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Language

» Estimated vocabulary size of a young

continually adult speaker of American English: ~30k-
100k words

develOpS * On average, 7-10 new words need to be

and learned per day through age 20!

 Active day-to-day vocabulary: ~2k words

evolves.
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How do humans learn the
bulk of their vocabulary?

« Early on: Vocabulary is learned via
spoken interactions with peers and
caregivers

» Words learned this way form the
majority of individuals’ active, day-to-
day vocabulary

« Later: Vocabulary is mostly learned as a
by-product of reading
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Can ComPUterS  Learning language through experience

learn |anguage (e.g., through spoken interactions with
- peers in a situated environment) is an
in the same example of grounded language
Way’) learning

* Meaning is tied to an experiential
(either implied or explicit) common
ground between speakers
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» Learning language based
solely on its context is an

Distributional example of the distributional

Hypothesis hypothesis
yP « Words are defined by the

company that they keep!
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The distributional

T « Word embedding techniques “learn”
hyPOthe_SIS Is the meaning by measuring the frequency
underlylng with which words occur close to one
intuition gmdlng another in very large text corpora
modern word e e
embedding . GloVe

approaches.
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High-Level
Overview:
How
Word2Vec
Works

Represent all words in a
vocabulary as a vector

Treat the target word w
and a neighboring context
word ¢ as positive
samples

Randomly sample other
words in the lexicon to get
negative samples

Find the similarity for each
(t,c) pair and use this to

calculate P(+|(t,c))

0

Train a classifier to
maximize these

probabilities to distinguish

0

0 0 1
super fork |
0 1 1]

between positive and
negative cases

Use the weights from that
classifier as the word
embeddings
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What does this look like?

Start with an input t [~

-
-
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What does this look like?

Get the one-hot vector for ¢

-
-
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Y
-
-
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What does this Igok like?

-—

rFeed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted

Lsum of inputs \

super

J
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What does this look like?
)

Feed the outputs from those
units into a final unit that
predicts whetheraword cis |\
: \
a valid context for ¢ )

super

\_ J
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super

e

units for every possible ¢

Create one of those output |5

————




Behind the scenes....

S

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

- —

~_~\

z=0*xw; +0*xwy +1*xwz+--+0*w,

|
|
l
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Behind the scenes....

rSince our inputs are one-hot
vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
— Lfor each input word

z=0*xw; +0*xwy +1*xwiz+--+0xw,

z=0*xw; +0*xwy +1*xwy3+--+0xw,

——

z=0xw; +0*xwy +1xwyz3+--+0x*xw,

—> P(+ | 1.¢9)

— P(+ | 1.c)

— P(+[tc5)

— P(+ [ 1.cy)

—> P(+ | 1.cn)
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These are the weights we’re interested in! \/

super

calendar . P(+ | t,c4)
— ]
coffee .3 -5 .8
’/
z=0xw;+0xwy, +1x0.14 -+ 0*w, [€ super A 4 .8 J
z=0%xw; +0xwy +1%0.7+--+0x*w, [€ 4 globe 4 9 5
,,, k 4 | - I \ "MW |.;iv|~ll IUI'W P(+ | t’Cn)
&
-
z=0*w; +0*xwy, +1x084+ -4+ 0w, ="
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How do we optimize these
weights over time?

« The weights are initialized to some random value for each word

* They are then iteratively updated to be more similar for words that occur in similar contexts in the
training set, and less similar for words that do not

« Specifically, we want to find weights that maximize P(+|{,c) for words that occur in similar
contexts and minimize P(+|f,c) for words that do not, given the information we have at the time



Predicted: 0.9

Actual: 0 \Q\B

Since we initialize 0
__our weights
.. randomly, the
:: classifier’s first
.. prediction will
"~ almost certainly be
wrong.

super




However, the error :

Predicted: 0.9
Actual: O

Error: -0.9

super

__ values from our

.. Incorrect guesses
.. are what allow us
:: to improve our

embeddings over
time.
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However, the error
.. values from our
.. incorrect guesses
:: are what allow us
.. to improve our
"~ embeddings over
time.

super

Predicted: 0.9

Actual: 0 | @
Error: -0.9 j

¢4 so if we tried to make these predictions

Adjust the embeddings (weights) for t and
again, we'd have lower error values




However, the error :

Predicted: 0.4
Actual: 0

Error: -0.4

super

__ values from our

.. Incorrect guesses
.. are what allow us
:: to improve our

embeddings over
time.

20



..........
e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

* We can assume that all occurrences of words in similar contexts in our training corpus are
positive samples



..........
e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

 However, we also need negative samples!

* In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
« We need to create our own negative examples



..........
e o [ veen | e [ swoer | bow [ [ 530
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What is Our Positive Examples
training data? I F

super watch
super the
super bowl
super at

« How to create negative examples?
» Target word + “noise” word that is sampled from the training set

» Noise words are chosen according to their weighted unigram frequency p,(w), where a
IS a weight:
_countmw)«
* Pa(W) = Y., countw’)@




e o [ veen | e [ swoer | bow [ [ 530
ci c2 t c3 c4

Wh at iS Ou r - Negative Examples
training data? (T OSSN

super calendar
super watch
super the el 8 :axadm
super bowl el =
super bread
super at
| super cellphone
« How to create negative examples? super enemy
» Often, a = 0.75 to give rarer noise words slightly higher super penguin
probability of being randomly sampled _
super drive

« Assuming we want twice as many negative samples as
positive samples, we can thus randomly select noise words
according to weighted unigram frequency



Alternatives to Word2Vec

« Word2Vec is an example of a
predictive word embedding model

« Learns to predict whether words
belong in a target word’s context
 Other models are count-based
e Remember co-occurrence
matrices?

* GloVE combines aspects of both
predictive and count-based models
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Global Vectors for Word
Representation (GloVe)

« Co-occurrence matrices quickly grow extremely large

* Intuitive solution to increase scalability?
* Dimensionality reduction!

 However, typical dimensionality reduction strategies may result in too
much computational overhead

* GloVe learns to predict weights in a lower-dimensional space that correspond
to the co-occurrence probabilities between words



GloVe

« Why is this useful?
» Predictive models — black box
« They work, but why?
* GloVe models are easier to interpret

* GloVe models also encode the ratios of co-occurrence probabilities between
different words ...this makes these vectors useful for word analogy tasks

Natalie Parde - UIC CS 521
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How does GloVe work?

--------—--
— R
- —~
-
-~y

=

_ 123 456 Build a huge word-context
_ co-occurrence matrix
t . 789




How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

Scaler biases for t; and ¢;

3

Define soft constraints for each word pair == w/w; + b; + b; = log X;;
W AJ lL(l
,f
/
I \h s =
I ) h =~
Vector fort;  Vector for ¢; Co-occurrence count for tic;
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How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

1 Weighting function:

Define a cost function Xij )%, Xij < XMAX

vov
_ )
1 /= ZZJC(XUXWLTWJ’ +b; + b —logX;; )? f(Xij) = { “tmax

1, otherwise

Natalie Parde - UIC CS 521 30




How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

WL-TW]- + b; + b; = log X;;

g s
g \ Minimize the cost function to
Define a cost function | | ¥ 7 learn ideal embedding values
—9q /= sz X)Wl 'w; + by + b — log X;; )? for w; and w,
(=1j=1_
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How does GloVe work?

Build a huge word-context
cOo-occurrence matrix

=/

WL-TW]- + b; + b; = log X;;

- I

,,f""“\\ (
¢ i . | Minimize the cost function to
Define a cost function | | ¥ 7 “~o learn ideal embedding values
o J = ZZ]C U)(W Wj +b +b logXU )2 for W, and W;
(=1j=1_
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» Ratios of co-occurrence probabilities
have the potential to encode word

Why does similarities and differences
GloVe  These similarities and differences are
> useful components of meaning
work » GloVe embeddings perform particularly well
on analogy tasks '
> 4
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« A given word has the same embedding,
regardless of its context

Wo rdZVec * Reasonable in many cases, but not always

* What if a word has multiple senses?

and GIOve « What if a word starts appearing in new

contexts?
are both
Sta tic Wo rd @id yaj depositThat check at the bank? mmmm

p—

e m bed d i n gs . mmmm [A message in a bottle }

washed up on the bank

Are you going to bank on that
&)roposal being funded? mmmm
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» Word representations that differ depending on
the context in which the word appears

 VVocabulary words do not map to specific,
predefined vectors

* How are contextual word embeddings
learned?

» Often, pretrained language models
» Popular method: BERT

Contex'tual @id yaj depositThat check at the bank? mmmm
Word

Embeddings

p—

A ' bottl
mmmmm (G n, |

A ing to bank that
Jiveyossens o barkon vt | - pRyETYYYEEEEY




Bidirectional
Encoder
Representations

from
Transformers

(BERT)

s <\
* Popular method for learning

contextual word representations
(and for performing many other

tasks!)

* Many variations
« DistiBERT
« RoBERTa
« SpanBERT
« ALBERT

« Makes use of a bidirectional
Transformer encoder

Natalie Parde - UIC CS 521 36
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TLDR A new language representation model, BERT, designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers,
which can be fine-tuned with just one additional output layer to create state-of-the-art models for a
wide range of tasks.

light Information ~~ Results

Abstract We introduce a new language representation model called BERT, which stands for

Encoder ions from Unlike recent language representation
models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model
can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide

range of tasks, such as question answering and language inference, without substantial task-specific

BERT is simple and powerful. It obtains new
state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE
score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute
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SQUAD v2.0 Test F1 t0 83.1 (5.1 point absolute improvement).
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[ Abstract NAACL 2019 PDF [@ NAACL 2019 Abstract

Code @i Tasks

© google-research/bert | © official * 36312
 Quickstartin < Colab

Citation Intent Classificati

Conversational Response Selection
© huggingface/transformers * 119,401 O PyTorch

Cross-Lingual Natural Language Inference
© tensorflow/models * 76373 T orsrtion

© labmlai/annotated_deep_learning_pap... * 42,788 OPyTorch ¥ Emotion Recognition in Conversation

 View annotated codeat labmLai

Linear-Probe Classificatic
© graykode/nlp-tutorial OpyTorcn

L. Quickstartin < Colab & Multimodal Intent Recogni

See all 525 implementations. ~* Named Entity Recognition (NER)

Natalie Parde - UIC CS 521

BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Leg, Kristina Toutanova

Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is
designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right
context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to
create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without

ial task-specific archi ifications. BERT i simple and empirically powerful. It obtains new
state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point
absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQUAD v1.1 question answering Test
F1t0 93.2 (1.5 point absolute improvement) and SQUAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Anthology ID:  N19-1423
Volume: Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Month: June
Year: 2019
Address: Minneapolis, Minnesota
Venue: NAACL
siG: -

d Linguistics
Note: -
Pages: 4171-4186
Language: -
URL:  https://aclanthology.org/N19-1423
DOI: 10.18653/vI/N19-1423
Q Best Long Paper

6 Cite

¥ Search

37



Bidirectional

Transformer
Encoders

» We've already seen how “causal” (left to right)
Transformers work

» Well-suited for language modeling problems since
they prevent consideration of future context

 However, these models are inherently constrained

« What about tasks for which “future” context is readily
available?




Many NLP
tasks don’t
heed to
restrict the

model from
viewingd
future
context.

» Sequence classification
» (Sometimes) sequence labeling
* In general, most tasks that aren't

performed in real time

Natalie Parde - UIC CS 521
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Transformers aren’t innately constrained to

processing from sequence beginning to end.

 With language modeling, self-attention computations are limited to
current and prior context to avoid trivializing the problem

» Self-attention can be computed using the same equations we've
already seen when allowing future context to be considered

* Then, the encoder produces sequences of output embeddings that
are contextualized based on the entire input sequence

Natalie Parde - UIC CS 521 40



Bidirectional Self-Attention Layer

g NN EIN EID N IS S S e e e e s

/ ~ Self-Attention Computation [ ¢ RN
-—— . / Kcs \

-~ -

{ Input \

| |

' — | %

1 |CS > |

| |

1l —— |

1 | 921 |

l | |

| |

1 |is g

I |

| — I

1 |the [

I I

I I
I greatest [
\




Bidirectional Self-Attentlon Layer
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L)
” N\
» Step 1: Generate key, query, \

and value embeddings for each
element of the input vector x

More i~ |
formally.... - vi = WYk
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-y
N\
» Step 2: Compute attention

weights a by applying a softmax \
over the element-wise

comparison scores between all
More possible query-key pairs in the
fOrma”y_ - full input sequence

* score;; = q; * K;
exp(SCore;;)
k=1 €Xp(SCOre;;)
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sz <\
» Step 3: Compute the output
vector h; as the attention- \
weighted sum of all of the input

value vectors v
* hy = Yo @V

More

formally....
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» Each output vector h; is

Add itional computed independently

 This allows us to use matrix

N Otes operations to parallelize the

iInput processing
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How can we do this?

 Let the embedding of each input token, x;, serve as one row of the input matrix X € RV*dn

« Multiply X by the key, query, and value weight matrices (WX, WQ, WV € R%*?) to produce the
key, query, and value matrices (K, Q,V € RV*4)

- K=XWK
« Q=XxwW¢
« V=Xw'

» This means that all key-query comparisons can be computed simultaneously by multiplying Q
and KT in a single operation

» Scale the scores, take the softmax, and multiply the result by V to produce a matrix
SelfAttention(Q, K, V) € R¥*? where each row contains a contextualized output embedding
corresponding to a given input token

T
» SelfAttention(Q, K, V) = softmax <Qi) Vv

Jax



Visually....

e

QKT matrix for a causal
Transformer encoder

Natalie Parde - UIC CS 521
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Visually....

el

QK™ matrix for a
bidirectional
Transformer encoder

Natalie Parde - UIC CS 521
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* All other elements remain the same as seen in causal
Transformers!

* |Inputs are segmented using subword tokenization
 |Inputs are combined with positional embeddings

» Transformer blocks include a self-attention layer and
a feedforward layer, augmented with normalization

Bid i rectional layers and residual connections

Transformer
Encoders

' 1ohe uonusHy-HeS |

| 8ZIjewJoN pue ppy ‘
" 1akeT piemiojpas ‘
| 9zI[EWION pUE PPy ‘




How does BERT
work specifically?

 BERT: The original bidirectional
Transformer encoder model

« Subword vocabulary of 30k tokens
generated using the WordPiece

algorithm O
» /68-dimensional hidden layers

* 12 Transformer blocks

« 12 attention heads in each self-
attention layer

* In total, this comprises 100M -
trainable parameters! \

Natalie Parde‘
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« Start with special tokens and an initial alphabet

1ZG SO DIN - 8pJed dljejeN

« Split text in the training corpus at the character level,
adding a prefix to all characters inside the word

Trai 1 i ng a  language — | ##a ##n g #Hu #iHa tHig Hite
.  Then:
WO rd P iece « Compute scores for each adjacent pair of tokens
- dt
Tokenizer 1 G .
o (t t ) — q(tltZ)
Scoretts, tz freq(t,)xfreq(t,)

« Merge the highest-scoring pair of tokens and add
the merged token to the vocabulary

« Repeat until the desired vocabulary size is
reached




WordPiece Tokenization

» Starting at the beginning of the text to tokenize, find the
longest matching subword in the vocabulary

» Split on this subword
» Move forward to the first position after the split
» Repeat

« If there are no matching subwords in the vocabulary,
tokenize the text as [UNK]
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Additional BERT Detalils

 Since subword tokenization is used, for some NLP tasks (e.g., named
entity tagging) it is necessary to map subwords back to words

« BERT is costly to train (time and memory requirements grow
quadratically with input length)

 To increase efficiency, a fixed input length of 512 subword tokens
IS used---when working with longer texts, it's necessary to partition
the text into different segments

* More details to come during our discussions of representation
learning!
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* With causal Transformer encoders, we
employed autoregressive training

» Autoregressive training: Train the model to
iteratively predict the next word in a text

 With bidirectional Transformer encoders, this

T':a '_“ In 9_ e vTabia o the ey = v
Bidirectional
Encoders

CS 521 is the greatest e
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A new task is
needed for training
bidirectional
encoders....

* Cloze Task: Instead of trying to predict
> the next word, learn how to predict the
I best word to fill in the blank

« How do we do this?

» During training, mask out one or
more elements from the input
sequence

« Generate a probability
distribution over the vocabulary
for each of the missing elements

» Use the cross-entropy loss from

I
I
I
I
|
I
I

After such a late
working on my project, it was
to wake up this morning!

these probabilities to drive the
learning process

:\/
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Cloze Task

« This task can be generalized to any method that: .

1.  Corrupts the training input

2.  Asks the model to recover the original o

training input A

* What are some ways to corrupt the training input? --=

« Masks

» Substitutions

* Reorderings

* Deletions

« Extraneous insertions into the training text

Natalie Parde - UIC CS 521



* Original approach for corrupting input
when training bidirectional Transformer
encoders

« BERT uses a masking technique known
as masked language modeling (MLM)

Masking

Words S
After such a late\fEl/working
on my project, it was\\aeg/to

wake up this morning! ,

N

\ S & /
s
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Masked
Language
Modeling

« Uses unannotated text from a large corpus

* Presents the models with sentences from the
COrpus

* For each sentence, a random sample of
tokens is selected to be used in one of the

following ways:
* The token is replaced with a [MASK] token

* The token is replaced with another
randomly sampled token

* The token is left unchanged

Natalie Parde - UIC CS 521 59



What is the intuition behind these corruptions?

* [MASK] token: The model learns to predict the masked words using
only the available context ((MASK] isn’t even in the training
vocabulary!)

« Random token: The model learns to favor contextual cues more
heavily than the word itself when encoding meaning

« Same token: The model learns to rely at least a little bit on the
specific word in its specific contextual position

L¢SG SO OIN - 8pled aljeleN



Masked Language Modeling

After such a late night
working on my project,
It was hard to wake up
this morning!

\

L

After such a [MASK]
- night working on my
project, it was hard to

wake up this driving!

L

Natalie Parde - UIC CS 521
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Masked Language Modeling

After such a late night After such a [MASK]

working on my project, night working on my

it was hard to wake up _ project, it was hard to

this morning! wake up this driving!
| |

Natalie Parde - UIC CS 521
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Masked Language Modeling

r-‘\*ﬂr-‘*ﬂr—‘*ﬂr-‘—ﬂr-‘*ﬂr-‘-ﬂr—‘*ﬂr—ﬂ-ﬂr—‘*ﬂ ——= ——

HE HNR HE HNR HE BEE EE BN HE BB
HEE HBE II HE EBEE BESE ENE EERE BB HEE BN
HEE BENE EBEE EE HEBE HE BEE EE BN HE BB
HEE BEE BN EE EERE EE EE B~ [] HEE BN
HEE ENE EE ENE HEB HE EE ENE BN HE HB

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 this p16 driving p17
After such a late night After such a [MASK]

working on my project, night working on my
it was hard to wake up _ project, it was hard to

this morning! wake up this driving!
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Masked Language Modeling

Bidirectional Transformer Encoder

[MASK] p4 night p5 working p6 on p7 my p8 project p9 this p16 driving p17

After  p1

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night
working on my project,
it was hard to wake up —

this morning!
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Masked Language Modeling

this p16 driving p17

my p8 project p9

After  p1

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night

working on my project, —

it was hard to wake up
this morning!




Masked Language Modeling

late project morning

4 ) 4
Al Al Al

Bidirectional Transformer Encoder

[] [] [] [] []

[] [] [] [] []

[] [] [] [] []

[] [] [] [] []

[] HE B HE B
After p1 [MASK] p4 night p5 working p6 on p7 my p8 project p9 this p16 driving p17

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night
working on my project,
it was hard to wake up —

this morning!




 Training objective:
 Predict the original inputs for each

of the sampled tokens using a
bidirectional encoder

M k d * Make better predictions with each
aS e iteration based on cross-entropy
loss

La n g u ag e « Gradients that form the basis for

weight updates are based on
M Od el i n average loss over the sampled
g learning tokens
 Although all tokens play a role in the
self-attention layer, only the

sampled tokens are used for
learning
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Masked
Language
Modeling in
BERT

« Same process as shown, but uses subword
tokens instead

* 15% of tokens in the training sequence are
sampled

e Of these:

* 80% are replaced with [MASK]

* 10% are replaced with randomly
selected tokens

* 10% are left unchanged
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Summary:
Word
Embeddings
and Masked
Language
Modeling

« Word embeddings can be static or contextual
« Contextual word embeddings differ for each

instance of the same vocabulary word
depending on the surrounding context

 Bidirectional Transformer encoders are one

way to generate contextual word embeddings

 Masked language modeling is a learning

objective for bidirectional Transformer encoders

that forces the model to predict potentially
masked or otherwise corrupted words, based on
the surrounding context

Natalie Parde - UIC CS 521
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Contextual
Embeddings

e Pass a novel input sentence into a pretrained
language model

« Use the output for a given token as its
contextual embedding

 Employ contextual embeddings in the same
scenarios as static embeddings

» Word representations for downstream
classifiers

« Corpus analysis
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More concretely....

« Given a sequence of text with tokens x4, ..., x,,, use the output vector h; from the
final layer of the pretrained model as the representation of token x; in the context
of that sequence

* In practice, it's common to average across h; from the last four layers of the
pretrained model

Natalie Parde - UIC CS 521
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Contextual Embeddings

* This means that contextual embeddings represent tokens, whereas static
embeddings represented types

« Contextual embeddings are particularly useful for:
« Tasks that require careful disambiguation of polysemous words
 Tasks that require measuring semantic similarity of words in context

« Contextual embeddings are commonly used to represent input to classifiers
during the fine-tuning process for downstream applications
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What if the most useful
language segment for

our task isn’t a single
token?

 Lots of tasks have larger units of
interest:

» Question answering

» Syntactic parsing

» Coreference resolution
« Semantic role labeling

» Solution: Apply a span-oriented
masked learning objective

=



« Span: A contiguous sequence of one or
more words selected from a training
sample, prior to subword tokenization

VI ELS k|ng « How can we select spans for masking?

1. Decide on a span length

* In SpanBERT, this is sampled from a geometric
distribution biased toward shorter spans, with an
upper bound of 10

2. Given this span length, sample a starting '

location
/

Spans

o
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Masking Spans

 All sampling actions are performed at the span level
 All tokens in the selected span are replaced with [MASK]

 All tokens in the selected span are replaced with randomly sampled
tokens

 All tokens in the selected span are left as is

 After sampling actions are performed, the input is passed
‘ through the same Transformer architecture seen previously

\
N\

G
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s <\
* Analogous to “standard” BERT: \

* In 80% of spans, tokens are

Mas ked replaced with [MASK]
* In 10% of spans, tokens are
Lang udage replaced with randomly sampled
tokens

Modeling in
Span BERT unchanged

e Total token substitution is limited
to 15% of the input

* In 10% of spans, tokens are left
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Masking Spans

After such a late night
working on my project,
it was hard to wake up
this morning!

\

L

After such [MASK] [MASK]
‘ night working on my
project, it was hard to

wake up winter driving!

R
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Span-Based Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521
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Span-Based Masked Language Modeling

= At A A A A ——= ——

HEE EE BN EBEE BN HEE BN EBENE BB HE BB
HEE EE EBEE EBEE BN HEE BEE BN BN HE BB
HEE BEE EBEE EBEBE BN HEE BN EBENE BB HEE HN
HEE BEE EE EBE BN HEE BEERE B [ ] HE BB
HEE BEE BN ENE BN HEE BN BN BN HE HNE
After  p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 winter P16 driving p17

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!

Natalie Parde - UIC CS 521 79



Span-Based Masked Language Modeling

Bidirectional Transformer Encoder

p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 winter P16 driving p17

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!
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Span-Based Masked Language Modeling

a late on my  project this  morning

Bidirectional Transformer Encoder

L L L L L L.

L] ] H N L] L]
I I [] [] I I H AR [] []
HEE B L] HEE B L] L]
HE B [] HE BEE B [] []
HEE B HEE EBE EE BB HE B
p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 winter P16 driving p17

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!

After such a late night
working on my project,
it was hard to wake up
this morning!




Predicting
Words
within a
Span

* The predicted word x; at position i is produced
by:
« Concatenating the output embeddings for
the words before and after the span, and
the positional embedding for i

* [hg; he; Pisia]
* (In SpanBERT) passing the result through
a two-layer feedforward network

* s; = FFNN([hg; hg; pi_g41])

 Finding the selected word using a softmax
layer

* y; = softmax(s;)
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* Create span-level
representations based on:

« Tokens within the span
How do  Span boundaries

downstream * Boundary representations are
applications usually derived from:
incorporate span  First and last words of the span
representations’? « Words immediately before or

after the span

I I ‘ Natalie Parde - UIC CS 521
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Span Boundary Objective

L

« Augments the masked language modeling objective in SpanBERT
* L(x) = Lypm(X) + Lgpo (%)

» Leverages the model’s ability to predict words inside a span based on
those just outside of it

* Lspo(X) = —log P(X|Xs—1,Xe+1, Pi—s+1

BVord before the span Word after the span Positipnal embedFjing .indicatin_g which
word in the span is being predicted
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How does
masked
ElleIETe[=

modeling help
us in
downstream
applications?

» Key goal: Build representations of
words or spans

 Word-level MLM: Create
contextual word representations to
be used in similar scenarios to
those produced using techniques

like Word2Vec or GloVe

« Span-level MLM: Create span
representations for larger
segments of text

85
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Bidirectional
Transformer
encoders can
also help us

learn another
important piece
of information!

* In many NLP tasks, it is crucial to learn
the relationship between pairs of
sentences

» Detecting paraphrases
* Determining entailment
* Measuring discourse coherence

Natalie Parde - UIC CS 521

86



BERT also
uses a
second
learning
objective that
helps us
perform this
task.

* What is this other learning
objective?
* Next sentence prediction (NSP)

Natalie Parde - UIC CS 521
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Next Sentence Prediction

After such a late night working

on my project, it was hard to
* Present the model with pairs of wake up this morning! | did @
sentences though, because | had to give

- Predict whether each pair is an actual my project presentation.

pair of adjacent sentences, or a pair of e
unrelated sentences

« In BERT, training pairs are evenly After such a late night working

balanced across these two classes ’ on my project, it was hard to
. . .
« Base the loss on how well the model can wake up this morning! A winter

storm warning has been issued
pairs for your area.

distinguish actual pairs from unrelated
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How does

NSP
training
work?

”

, ‘ Natalie Parde - UIC CS 521

 Two new tokens are added to
the input:
* [CLS] is prepended to the input
sentence pair

* [SEP] is placed between the
sentences and after the final
token of the second sentence

* Embeddings representing
each segment (first sentence
and second sentence) are
added to the word and
positional embeddings
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Additional Tokens

After such a late night \ [CLS] After such a late j
working on my project, night working on my

it was hard to wake up project, it was hard to wake
this morning! | did - up this morning! [SEP] |
though, because | had did though, because | had
to give my project to give my project
presentation. presentation. [SEP]

] e
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Once we’ve made these

adjustments....

131 model = modeling.BertModel(

132 config=bert_config,

133 is_training=is_training,

134 input_ids=input_ids,

135 input_mask=input_mask,

136 token_type_ids=segment_ids,

137 use_one_hot_embeddings=use_one_hot_embeddings)

138

139 (masked_1m_1loss,

140 masked_1m_example_loss, masked_lm_log_probs) = get_masked_lm_output(
141 bert_config, model.get_sequence_output(), model.get_embedding_table(),
142 masked_1lm_positions, masked_lm_ids, masked_lm_weights)

143

144 (next_sentence_loss, next_sentence_example_loss,

145 next_sentence_log_probs) = get_next_sentence_output(

146 bert_config, model.get_pooled_output(), next_sentence_labels)
147

148 total_loss = masked_1lm_loss + next_sentence_loss

The output vector associated with the
[CLS] token represents the next sentence
prediction

Specifically, a learned set of classification
weights Wysp € R?*4" s used to predict
one of two classes from the raw [CLS]
vector h;

* y; = softmax(Wysph;)

A cross-entropy loss is used for the NSP
loss

In BERT, the final loss function is a linear
combination of the NSP and MLM loss
functions
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Next Sentence Pre

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |
did though, because | had
to give my project
presentation. [SEP]

Iction
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Next Sentence Prediction

[CLS] p1

EEEEE |
EEEEE [
EEEEE
EEEEN |
S [ [ [ [ T‘
o HENENE
EEEEN |
EEEEE
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After
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[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.
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Next Sentence Prediction

Bidirectional Transformer Encoder

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.
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Next Sentence Prediction

— .1l

Bidirectional Transformer Encoder

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.

Natalie Parde - UIC CS 521 95



BERT-Specific Training Details

* Corpora:

« Early Transformer-based language models (including BERT) used
BooksCorpus (800M words) and English Wikipedia (2.5B words)

* More recent state-of-the-art models learn from even larger corpora!

« When training BERT, pairs of sentences were sampled such that their maximum
combined length does not exceed 512 tokens

 Original BERT models converged after approximately 40 training iterations

Natalie Parde - UIC CS 521
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Training models like BERT

can be expensive and time-
consuming....

* However, this pretraining process can result in
models that can be used and reused for numerous
tasks

» Pretrained word embeddings and learned
parameters to produce new contextual
embeddings

« Base models that can be fine-tuned for transfer
learning purposes
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Transfer Learning
through Fine-Tuning

* Pretrained language models facilitate
generalization across large text corpora

* This generalization makes it easier to
incorporate these models effectively in
downstream applications

* The process of learning an interface between a
pretrained language model and a specific
downstream task is called fine-tuning
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Fine-Tuning

 Facilitates the creation of downstream applications
on top of pretrained language models through the
addition of a small set of application-specific
parameters

« Labeled data from the downstream task domain is
used to train these application-specific parameters

 In general, the pretrained language model is
frozen or only minimally adjusted during this
process

Natalie Parde - UIC CS 521
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Many
different
applications
have made
use of fine-
tuning!

« Sequence classification
« Sequence labeling

« Sentence-pair inference
» Span-based operations

Natalie Parde - UIC CS 521
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Sequence

Classification

Models often represent an input
sequence with a single representation

For example:

 Final hidden layer of an RNN
model

» [CLS] vector in a bidirectional
Transformer model (e.g., BERT)

This representation is sometimes
referred to as a sentence or
document embedding

This representation serves as input to
a classifier head for the downstream
task

101
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* Learn a set of weights, W € R™ 4 to map the

How do we fine- sequence representation to a set of scores over
tune for n possible classes

* d; is the dimensionality of the language
sequc:)r_lce ] model’'s hidden layers
cIaSS|f|cat|on * Requires supervised training data for the target
tasks? S

» Learning process that optimizes W¢ is driven by
cross-entropy loss between the softmax output
and the target task label

Natalie Parde - UIC CS 521 102



LZG SO JIN - apled 3ljejeN

How do we
classify test
documents
for sequence
classification
tasks?

» Pass the input sample through
the pretrained language model
to generate an output
representation hc¢yg

* Multiply the output
representation by the learned
weights W

» Pass the resulting vector
through a softmax:

« y = softmax(Wchcps)




Example: Sequence Classification

I’'m so excited about the
winter storm warning.

e 9|
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Bidirectional Transformer Encoder
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Example
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Bidirectional Transformer Encoder
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What differs between this and earlier
neural classifiers?

L

* |[f we want, we can use the computed loss to update not only the
classifier weights, but also the weights for the pretrained language
model itself

« However, substantial changes are rarely necessary!

« Reasonable classification performance is often achieved with only
minimal changes to the language model parameters

* These changes are generally limited to updates over the final few
layers of the model
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Pair-Wise
Sequence
Classification

« Subcategory of sequence
classification that focuses
on classifying pairs of
iInput sentences

« Useful for:

 Logical entailment
» Paraphrase detection

» Discourse analysis




« Similar to pretraining with the NSP

- bjecti
How does fine- e
. » Pairs of labeled sentences are
tunmg work for presented to the model, separated by
pair-wise [SEP] and prepended with [CLS]
sequence » During classification, the output [CLS]

vector is multiplied by classification weights
and passed through a softmax to generate
label predictions

classification?




Example: Pair-Wise Sequence Classification (Entailment Task)

=

II « Popular NLP task, also referred to as natural language inference :

| Classify sentence pairs such that: :

I « Sentence A entails Sentence B !

I « Sentence A contradicts Sentence B I

\ « The relationship between Sentence A and Sentence B is neutral Y,
D R N T T T — — N D Eas o N pam N gy S SN D g -
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Example: Pair-Wise Sequence Classification (Entailment Task)

It's a snow day! There
IS snow outside.

Lo
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Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] It's a snow day!

It's a snow day! There :
oA snow oAy mmm) |(SEP] There is snow
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Example: Pair-Wise Sequence Classification (Entailment Task)
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[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]

y
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Example: Pair-Wise Sequence Classification (Entailment Task)
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[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]
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Example: Pair-Wise Sequence Classification (Entailment Task)

Entails

—uli

Bidirectional Transformer Encoder

[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]
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Sequence Labeling

« Similar to approach used for sequence classification

» However, the output vector for each input token is passed to a
classification head that produces a softmax distribution over the possible
17 classes
* The output tag sequence can be determined by a variety of methods
« Common: Greedy approach accepting the argmax class for each token
 y; = softmax(WyZz;), where k € K is the set of tags for the task

e t; = argmax(y;)
k

 Alternative: Distribution over labels can be passed to a CRF layer,
allowing consideration of global tag-level transitions
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Common
Sequence
Labeling Tasks

 Part-of-speech tagging
« Named entity recognition
« Shallow parsing
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Example: Sequence Labeling

It is a beautiful winter
| day in Chicago.

Natalie Parde - UIC CS 521
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Example: Sequence Labeling

PRP VBZ DT JJ NN NN IN NNP

t t t t t t t t
AEEEE ESEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEE
1 1

Bidirectional Transformer Encoder

[CL

K

beautiful p5 winter
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Cpmpllcatlon « Subword tokenization doesn't play
with BERT well with tasks requiring word-level

(and related labels 3
mOdGlS)....  How to address this”

 During training, assign the gold
standard label for a word to all its
constituent subwords

 During testing, recover word-level
labels from subwords as part of
the decoding process



Recovering
Word-Level

Labels

« Simplest approach:

* For a given word, use the predicted
label for its first subword as the
label for the entire word

* More complex approaches consider
the distribution of label probabilities
across all subwords for a given word

NNP DT VB NNP
Nat #a #lie - Natalie
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Span-Based
Sequence

Labeling

 Carries attributes of both
sequence classification and
token-level sequence labeling

« Goal: Make decisions using
representations of spans of
tokens

« Common Tasks:

* |dentify spans of interest

 Classify spans

» Determine relations among
spans
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Common
Span-Based
Sequence
Labeling
Applications

Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution



Span-
Based

Sequence
Labeling

« Given an input sequence x comprising
T tokens (x4, x5, ...,xT), @ spanis a
contiguous sequence of tokens from
xitoxjsuchthat1<i<;j<T

T(Tz_l) possible spans

* Most span-based models impose an
application-specific length limit L
* Legal spans are those where (j —i) <L

* This results in

» Let the set of legal spans in x be
represented as S(x)

127
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How do we
represent
spans for

span-based
sequence
labeling?

* Most span representations incorporate
both:

« Span boundary representations
« Summary representations of span content

 These component representations are
often concatenated with one another
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Span Boundary Representations

« Simple approach: Just use the contextual embeddings of the start and
end tokens of the span as the span boundary representations

* However, internally this doesn’t offer a way to distinguish between
ez the start and end tokens

« Words may carry different meaning at the beginning of a span than
at the end!
 More complex approach: Use separate feedforward networks to learn
representations for the beginning and end of the span
* s; = FFNN(h;)
* €; = FFNN,(h;)
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Summary Representations

« Simple approach: Just use the average of the output embeddings for
words within the span as the summary representation

° gl] (] l)+12k L k
 More complex approach: Place more representational emphasis on
the head of the span

« Can be done using syntactic parse information (if available) or a
self-attention layer (if not)

* gij = SelfAttention(h;.;)

130

L¢SG SO OIN - 8pled aljeleN



pied aljeieN

1¢GSOOIN-9

How does
fine-tuning
work In
span-

based

seqguence
labeling?

» Learn the weights/parameters for:
 Task classification head
« Boundary representations
e Summary representation

 Final classification output:
* span;; = [s;; €j; 8]
* yij = softmax(FFNN(span;;))



Example: Span-Based Sequence Labeling

) It is a beautiful winter day in Chicago.
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Example: Span-Based Sequence Labeling
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Example: Span-Based Sequence Labeling
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Example: Span-Based Sequence Labeling




Example: Span-Based Sequence Labeling

Self Attention

Self Attention

Self Attention

e




Example: Span-Based Sequence Labeling

Self Attention

~

Self Attention

ok

4
Bidirectional Transformer Encoder

Self Attention




Example: Span-Based Sequence Labeling

FFNN FFNN FFNN

t t t

Self Attention / Self Attention \ \ Self Attention /




Example: Span-Based Sequence Labeling

MNP MNP MPP

4 4
FFNN FFNN FFNN

t t t

Self Attention / Self Attention \ \ Self Attention /




Advantages of » Only require one label assignment per

span

Span-Based e In comparison, BIO-based methods
require labels for each constituent

Sequence token

Labeling * Naturally accommodate hierarchical

and/or overlapping labels

« BlO-based methods assign a single
label per token

Natalie Parde - UIC CS 521
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We’ve learned a
lot about transfer
learning,
pretrained
models, and

contextual
embeddings
...how can we
implement them?

* https://huggingface.co/docs/transf
ormers/index

 TensorFlow

* https://www.tensorflow.org/text/tut
orials/classify text with bert

e PyTorch

* https://pytorch.org/hub/huggingfac

e pytorch-transformers/
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Summary:
Transfer
Learning with
Pretrained

Language
Models and
Contextual
Embeddings

 Bidirectional Transformer encoders learn
representations by optimizing for two tasks:

 Masked language modeling
* Next sentence prediction
* Pretrained language models can be fine-
tuned for a variety of downstream tasks by
adding classification heads to the end of the
model and (optionally) updating the weight
parameters in its last few layers
* These tasks may include:
» Sequence classification
« Sequence labeling
« Span-based sequence labeling
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