidate Answer Generation

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

In 2007, Peepolykus Theatre Company premiered a new adaptation of The Hound of the Baskervilles at West Yorkshire Playhouse in Leeds. Passage Retrieval	The play is an adaptation of the Arthur Conan Doyle's novel: The Hound of the Baskervilles (1901).

Stage 2: Candidate Answer Generation

Jeopardy! Example:
A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.

Stage 2: Candidate Answer Generation

```
Jeopardy! Example:
basedOn(x, "Sir Arthur Conan Doyle canine classic")
```

Relation Retrieval

Stage 3: Candidate Answer Scoring

Stage 3: Candidate Answer Scoring

```
The Hound of the Baskervilles
```

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Stage 3: Candidate Answer Scoring

The Hound of the Baskervilles

The Hound of the Baskervilles

The Hound of the Baskervilles (1901)

Expected Answer Type: BOOK
Information extracted from structured knowledge bases

Retrieved passages with terms matching the question

Stage 3: Candidate Answer Scoring

Stage 3: Candidate Answer Scoring

Stage 4: Answer Merging and Scoring

Where are we today?

- Moving towards language model-based question answering
- In pretraining, train an encoder-decoder architecture to fill in masked spans of text
- In finetuning, train the decoder to output an answer for a given question

How do question answering systems work today?
(6) Today's question answering systems typically use a combination of natural language processing (NLP) and machine learning (ML) techniques to understand the user's question and generate an answer. The process usually involves the following steps:

1. Question understanding: The system converts the text of the user's question into a machine-readable format and analyzes it to identify the intent and extract relevant information.
2. Information retrieval: The system searches a pre-defined knowledge source (such as a database, a web page, or a large corpus of text) to find information that may answer the user's question.
3. Answer generation: The system selects the most relevant information from the retrieved data and generates an answer. In some systems, this may involve additional NLP and ML techniques, such as summarization or text generation, to produce a concise and coherent answer.
4. Answer ranking: The system uses various methods, such as word overlaps, word embeddings, or neural networks, to rank the answers and select the most likely candidate.

Overall, the accuracy and effectiveness of today's question answering systems depend on the quality and scope of their training data, the sophistication of their NLP and ML models, and the ability to handle complex and ambiguous questions.

Language Model-based

 Question Answering- Advantages:
- Simple approach
- Decent performance
- Disadvantages:
- Often lower accuracy in answers
- Poor interpretability

How are question answering systems evaluated?

- Common metric for factoid question answering: Mean Reciprocal Rank
- Assumes that gold standard answers are available for test questions
- Assumes that systems return a short ranked list of answers

Mean Reciprocal Rank

- Scores each question according to the reciprocal of the rank of the first correct answer
- Highest ranked correct answer is ranked fourth \rightarrow reciprocal rank =1/4
- Assigns a score of 0 to questions with no correct answers returned
- System's overall score is the average of all individual question scores
- $\mathrm{MRR}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{r_{i}}$

Mean Reciprocal Rank

Where is UIC located? \longleftarrow Question

Gold Standard \longrightarrow Chicago

Mean Reciprocal Rank

Where is UIC located? Question
Gold Standard \longrightarrow Chicago

Prediction	Rank
Illinois	1
West Loop	2
Chicago	3
Little Italy	4

Mean Reciprocal Rank

Gold Standard \longrightarrow Chicago

Prediction	Rank
Illinois	1
West Loop	2
Chicago	-3
Little Italy	$-\frac{3}{4}$

Mean Reciprocal Rank

Where is UIC located? Question
Gold Standard \longrightarrow Chicago

Prediction	Rank
Illinois	1
West Loop	2
Chicago	$-\frac{3}{4}$
Little Italy	$\frac{1}{4}$

Reciprocal
Rank $=1 / 3$

Mean Reciprocal Rank

Prediction	Rank
Illinois	1
West Loop	2
Chicago --8	3
Little Italy	$\frac{4}{4}$

Prediction	Rank
Peter Nelson	1
Robert Sloan	2
Natalie Parde	3
Grace Hopper	4

Reciprocal
Rank $=1 / 3$

Mean Reciprocal Rank

Prediction	Rank
Illinois	1
West Loop	2
Chicago --8	3
Little Italy	$\frac{4}{4}$

Reciprocal
Rank = 1/3

Prediction	Rank
Peter Nelson	$-\frac{1}{2}$
Robert Sloan	$-\frac{2}{3}$
Natalie Parde	
Grace Hopper	4

Reciprocal
Rank = 1/2

Mean Reciprocal Rank

Prediction	Rank
Illinois	1
West Loop	2
Chicago -	-3
Little Italy	$-\frac{4}{4}$

Reciprocal
Rank = 1/3

Gold Standard \longrightarrow Robert Sloan

Prediction	Rank
Peter Nelson	$-\frac{1}{2}$
Robert Sloan	2
Natalie Parde	$\frac{1}{3}$
Grace Hopper	4

$$
\mathrm{MRR}=\frac{\frac{1}{3}+\frac{1}{2}}{2}=0.417
$$

Reciprocal
Rank = 1/2

Other Evaluation Metrics for Question Answering Systems

- Exact Match
- Remove punctuation and articles
- Compute the percentage of predicted answers that match the gold standard answer exactly

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University (Rajpurkar \& Jia et al. '18)		
1	IE-Net (ensemble)	90.939	93.214
Jun 04, 2021	RICOH_SRCB_DML		
2	FPNet (ensemble)	90.871	93.183
Feb 21, 2021	Ant Service Intelligence Team		
3	IE-NetV2 (ensemble)	90.860	93.100
May 16, 2021	RICOH_SRCB_DML		
4	SA-Net on Albert (ensemble)	90.724	93.011
Apr 06, 2020	QIANXIN		

Other Evaluation Metrics for Question Answering Systems

- F_{1} Score
- Remove punctuation and articles
- Treat the predicted and gold standard answers as bags of tokens
- True positives: Tokens that exist in both the gold standard and predicted answers
- Average F_{1} over all questions

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM)
	Human Performance Stanford University (Rajpurkar \& Jia et al. '18)	86.831	89.452
1	IE-Net (ensemble)	90.939	93.214
Jun 04, 2021	RICOH_SRCB_DML		
2	FPNet (ensemble)	90.871	93.183
Feb 21, 2021	Ant Service Intelligence Team		
3	IE-NetV2 (ensemble)	90.860	93.100
May 16, 2021	RICOH_SRCB_DML		
4	SA-Net on Albert (ensemble)	90.724	93.011
Apr 06, 2020	QIANXIN		

Computing F_{1} for Question Answering Systems

Where is UIC located? Question
Gold Standard \longrightarrow Chicago
Prediction \longrightarrow Chicago, Illinois

$\begin{array}{|l|l|l|}$\cline { 2 - 3 } \& Actual

True\end{array}$) \quad$| Actual |
| :--- |
| False |

Computing F_{1} for Question Answering Systems

Gold Standard \longrightarrow Chicago
Prediction \longrightarrow Chicago, Illinois

	Actual True	Actual False
Predicted True	1	1
Predicted False	0	

Computing F_{1} for Question Answering Systems

$$
\text { Precision }=\frac{T P}{T P+F P}=\frac{1}{1+1}=0.5
$$

$$
\text { Recall }=\frac{T P}{T P+F N}=\frac{1}{1+0}=1
$$

$$
\mathrm{F}_{1}=\frac{2 * P * R}{P+R}=\frac{2 * 0.5 * 1}{0.5+1}=0.67
$$

- MT systems are commonly evaluated using both human ratings and automated metrics
- Popular automated metrics include BLEU, chrF, and embedding-based measures
- Question answering is the process of retrieving relevant information and fluently presenting it to users in response to their queries
- QA systems often use knowledge-based or information retrieval methods to formulate answers to questions
- Some systems also use language modeling or rule-/feature-based approaches

