
Transfer Learning
with Pretrained
Language Models
and Contextual
Embeddings

Natalie Parde
UIC CS 521

Language
continually
develops
and
evolves.

• Estimated vocabulary size of a young
adult speaker of American English: ~30k-
100k words

• On average, 7-10 new words need to be
learned per day through age 20!

• Active day-to-day vocabulary: ~2k words

Natalie Parde - UIC CS 521 2

How do humans learn the
bulk of their vocabulary?

• Early on: Vocabulary is learned via
spoken interactions with peers and
caregivers

• Words learned this way form the
majority of individuals’ active, day-to-
day vocabulary

• Later: Vocabulary is mostly learned as a
by-product of reading

equivocal erudite

audacious
laudable

vacillate loquacious laconic

Natalie Parde - UIC CS 521 3

Can computers
learn language
in the same
way?

• Learning language through experience
(e.g., through spoken interactions with
peers in a situated environment) is an
example of grounded language
learning

• Meaning is tied to an experiential
(either implied or explicit) common
ground between speakers

red red

Natalie Parde - UIC CS 521 4

Distributional
Hypothesis

• Learning language based
solely on its context is an
example of the distributional
hypothesis

• Words are defined by the
company that they keep!

Natalie Parde - UIC CS 521 5

The distributional
hypothesis is the
underlying
intuition guiding
modern word
embedding
approaches.

• Word embedding techniques “learn”
meaning by measuring the frequency
with which words occur close to one
another in very large text corpora

• Recall:
• Word2Vec
• GloVe

Natalie Parde - UIC CS 521 6

0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level
Overview:

How
Word2Vec

Works

• Represent all words in a
vocabulary as a vector

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Find the similarity for each
(t,c) pair and use this to
calculate P(+|(t,c))

• Train a classifier to
maximize these
probabilities to distinguish
between positive and
negative cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

Natalie Parde - UIC CS 521 7

What does this look like?

super

Start with an input t

Natalie Parde - UIC CS 521 8

What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r

Natalie Parde - UIC CS 521 9

What does this look like?

…

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 521 10

What does this look like?

…

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 521 11

What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output
units for every possible c

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 521 12

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$

Natalie Parde - UIC CS 521 13

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot
vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
Natalie Parde - UIC CS 521 14

These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 521 15

How do we optimize these
weights over time?

• The weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time

Natalie Parde - UIC CS 521 16

Since we initialize
our weights
randomly, the
classifier’s first
prediction will
almost certainly be
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

Natalie Parde - UIC CS 521 17

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Natalie Parde - UIC CS 521 18

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and
c1 so if we tried to make these predictions
again, we’d have lower error values

Natalie Parde - UIC CS 521 19

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4

Natalie Parde - UIC CS 521 20

What is our
training data?

• We can assume that all occurrences of words in similar contexts in our training corpus are
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 521 21

What is our
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 521 22

What is our
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝!(𝑤), where 𝛼

is a weight:
• 𝑝,(𝑤) = count(.)!

∑"# count(.#)!

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 521 23

What is our
training data?

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly higher

probability of being randomly sampled
• Assuming we want twice as many negative samples as

positive samples, we can thus randomly select noise words
according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples

Natalie Parde - UIC CS 521 24

Alternatives to Word2Vec

• Word2Vec is an example of a
predictive word embedding model

• Learns to predict whether words
belong in a target word’s context

• Other models are count-based
• Remember co-occurrence

matrices?
• GloVE combines aspects of both

predictive and count-based models

Natalie Parde - UIC CS 521 25

Global Vectors for Word
Representation (GloVe)
• Co-occurrence matrices quickly grow extremely large
• Intuitive solution to increase scalability?

• Dimensionality reduction!
• However, typical dimensionality reduction strategies may result in too

much computational overhead
• GloVe learns to predict weights in a lower-dimensional space that correspond

to the co-occurrence probabilities between words

Natalie Parde - UIC CS 521 26

GloVe

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

• GloVe models also encode the ratios of co-occurrence probabilities between
different words …this makes these vectors useful for word analogy tasks

Natalie Parde - UIC CS 521 27

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Natalie Parde - UIC CS 521 28

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj

Natalie Parde - UIC CS 521 29

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Weighting function:

𝑓 𝑋!# = *(
𝑋!#
𝑥$%&

)' , 𝑋!# < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!#)+

Natalie Parde - UIC CS 521 30

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!#)+

Minimize the cost function to
learn ideal embedding values
for wi and wj

Natalie Parde - UIC CS 521 31

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!#)+

Minimize the cost function to
learn ideal embedding values
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

Natalie Parde - UIC CS 521 32

Why does
GloVe
work?

• Ratios of co-occurrence probabilities
have the potential to encode word
similarities and differences

• These similarities and differences are
useful components of meaning

• GloVe embeddings perform particularly well
on analogy tasks

Natalie Parde - UIC CS 521 33

Word2Vec
and GloVe
are both
static word
embeddings.

• A given word has the same embedding,
regardless of its context

• Reasonable in many cases, but not always
• What if a word has multiple senses?
• What if a word starts appearing in new

contexts?

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle
washed up on the bank.0.4 0.2 0.5 0.7 0.1

Are you going to bank on that
proposal being funded? 0.4 0.2 0.5 0.7 0.1

Natalie Parde - UIC CS 521 34

Contextual
Word

Embeddings

• Word representations that differ depending on
the context in which the word appears

• Vocabulary words do not map to specific,
predefined vectors

• How are contextual word embeddings
learned?

• Often, pretrained language models
• Popular method: BERT

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle
washed up on the bank.0.4 0.3 0.2 0.7 0.5

Are you going to bank on that
proposal being funded? 0.1 0.2 0.4 0.3 0.1

Natalie Parde - UIC CS 521 35

Bidirectional
Encoder
Representations
from
Transformers
(BERT)

• Popular method for learning
contextual word representations
(and for performing many other
tasks!)

• Many variations
• DistilBERT
• RoBERTa
• SpanBERT
• ALBERT

• Makes use of a bidirectional
Transformer encoder

Natalie Parde - UIC CS 521 36

BERT is everywhere!
Natalie Parde - UIC CS 521 37

Bidirectional
Transformer
Encoders

• We’ve already seen how “causal” (left to right)
Transformers work

• Well-suited for language modeling problems since
they prevent consideration of future context

• However, these models are inherently constrained
• What about tasks for which “future” context is readily

available?

is

CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score &! , &" = (! ⋅ *"

qis

!!" = softmax score -!, -"

+! =-.!"/"
"#!

k521

v521
q521

kCS

vCS
qCS

Natalie Parde - UIC CS 521 38

Many NLP
tasks don’t
need to
restrict the
model from
viewing
future
context.

• Sequence classification
• (Sometimes) sequence labeling
• In general, most tasks that aren’t

performed in real time

Natalie Parde - UIC CS 521 39

Transformers aren’t innately constrained to
processing from sequence beginning to end.

• With language modeling, self-attention computations are limited to
current and prior context to avoid trivializing the problem

• Self-attention can be computed using the same equations we’ve
already seen when allowing future context to be considered

• Then, the encoder produces sequences of output embeddings that
are contextualized based on the entire input sequence

Natalie Parde - UIC CS 521 40

Bidirectional Self-Attention Layer
is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥% , 𝑥& = 𝑞% ⋅ 𝑘&

qis
𝛼!" = softmax score 𝑥!, 𝑥"

𝑦% =<
&'%

𝛼%&𝑣&

k521

v521q521

kCS

vCS
qCS

Natalie Parde - UIC CS 521 41

Bidirectional Self-Attention Layer
is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥% , 𝑥& = 𝑞% ⋅ 𝑘&

qis
𝛼!" = softmax score 𝑥!, 𝑥"

𝑦% =<
&'%

𝛼%&𝑣&

k521

v521q521

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 521 42

More
formally….

• Step 1: Generate key, query,
and value embeddings for each
element of the input vector 𝐱

• q> = 𝐖𝐐𝐱>
• k> = 𝐖𝐊𝐱>
• v> = 𝐖𝐕𝐱>

Natalie Parde - UIC CS 521 43

More
formally….

• Step 2: Compute attention
weights ⍺ by applying a softmax
over the element-wise
comparison scores between all
possible query-key pairs in the
full input sequence

• score>B = 𝐪> - 𝐤B
• 𝛼>B =

CDE(score!")
∑#$%
& CDE(score!#)

Natalie Parde - UIC CS 521 44

More
formally….

• Step 3: Compute the output
vector 𝐡+ as the attention-
weighted sum of all of the input
value vectors v

• 𝐡𝒊 = ∑BHIJ 𝛼>BvB

Natalie Parde - UIC CS 521 45

Additional
Notes

• Each output vector 𝐡𝒊 is
computed independently

• This allows us to use matrix
operations to parallelize the
input processing

Natalie Parde - UIC CS 521 46

How can we do this?

• Let the embedding of each input token, 𝐱𝒊, serve as one row of the input matrix X ∈ ℝ@×B$

• Multiply X by the key, query, and value weight matrices (𝐖𝐊,𝐖𝐐,𝐖𝐕 ∈ ℝB×B) to produce the
key, query, and value matrices (𝐊,𝐐, 𝐕 ∈ ℝ@×B)

• 𝐊 = 𝐗𝐖𝐊

• 𝐐 = 𝐗𝐖𝐐

• 𝐕 = 𝐗𝐖𝐕

• This means that all key-query comparisons can be computed simultaneously by multiplying 𝐐
and 𝐊𝐓 in a single operation

• Scale the scores, take the softmax, and multiply the result by 𝐕 to produce a matrix
SelfAttention(𝐐, 𝐊, 𝐕) ∈ ℝ@×B where each row contains a contextualized output embedding
corresponding to a given input token

• SelfAttention 𝐐, 𝐊, 𝐕 = softmax 𝐐𝐊𝐓

B&
𝐕

Natalie Parde - UIC CS 521 47

Visually….

q) K k) q) K k+ q) K k, q) K k- q) K k.

q+ K k) q+ K k+ q+ K k, q+ K k- q+ K k.

q, K k) q, K k+ q, K k, q, K k- q, K k.

q- K k) q- K k+ q- K k, q- K k- q- K k.

q. K k) q. K k+ q. K k, q. K k- q. K k.

𝐐𝐊𝐓 matrix for a causal
Transformer encoder

Natalie Parde - UIC CS 521 48

Visually….

q) K k) q) K k+ q) K k, q) K k- q) K k.

q+ K k) q+ K k+ q+ K k, q+ K k- q+ K k.

q, K k) q, K k+ q, K k, q, K k- q, K k.

q- K k) q- K k+ q- K k, q- K k- q- K k.

q. K k) q. K k+ q. K k, q. K k- q. K k.

𝐐𝐊𝐓 matrix for a
bidirectional
Transformer encoder

Natalie Parde - UIC CS 521 49

Bidirectional
Transformer
Encoders

• All other elements remain the same as seen in causal
Transformers!

• Inputs are segmented using subword tokenization
• Inputs are combined with positional embeddings
• Transformer blocks include a self-attention layer and

a feedforward layer, augmented with normalization
layers and residual connections

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 521 50

How does BERT
work specifically?
• BERT: The original bidirectional

Transformer encoder model
• Subword vocabulary of 30k tokens

generated using the WordPiece
algorithm

• 768-dimensional hidden layers
• 12 Transformer blocks
• 12 attention heads in each self-

attention layer
• In total, this comprises 100M

trainable parameters!

Natalie Parde - UIC CS 521 51

Training a
WordPiece

Tokenizer

N
atalie Parde - U

IC
 C

S 521

• Start with special tokens and an initial alphabet
• Split text in the training corpus at the character level,

adding a prefix to all characters inside the word
• language → l ##a ##n ##g ##u ##a ##g ##e

• Then:
• Compute scores for each adjacent pair of tokens
𝑡" and 𝑡#

• score 𝑡", 𝑡# = freq(%G%H)
freq(%G)×freq(%H)

• Merge the highest-scoring pair of tokens and add
the merged token to the vocabulary

• Repeat until the desired vocabulary size is
reached

52

WordPiece Tokenization
• Starting at the beginning of the text to tokenize, find the

longest matching subword in the vocabulary
• Split on this subword
• Move forward to the first position after the split
• Repeat

• If there are no matching subwords in the vocabulary,
tokenize the text as [UNK]

Natalie Parde - UIC CS 521 53

Additional BERT Details

• Since subword tokenization is used, for some NLP tasks (e.g., named
entity tagging) it is necessary to map subwords back to words

• BERT is costly to train (time and memory requirements grow
quadratically with input length)

• To increase efficiency, a fixed input length of 512 subword tokens
is used---when working with longer texts, it’s necessary to partition
the text into different segments

• More details to come during our discussions of representation
learning!

Natalie Parde - UIC CS 521 54

Training
Bidirectional
Encoders

• With causal Transformer encoders, we
employed autoregressive training

• Autoregressive training: Train the model to
iteratively predict the next word in a text

• With bidirectional Transformer encoders, this
task becomes trivial …the answer is now
directly available from the context!

CS 521 is the greatest Bidirectional
Transformer

CS

521

is

the

?
🤷

Natalie Parde - UIC CS 521 55

A new task is
needed for training
bidirectional
encoders….

• Cloze Task: Instead of trying to predict
the next word, learn how to predict the
best word to fill in the blank

• How do we do this?
• During training, mask out one or

more elements from the input
sequence

• Generate a probability
distribution over the vocabulary
for each of the missing elements

• Use the cross-entropy loss from
these probabilities to drive the
learning processAfter such a late _____

working on my project, it was
____ to wake up this morning!

Natalie Parde - UIC CS 521 56

Cloze Task
• This task can be generalized to any method that:

1. Corrupts the training input
2. Asks the model to recover the original

training input

• What are some ways to corrupt the training input?
• Masks
• Substitutions
• Reorderings
• Deletions
• Extraneous insertions into the training text

Natalie Parde - UIC CS 521 57

Masking
Words

• Original approach for corrupting input
when training bidirectional Transformer
encoders

• BERT uses a masking technique known
as masked language modeling (MLM)

After such a late night working
on my project, it was hard to
wake up this morning!

Natalie Parde - UIC CS 521 58

Masked
Language
Modeling

• Uses unannotated text from a large corpus
• Presents the models with sentences from the

corpus
• For each sentence, a random sample of

tokens is selected to be used in one of the
following ways:

• The token is replaced with a [MASK] token
• The token is replaced with another

randomly sampled token
• The token is left unchanged

Natalie Parde - UIC CS 521 59

What is the intuition behind these corruptions?

60

N
atalie Parde - U

IC
 C

S 521

• [MASK] token: The model learns to predict the masked words using
only the available context ([MASK] isn’t even in the training
vocabulary!)

• Random token: The model learns to favor contextual cues more
heavily than the word itself when encoding meaning

• Same token: The model learns to rely at least a little bit on the
specific word in its specific contextual position

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

Natalie Parde - UIC CS 521 61

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

Natalie Parde - UIC CS 521 62

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Natalie Parde - UIC CS 521 63

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 64

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 65

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning

Natalie Parde - UIC CS 521 66

Masked
Language
Modeling

• Training objective:
• Predict the original inputs for each

of the sampled tokens using a
bidirectional encoder

• Make better predictions with each
iteration based on cross-entropy
loss

• Gradients that form the basis for
weight updates are based on
average loss over the sampled
learning tokens

• Although all tokens play a role in the
self-attention layer, only the
sampled tokens are used for
learning

Natalie Parde - UIC CS 521 67

Masked
Language

Modeling in
BERT

• Same process as shown, but uses subword
tokens instead

• 15% of tokens in the training sequence are
sampled

• Of these:
• 80% are replaced with [MASK]
• 10% are replaced with randomly

selected tokens
• 10% are left unchanged

Natalie Parde - UIC CS 521 68

Summary:
Word

Embeddings
and Masked

Language
Modeling

• Word embeddings can be static or contextual
• Contextual word embeddings differ for each

instance of the same vocabulary word
depending on the surrounding context

• Bidirectional Transformer encoders are one
way to generate contextual word embeddings

• Masked language modeling is a learning
objective for bidirectional Transformer encoders
that forces the model to predict potentially
masked or otherwise corrupted words, based on
the surrounding context

Natalie Parde - UIC CS 521 69

Contextual
Embeddings
• Pass a novel input sentence into a pretrained

language model
• Use the output for a given token as its

contextual embedding
• Employ contextual embeddings in the same

scenarios as static embeddings
• Word representations for downstream

classifiers
• Corpus analysis

Natalie Parde - UIC CS 521 70

More concretely….
• Given a sequence of text with tokens 𝑥", … , 𝑥(, use the output vector h) from the

final layer of the pretrained model as the representation of token 𝑥) in the context
of that sequence

• In practice, it’s common to average across h) from the last four layers of the
pretrained model

Natalie Parde - UIC CS 521 71

Contextual Embeddings

• This means that contextual embeddings represent tokens, whereas static
embeddings represented types

• Contextual embeddings are particularly useful for:
• Tasks that require careful disambiguation of polysemous words
• Tasks that require measuring semantic similarity of words in context

• Contextual embeddings are commonly used to represent input to classifiers
during the fine-tuning process for downstream applications

Natalie Parde - UIC CS 521 72

What if the most useful
language segment for
our task isn’t a single
token?

• Lots of tasks have larger units of
interest:

• Question answering
• Syntactic parsing
• Coreference resolution
• Semantic role labeling

• Solution: Apply a span-oriented
masked learning objective

Natalie Parde - UIC CS 521 73

Masking
Spans

• Span: A contiguous sequence of one or
more words selected from a training
sample, prior to subword tokenization

• How can we select spans for masking?
1. Decide on a span length

• In SpanBERT, this is sampled from a geometric
distribution biased toward shorter spans, with an
upper bound of 10

2. Given this span length, sample a starting
location

Natalie Parde - UIC CS 521 74

Masking Spans
• All sampling actions are performed at the span level

• All tokens in the selected span are replaced with [MASK]
• All tokens in the selected span are replaced with randomly sampled

tokens
• All tokens in the selected span are left as is

• After sampling actions are performed, the input is passed
through the same Transformer architecture seen previously

Natalie Parde - UIC CS 521 75

Masked
Language
Modeling in
SpanBERT

• Analogous to “standard” BERT:
• In 80% of spans, tokens are

replaced with [MASK]
• In 10% of spans, tokens are

replaced with randomly sampled
tokens

• In 10% of spans, tokens are left
unchanged

• Total token substitution is limited
to 15% of the input

Natalie Parde - UIC CS 521 76

Masking Spans

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521 77

Span-Based Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521 78

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521 79

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521 80

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

late project morning

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

a on my this

Natalie Parde - UIC CS 521 81

Predicting
Words
within a
Span

• The predicted word 𝑥* at position 𝑖 is produced
by:

• Concatenating the output embeddings for
the words before and after the span, and
the positional embedding for 𝑖

• [𝐡+; 𝐡,; 𝐩*-+./]
• (In SpanBERT) passing the result through

a two-layer feedforward network
• 𝐬* = FFNN([𝐡+; 𝐡,; 𝐩*-+./])

• Finding the selected word using a softmax
layer

• 𝑦* = softmax(𝐬*)

Natalie Parde - UIC CS 521 82

How do
downstream
applications
incorporate span
representations?

• Create span-level
representations based on:

• Tokens within the span
• Span boundaries

• Boundary representations are
usually derived from:

• First and last words of the span
• Words immediately before or

after the span

Natalie Parde - UIC CS 521 83

Span Boundary Objective

• Augments the masked language modeling objective in SpanBERT
• 𝐿 𝐱 = 𝐿LML 𝐱 + 𝐿NOP(𝐱)

• Leverages the model’s ability to predict words inside a span based on
those just outside of it

• 𝐿NOP 𝐱 = − log𝑃(𝐱|𝐱QRI, 𝐱STI, 𝐩>RQTI)

Word before the span Word after the span Positional embedding indicating which
word in the span is being predicted

Natalie Parde - UIC CS 521 84

How does
masked

language
modeling help

us in
downstream

applications?

Bidirectional
Transformer
encoders can
also help us
learn another
important piece
of information!

• In many NLP tasks, it is crucial to learn
the relationship between pairs of
sentences

• Detecting paraphrases
• Determining entailment
• Measuring discourse coherence

Natalie Parde - UIC CS 521 86

BERT also
uses a
second

learning
objective that

helps us
perform this

task.

• What is this other learning
objective?

• Next sentence prediction (NSP)

Natalie Parde - UIC CS 521 87

Next Sentence Prediction

• Present the model with pairs of
sentences

• Predict whether each pair is an actual
pair of adjacent sentences, or a pair of
unrelated sentences

• In BERT, training pairs are evenly
balanced across these two classes

• Base the loss on how well the model can
distinguish actual pairs from unrelated
pairs

After such a late night working
on my project, it was hard to
wake up this morning! I did
though, because I had to give
my project presentation.

After such a late night working
on my project, it was hard to
wake up this morning! A winter
storm warning has been issued
for your area.

Natalie Parde - UIC CS 521 88

How does
NSP
training
work?

• Two new tokens are added to
the input:

• [CLS] is prepended to the input
sentence pair

• [SEP] is placed between the
sentences and after the final
token of the second sentence

• Embeddings representing
each segment (first sentence
and second sentence) are
added to the word and
positional embeddings

Natalie Parde - UIC CS 521 89

Additional Tokens

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

Natalie Parde - UIC CS 521 90

Once we’ve made these
adjustments….

• The output vector associated with the
[CLS] token represents the next sentence
prediction

• Specifically, a learned set of classification
weights 𝐖𝐍𝐒𝐏 ∈ ℝL×B$ is used to predict
one of two classes from the raw [CLS]
vector 𝐡M

• 𝑦M = softmax(𝐖𝐍𝐒𝐏𝐡M)

• A cross-entropy loss is used for the NSP
loss

• In BERT, the final loss function is a linear
combination of the NSP and MLM loss
functions

Natalie Parde - UIC CS 521 91

Next Sentence Prediction

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

Natalie Parde - UIC CS 521 92

Next Sentence Prediction

[CLS] p1 s1

…

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 93

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 94

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

1

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 95

BERT-Specific Training Details
• Corpora:

• Early Transformer-based language models (including BERT) used
BooksCorpus (800M words) and English Wikipedia (2.5B words)

• More recent state-of-the-art models learn from even larger corpora!
• When training BERT, pairs of sentences were sampled such that their maximum

combined length does not exceed 512 tokens
• Original BERT models converged after approximately 40 training iterations

Natalie Parde - UIC CS 521 96

Training models like BERT
can be expensive and time-
consuming….
• However, this pretraining process can result in

models that can be used and reused for numerous
tasks

• Pretrained word embeddings and learned
parameters to produce new contextual
embeddings

• Base models that can be fine-tuned for transfer
learning purposes

Natalie Parde - UIC CS 521 97

Transfer Learning
through Fine-Tuning
• Pretrained language models facilitate

generalization across large text corpora
• This generalization makes it easier to

incorporate these models effectively in
downstream applications

• The process of learning an interface between a
pretrained language model and a specific
downstream task is called fine-tuning

Natalie Parde - UIC CS 521 98

Fine-Tuning
• Facilitates the creation of downstream applications

on top of pretrained language models through the
addition of a small set of application-specific
parameters

• Labeled data from the downstream task domain is
used to train these application-specific parameters

• In general, the pretrained language model is
frozen or only minimally adjusted during this
process

99

Many
different
applications
have made
use of fine-
tuning!

• Sequence classification
• Sequence labeling
• Sentence-pair inference
• Span-based operations

Natalie Parde - UIC CS 521 100

Sequence
Classification

How do we fine-
tune for
sequence
classification
tasks?

• Learn a set of weights, 𝐖𝐂 ∈ ℝ(×+N, to map the
sequence representation to a set of scores over
𝑛 possible classes

• 𝑑, is the dimensionality of the language
model’s hidden layers

• Requires supervised training data for the target
task

• Learning process that optimizes 𝐖𝐂 is driven by
cross-entropy loss between the softmax output
and the target task label

Natalie Parde - UIC CS 521 102

How do we
classify test
documents

for sequence
classification

tasks?

N
atalie P

arde - U
IC

 C
S

 521

• Pass the input sample through
the pretrained language model
to generate an output
representation 𝐡𝐂𝐋𝐒

• Multiply the output
representation by the learned
weights 𝐖𝐂

• Pass the resulting vector
through a softmax:

• 𝐲 = softmax(𝐖𝐂𝐡𝐂𝐋𝐒)

Example: Sequence Classification

Natalie Parde - UIC CS 521 104

I’m so excited about the
winter storm warning.

Example: Sequence Classification

[CLS] p1

Natalie Parde - UIC CS 521 105

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Example: Sequence Classification

Natalie Parde - UIC CS 521 106

[CLS] p1

Bidirectional Transformer Encoder

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Example: Sequence Classification

[CLS] p1

Bidirectional Transformer Encoder

sarcasm

Natalie Parde - UIC CS 521 107

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

What differs between this and earlier
neural classifiers?

• If we want, we can use the computed loss to update not only the
classifier weights, but also the weights for the pretrained language
model itself

• However, substantial changes are rarely necessary!
• Reasonable classification performance is often achieved with only

minimal changes to the language model parameters
• These changes are generally limited to updates over the final few

layers of the model

Natalie Parde - UIC CS 521 108

Pair-Wise
Sequence

Classification

N
atalie P

arde - U
IC

 C
S

 521

• Subcategory of sequence
classification that focuses
on classifying pairs of
input sentences

• Useful for:
• Logical entailment
• Paraphrase detection
• Discourse analysis

How does fine-
tuning work for
pair-wise
sequence
classification?

• Similar to pretraining with the NSP
objective

• Pairs of labeled sentences are
presented to the model, separated by
[SEP] and prepended with [CLS]

• During classification, the output [CLS]
vector is multiplied by classification weights
and passed through a softmax to generate
label predictions

Natalie Parde - UIC CS 521 110

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 111

• Popular NLP task, also referred to as natural language inference
• Classify sentence pairs such that:

• Sentence A entails Sentence B
• Sentence A contradicts Sentence B
• The relationship between Sentence A and Sentence B is neutral

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 112

It’s a snow day! There
is snow outside.

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 113

It’s a snow day! There
is snow outside.

[CLS] It’s a snow day!
[SEP] There is snow
outside. [SEP]

[CLS] p1

Natalie Parde - UIC CS 521 114

It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

Example: Pair-Wise Sequence Classification (Entailment Task)

…

[CLS] It’s a snow day! [SEP]
There is snow outside. [SEP]

s1 s1 s1 s1 s1 s1 s1 s1

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 115

Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]
There is snow outside. [SEP]

Bidirectional Transformer Encoder

Entails

Natalie Parde - UIC CS 521 116

Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]
There is snow outside. [SEP]

Sequence Labeling

117

N
atalie Parde - U

IC
 C

S 521

• Similar to approach used for sequence classification
• However, the output vector for each input token is passed to a

classification head that produces a softmax distribution over the possible
classes

• The output tag sequence can be determined by a variety of methods
• Common: Greedy approach accepting the argmax class for each token

• 𝐲* = softmax(𝐖0𝐳*), where 𝑘 ∈ 𝐾 is the set of tags for the task
• 𝐭* = argmax

1
(𝐲*)

• Alternative: Distribution over labels can be passed to a CRF layer,
allowing consideration of global tag-level transitions

Common
Sequence
Labeling Tasks
• Part-of-speech tagging
• Named entity recognition
• Shallow parsing

Natalie Parde - UIC CS 521 118

Example: Sequence Labeling

Natalie Parde - UIC CS 521 119

It is a beautiful winter
day in Chicago.

Example: Sequence Labeling

[CLS] p1

Natalie Parde - UIC CS 521 120

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 121

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Sequence Labeling

Bidirectional Transformer Encoder

PRP

Natalie Parde - UIC CS 521 122

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

VBZ DT JJ NN NN IN NNP

Complication
with BERT
(and related
models)….

123

N
atalie Parde - U

IC
 C

S 521

• Subword tokenization doesn’t play
well with tasks requiring word-level
labels

• How to address this?
• During training, assign the gold

standard label for a word to all its
constituent subwords

• During testing, recover word-level
labels from subwords as part of
the decoding process

Recovering
Word-Level
Labels

• Simplest approach:
• For a given word, use the predicted

label for its first subword as the
label for the entire word

• More complex approaches consider
the distribution of label probabilities
across all subwords for a given word

Natalie Parde - UIC CS 521 124

Nat #a #lie

NNP DT VB

Natalie

NNP

Span-Based
Sequence
Labeling

• Carries attributes of both
sequence classification and
token-level sequence labeling

• Goal: Make decisions using
representations of spans of
tokens

• Common Tasks:
• Identify spans of interest
• Classify spans
• Determine relations among

spans

Natalie Parde - UIC CS 521 125

Common
Span-Based
Sequence
Labeling
Applications

Natalie Parde - UIC CS 521 126

Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution

Span-
Based
Sequence
Labeling

How do we
represent
spans for
span-based
sequence
labeling?

Natalie Parde - UIC CS 521 128

• Most span representations incorporate
both:

• Span boundary representations
• Summary representations of span content

• These component representations are
often concatenated with one another

Span Boundary Representations

129

N
atalie Parde - U

IC
 C

S 521

• Simple approach: Just use the contextual embeddings of the start and
end tokens of the span as the span boundary representations

• However, internally this doesn’t offer a way to distinguish between
the start and end tokens

• Words may carry different meaning at the beginning of a span than
at the end!

• More complex approach: Use separate feedforward networks to learn
representations for the beginning and end of the span

• 𝐬> = FFNNQ(𝐡>)
• 𝐞B = FFNNS(𝐡B)

Summary Representations

130

N
atalie Parde - U

IC
 C

S 521

• Simple approach: Just use the average of the output embeddings for
words within the span as the summary representation

• 𝐠>B =
I

BR> TI
∑XH>
B 𝐡X

• More complex approach: Place more representational emphasis on
the head of the span

• Can be done using syntactic parse information (if available) or a
self-attention layer (if not)

• 𝐠>B = SelfAttention(𝐡>:B)

How does
fine-tuning
work in
span-
based
sequence
labeling?

131

N
atalie Parde - U

IC
 C

S 521

• Learn the weights/parameters for:
• Task classification head
• Boundary representations
• Summary representation

• Final classification output:
• 𝐬𝐩𝐚𝐧>B = [𝐬>; 𝐞B; 𝐠>B]
• 𝐲>B = softmax(FFNN(𝐬𝐩𝐚𝐧>B))

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 132

It is a beautiful winter day in Chicago.

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 133

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 134

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 135

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 136

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 137

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 138

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 139

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

Self Attention

FFNN

Self Attention

FFNN

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 140

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

NP

Self Attention

FFNN

NP

Self Attention

FFNN

PP

Advantages of
Span-Based
Sequence
Labeling

• Only require one label assignment per
span

• In comparison, BIO-based methods
require labels for each constituent
token

• Naturally accommodate hierarchical
and/or overlapping labels

• BIO-based methods assign a single
label per token

Natalie Parde - UIC CS 521 141

We’ve learned a
lot about transfer
learning,
pretrained
models, and
contextual
embeddings
…how can we
implement them?

https://huggingface.co/docs/transf
ormers/index

https://www.tensorflow.org/text/tut
orials/classify_text_with_bert

https://pytorch.org/hub/huggingfac
e_pytorch-transformers/

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

Summary:
Transfer

Learning with
Pretrained
Language

Models and
Contextual

Embeddings

• Bidirectional Transformer encoders learn
representations by optimizing for two tasks:

• Masked language modeling
• Next sentence prediction

• Pretrained language models can be fine-
tuned for a variety of downstream tasks by
adding classification heads to the end of the
model and (optionally) updating the weight
parameters in its last few layers

• These tasks may include:
• Sequence classification
• Sequence labeling
• Span-based sequence labeling

