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Language 
continually 
develops 
and 
evolves.

• Estimated vocabulary size of a young 
adult speaker of American English: ~30k-
100k words

• On average, 7-10 new words need to be 
learned per day through age 20!

• Active day-to-day vocabulary: ~2k words
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How do humans learn the 
bulk of their vocabulary?

• Early on: Vocabulary is learned via 
spoken interactions with peers and 
caregivers

• Words learned this way form the 
majority of individuals’ active, day-to-
day vocabulary

• Later: Vocabulary is mostly learned as a 
by-product of reading

equivocal erudite

audacious
laudable

vacillate loquacious laconic
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Can computers 
learn language 
in the same 
way?

• Learning language through experience 
(e.g., through spoken interactions with 
peers in a situated environment) is an 
example of grounded language 
learning

• Meaning is tied to an experiential 
(either implied or explicit) common 
ground between speakers

red red
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Distributional 
Hypothesis

• Learning language based 
solely on its context is an 
example of the distributional 
hypothesis

• Words are defined by the 
company that they keep!
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The distributional 
hypothesis is the 
underlying 
intuition guiding 
modern word 
embedding 
approaches.

• Word embedding techniques “learn” 
meaning by measuring the frequency 
with which words occur close to one 
another in very large text corpora

• Recall:
• Word2Vec
• GloVe
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(+|(t,c))

• Train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

Natalie Parde - UIC CS 521 7



What does this look like?

super

Start with an input t
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What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r
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What does this look like?

…

Feed it into a layer of n units 
(where n is the desired 
embedding size), each of 
which computes a weighted 
sum of inputs0

0

1

…

0

su
pe

r
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What does this look like?

…

Feed the outputs from those 
units into a final unit that 
predicts whether a word c is 
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r
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What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output 
units for every possible c

0

0

1

…

0

su
pe

r
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate 
layer applies a specific 
weight to each input it 
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$

Natalie Parde - UIC CS 521 13



Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot 
vectors, this means we’ll end 
up with a specific set of 
weights (one for each unit) 
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
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These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6
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How do we optimize these 
weights over time?

• The weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the 

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar 

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time
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Since we initialize 
our weights 
randomly, the 
classifier’s first 
prediction will 
almost certainly be 
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and 
c1 so if we tried to make these predictions 
again, we’d have lower error values
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4
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What is our 
training data?

• We can assume that all occurrences of words in similar contexts in our training corpus are 
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝!(𝑤), where 𝛼

is a weight:
• 𝑝,(𝑤) = count(.)!

∑"# count(.#)!

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly higher 

probability of being randomly sampled
• Assuming we want twice as many negative samples as 

positive samples, we can thus randomly select noise words 
according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples
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Alternatives to Word2Vec

• Word2Vec is an example of a 
predictive word embedding model

• Learns to predict whether words 
belong in a target word’s context

• Other models are count-based
• Remember co-occurrence 

matrices?
• GloVE combines aspects of both 

predictive and count-based models
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Global Vectors for Word 
Representation (GloVe)
• Co-occurrence matrices quickly grow extremely large
• Intuitive solution to increase scalability?

• Dimensionality reduction!
• However, typical dimensionality reduction strategies may result in too 

much computational overhead
• GloVe learns to predict weights in a lower-dimensional space that correspond 

to the co-occurrence probabilities between words
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GloVe

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

• GloVe models also encode the ratios of co-occurrence probabilities between 
different words …this makes these vectors useful for word analogy tasks
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Weighting function:

𝑓 𝑋!# = *(
𝑋!#
𝑥$%&

)' , 𝑋!# < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!# 	)+
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!# 	)+

Minimize the cost function to 
learn ideal embedding values 
for wi and wj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤!"𝑤# + 𝑏! + 𝑏# = log𝑋!#

Define a cost function
𝐽 = 	<

!()

*

<
#()

*

𝑓(𝑋!#)(𝑤!"𝑤# + 𝑏! + 𝑏# − log𝑋!# 	)+

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3
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Why does 
GloVe 
work?

• Ratios of co-occurrence probabilities 
have the potential to encode word 
similarities and differences

• These similarities and differences are 
useful components of meaning

• GloVe embeddings perform particularly well 
on analogy tasks
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Word2Vec 
and GloVe 
are both 
static word 
embeddings.

• A given word has the same embedding, 
regardless of its context

• Reasonable in many cases, but not always
• What if a word has multiple senses?
• What if a word starts appearing in new 

contexts?

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle 
washed up on the bank.0.4 0.2 0.5 0.7 0.1

Are you going to bank on that 
proposal being funded? 0.4 0.2 0.5 0.7 0.1
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Contextual 
Word 

Embeddings

• Word representations that differ depending on 
the context in which the word appears

• Vocabulary words do not map to specific, 
predefined vectors

• How are contextual word embeddings 
learned?

• Often, pretrained language models
• Popular method: BERT

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle 
washed up on the bank.0.4 0.3 0.2 0.7 0.5

Are you going to bank on that 
proposal being funded? 0.1 0.2 0.4 0.3 0.1
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Bidirectional 
Encoder 
Representations 
from 
Transformers 
(BERT)

• Popular method for learning 
contextual word representations 
(and for performing many other 
tasks!)

• Many variations
• DistilBERT
• RoBERTa
• SpanBERT
• ALBERT

• Makes use of a bidirectional 
Transformer encoder
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BERT is everywhere!
Natalie Parde - UIC CS 521 37



Bidirectional 
Transformer 
Encoders

• We’ve already seen how “causal” (left to right) 
Transformers work

• Well-suited for language modeling problems since 
they prevent consideration of future context

• However, these models are inherently constrained
• What about tasks for which “future” context is readily 

available?

is

CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score &! , &" = (! ⋅ *"

qis

!!" = softmax score -!, -"

+! =-.!"/"
"#!

k521

v521
q521

kCS

vCS
qCS
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Many NLP 
tasks don’t 
need to 
restrict the 
model from 
viewing 
future 
context.

• Sequence classification
• (Sometimes) sequence labeling
• In general, most tasks that aren’t

performed in real time
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Transformers aren’t innately constrained to 
processing from sequence beginning to end.

• With language modeling, self-attention computations are limited to 
current and prior context to avoid trivializing the problem

• Self-attention can be computed using the same equations we’ve 
already seen when allowing future context to be considered

• Then, the encoder produces sequences of output embeddings that 
are contextualized based on the entire input sequence
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Bidirectional Self-Attention Layer
is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥% , 𝑥& = 𝑞% ⋅ 𝑘&

qis
𝛼!" = softmax score 𝑥!, 𝑥"

𝑦% =<
&'%

𝛼%&𝑣&

k521

v521q521

kCS

vCS
qCS
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Bidirectional Self-Attention Layer
is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥% , 𝑥& = 𝑞% ⋅ 𝑘&

qis
𝛼!" = softmax score 𝑥!, 𝑥"

𝑦% =<
&'%

𝛼%&𝑣&

k521

v521q521

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest
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More 
formally….

• Step 1: Generate key, query, 
and value embeddings for each 
element of the input vector 𝐱

• q> = 𝐖𝐐𝐱>
• k> = 𝐖𝐊𝐱>
• v> = 𝐖𝐕𝐱>
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More 
formally….

• Step 2: Compute attention 
weights ⍺ by applying a softmax 
over the element-wise 
comparison scores between all 
possible query-key pairs in the 
full input sequence

• score>B = 𝐪> - 𝐤B
• 𝛼>B =

CDE(score!")
∑#$%
& CDE(score!#)

Natalie Parde - UIC CS 521 44



More 
formally….

• Step 3: Compute the output 
vector 𝐡+ as the attention-
weighted sum of all of the input 
value vectors v

• 𝐡𝒊 = ∑BHIJ 𝛼>BvB
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Additional 
Notes

• Each output vector 𝐡𝒊 is 
computed independently

• This allows us to use matrix 
operations to parallelize the 
input processing

Natalie Parde - UIC CS 521 46



How can we do this?

• Let the embedding of each input token, 𝐱𝒊, serve as one row of the input matrix X ∈ ℝ@×B$

• Multiply X by the key, query, and value weight matrices (𝐖𝐊,𝐖𝐐,𝐖𝐕 ∈ ℝB×B) to produce the 
key, query, and value matrices (𝐊,𝐐, 𝐕 ∈ ℝ@×B)

• 𝐊 = 𝐗𝐖𝐊

• 𝐐 = 𝐗𝐖𝐐

• 𝐕 = 𝐗𝐖𝐕

• This means that all key-query comparisons can be computed simultaneously by multiplying 𝐐
and 𝐊𝐓 in a single operation

• Scale the scores, take the softmax, and multiply the result by 𝐕 to produce a matrix 
SelfAttention(𝐐, 𝐊, 𝐕) ∈ ℝ@×B where each row contains a contextualized output embedding 
corresponding to a given input token

• SelfAttention 𝐐, 𝐊, 𝐕 = softmax 𝐐𝐊𝐓

B&
𝐕
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Visually….

q) K k) q) K k+ q) K k, q) K k- q) K k.

q+ K k) q+ K k+ q+ K k, q+ K k- q+ K k.

q, K k) q, K k+ q, K k, q, K k- q, K k.

q- K k) q- K k+ q- K k, q- K k- q- K k.

q. K k) q. K k+ q. K k, q. K k- q. K k.

𝐐𝐊𝐓 matrix for a causal 
Transformer encoder
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Visually….

q) K k) q) K k+ q) K k, q) K k- q) K k.

q+ K k) q+ K k+ q+ K k, q+ K k- q+ K k.

q, K k) q, K k+ q, K k, q, K k- q, K k.

q- K k) q- K k+ q- K k, q- K k- q- K k.

q. K k) q. K k+ q. K k, q. K k- q. K k.

𝐐𝐊𝐓 matrix for a 
bidirectional 
Transformer encoder
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Bidirectional 
Transformer 
Encoders

• All other elements remain the same as seen in causal 
Transformers!

• Inputs are segmented using subword tokenization
• Inputs are combined with positional embeddings
• Transformer blocks include a self-attention layer and 

a feedforward layer, augmented with normalization 
layers and residual connections

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output
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How does BERT 
work specifically?
• BERT: The original bidirectional 

Transformer encoder model
• Subword vocabulary of 30k tokens 

generated using the WordPiece
algorithm

• 768-dimensional hidden layers
• 12 Transformer blocks
• 12 attention heads in each self-

attention layer
• In total, this comprises 100M 

trainable parameters!
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Training a 
WordPiece 

Tokenizer

N
atalie Parde - U

IC
 C

S 521

• Start with special tokens and an initial alphabet
• Split text in the training corpus at the character level, 

adding a prefix to all characters inside the word
• language → l ##a ##n ##g ##u ##a ##g ##e

• Then:
• Compute scores for each adjacent pair of tokens 
𝑡" and 𝑡#

• score 𝑡", 𝑡# = freq(%G%H)
freq(%G)×freq(%H)

• Merge the highest-scoring pair of tokens and add 
the merged token to the vocabulary

• Repeat until the desired vocabulary size is 
reached

52



WordPiece Tokenization
• Starting at the beginning of the text to tokenize, find the 

longest matching subword in the vocabulary
• Split on this subword
• Move forward to the first position after the split
• Repeat

• If there are no matching subwords in the vocabulary, 
tokenize the text as [UNK]
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Additional BERT Details

• Since subword tokenization is used, for some NLP tasks (e.g., named 
entity tagging) it is necessary to map subwords back to words

• BERT is costly to train (time and memory requirements grow 
quadratically with input length)

• To increase efficiency, a fixed input length of 512 subword tokens 
is used---when working with longer texts, it’s necessary to partition 
the text into different segments

• More details to come during our discussions of representation 
learning!
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Training 
Bidirectional 
Encoders

• With causal Transformer encoders, we 
employed autoregressive training

• Autoregressive training: Train the model to 
iteratively predict the next word in a text

• With bidirectional Transformer encoders, this 
task becomes trivial …the answer is now 
directly available from the context!

CS 521 is the greatest Bidirectional 
Transformer

CS

521

is

the

?
🤷
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A new task is 
needed for training 
bidirectional 
encoders….

• Cloze Task: Instead of trying to predict 
the next word, learn how to predict the 
best word to fill in the blank

• How do we do this?
• During training, mask out one or 

more elements from the input 
sequence

• Generate a probability 
distribution over the vocabulary 
for each of the missing elements

• Use the cross-entropy loss from 
these probabilities to drive the 
learning processAfter such a late _____ 

working on my project, it was 
____ to wake up this morning!
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Cloze Task
• This task can be generalized to any method that:

1. Corrupts the training input
2. Asks the model to recover the original 

training input

• What are some ways to corrupt the training input?
• Masks
• Substitutions
• Reorderings
• Deletions
• Extraneous insertions into the training text
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Masking 
Words

• Original approach for corrupting input 
when training bidirectional Transformer 
encoders

• BERT uses a masking technique known 
as masked language modeling (MLM)

After such a late night working 
on my project, it was hard to 
wake up this morning!
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Masked 
Language 
Modeling

• Uses unannotated text from a large corpus
• Presents the models with sentences from the 

corpus
• For each sentence, a random sample of 

tokens is selected to be used in one of the 
following ways:

• The token is replaced with a [MASK] token
• The token is replaced with another 

randomly sampled token
• The token is left unchanged
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What is the intuition behind these corruptions?

60

N
atalie Parde - U

IC
 C

S 521

• [MASK] token: The model learns to predict the masked words using 
only the available context ([MASK] isn’t even in the training 
vocabulary!)

• Random token: The model learns to favor contextual cues more 
heavily than the word itself when encoding meaning

• Same token: The model learns to rely at least a little bit on the 
specific word in its specific contextual position



Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning
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Masked 
Language 
Modeling

• Training objective:
• Predict the original inputs for each 

of the sampled tokens using a 
bidirectional encoder

• Make better predictions with each 
iteration based on cross-entropy 
loss

• Gradients that form the basis for 
weight updates are based on 
average loss over the sampled 
learning tokens

• Although all tokens play a role in the 
self-attention layer, only the 
sampled tokens are used for 
learning

Natalie Parde - UIC CS 521 67



Masked 
Language 

Modeling in 
BERT

• Same process as shown, but uses subword
tokens instead

• 15% of tokens in the training sequence are 
sampled

• Of these:
• 80% are replaced with [MASK]
• 10% are replaced with randomly 

selected tokens
• 10% are left unchanged
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Summary: 
Word 

Embeddings 
and Masked 

Language 
Modeling

• Word embeddings can be static or contextual
• Contextual word embeddings differ for each 

instance of the same vocabulary word 
depending on the surrounding context

• Bidirectional Transformer encoders are one 
way to generate contextual word embeddings

• Masked language modeling is a learning 
objective for bidirectional Transformer encoders 
that forces the model to predict potentially 
masked or otherwise corrupted words, based on 
the surrounding context
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Contextual 
Embeddings
• Pass a novel input sentence into a pretrained 

language model
• Use the output for a given token as its 

contextual embedding
• Employ contextual embeddings in the same 

scenarios as static embeddings
• Word representations for downstream 

classifiers
• Corpus analysis
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More concretely….
• Given a sequence of text with tokens 𝑥", … , 𝑥(, use the output vector h) from the 

final layer of the pretrained model as the representation of token 𝑥) in the context 
of that sequence

• In practice, it’s common to average across h) from the last four layers of the 
pretrained model
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Contextual Embeddings

• This means that contextual embeddings represent tokens, whereas static 
embeddings represented types

• Contextual embeddings are particularly useful for:
• Tasks that require careful disambiguation of polysemous words
• Tasks that require measuring semantic similarity of words in context

• Contextual embeddings are commonly used to represent input to classifiers 
during the fine-tuning process for downstream applications
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What if the most useful 
language segment for 
our task isn’t a single 
token?

• Lots of tasks have larger units of 
interest:

• Question answering
• Syntactic parsing
• Coreference resolution
• Semantic role labeling

• Solution: Apply a span-oriented
masked learning objective
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Masking 
Spans

• Span: A contiguous sequence of one or 
more words selected from a training 
sample, prior to subword tokenization

• How can we select spans for masking?
1. Decide on a span length

• In SpanBERT, this is sampled from a geometric 
distribution biased toward shorter spans, with an 
upper bound of 10

2. Given this span length, sample a starting 
location
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Masking Spans
• All sampling actions are performed at the span level

• All tokens in the selected span are replaced with [MASK]
• All tokens in the selected span are replaced with randomly sampled 

tokens
• All tokens in the selected span are left as is

• After sampling actions are performed, the input is passed 
through the same Transformer architecture seen previously
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Masked 
Language 
Modeling in 
SpanBERT

• Analogous to “standard” BERT:
• In 80% of spans, tokens are 

replaced with [MASK]
• In 10% of spans, tokens are 

replaced with randomly sampled 
tokens

• In 10% of spans, tokens are left 
unchanged

• Total token substitution is limited 
to 15% of the input
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Masking Spans

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such [MASK] [MASK] 
night working on my 
project, it was hard to 
wake up winter driving!
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Span-Based Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such [MASK] [MASK] 
night working on my 
project, it was hard to 
wake up winter driving!

Natalie Parde - UIC CS 521 78



Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such [MASK] [MASK] 
night working on my 
project, it was hard to 
wake up winter driving!
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Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such [MASK] [MASK] 
night working on my 
project, it was hard to 
wake up winter driving!
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Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

late project morning

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such [MASK] [MASK] 
night working on my 
project, it was hard to 
wake up winter driving!

a on my this
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Predicting 
Words 
within a 
Span

• The predicted word 𝑥* at position 𝑖 is produced 
by:

• Concatenating the output embeddings for 
the words before and after the span, and 
the positional embedding for 𝑖

• [𝐡+; 𝐡,; 𝐩*-+./]
• (In SpanBERT) passing the result through 

a two-layer feedforward network
• 𝐬* = FFNN([𝐡+; 𝐡,; 𝐩*-+./])

• Finding the selected word using a softmax 
layer

• 𝑦* = softmax(𝐬*)
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How do 
downstream 
applications 
incorporate span 
representations?

• Create span-level 
representations based on:

• Tokens within the span 
• Span boundaries

• Boundary representations are 
usually derived from:

• First and last words of the span
• Words immediately before or 

after the span
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Span Boundary Objective

• Augments the masked language modeling objective in SpanBERT
• 𝐿 𝐱 = 𝐿LML 𝐱 + 𝐿NOP(𝐱)

• Leverages the model’s ability to predict words inside a span based on 
those just outside of it

• 𝐿NOP 𝐱 = − log𝑃(𝐱|𝐱QRI, 𝐱STI, 𝐩>RQTI)

Word before the span Word after the span Positional embedding indicating which 
word in the span is being predicted
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How does 
masked 

language 
modeling help 

us in 
downstream 

applications?



Bidirectional 
Transformer 
encoders can 
also help us 
learn another 
important piece 
of information!

• In many NLP tasks, it is crucial to learn 
the relationship between pairs of 
sentences

• Detecting paraphrases
• Determining entailment
• Measuring discourse coherence
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BERT also 
uses a 
second

learning 
objective that 

helps us 
perform this 

task.

• What is this other learning 
objective?

• Next sentence prediction (NSP)
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Next Sentence Prediction

• Present the model with pairs of 
sentences

• Predict whether each pair is an actual
pair of adjacent sentences, or a pair of 
unrelated sentences

• In BERT, training pairs are evenly 
balanced across these two classes

• Base the loss on how well the model can 
distinguish actual pairs from unrelated 
pairs

After such a late night working 
on my project, it was hard to 
wake up this morning!  I did 
though, because I had to give 
my project presentation.

After such a late night working 
on my project, it was hard to 
wake up this morning!  A winter 
storm warning has been issued 
for your area.
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How does 
NSP 
training 
work?

• Two new tokens are added to 
the input:

• [CLS] is prepended to the input 
sentence pair

• [SEP] is placed between the 
sentences and after the final 
token of the second sentence

• Embeddings representing 
each segment (first sentence 
and second sentence) are 
added to the word and 
positional embeddings
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Additional Tokens

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

Natalie Parde - UIC CS 521 90



Once we’ve made these 
adjustments….

• The output vector associated with the 
[CLS] token represents the next sentence 
prediction

• Specifically, a learned set of classification 
weights 𝐖𝐍𝐒𝐏 ∈ ℝL×B$ is used to predict 
one of two classes from the raw [CLS] 
vector 𝐡M

• 𝑦M = softmax(𝐖𝐍𝐒𝐏𝐡M)

• A cross-entropy loss is used for the NSP 
loss

• In BERT, the final loss function is a linear 
combination of the NSP and MLM loss 
functions
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Next Sentence Prediction

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]
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Next Sentence Prediction

[CLS] p1 s1

…

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

1

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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BERT-Specific Training Details
• Corpora:

• Early Transformer-based language models (including BERT) used 
BooksCorpus (800M words) and English Wikipedia (2.5B words)

• More recent state-of-the-art models learn from even larger corpora!
• When training BERT, pairs of sentences were sampled such that their maximum 

combined length does not exceed 512 tokens
• Original BERT models converged after approximately 40 training iterations
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Training models like BERT 
can be expensive and time-
consuming….
• However, this pretraining process can result in 

models that can be used and reused for numerous 
tasks

• Pretrained word embeddings and learned 
parameters to produce new contextual 
embeddings

• Base models that can be fine-tuned for transfer 
learning purposes
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Transfer Learning 
through Fine-Tuning
• Pretrained language models facilitate 

generalization across large text corpora
• This generalization makes it easier to 

incorporate these models effectively in 
downstream applications

• The process of learning an interface between a 
pretrained language model and a specific 
downstream task is called fine-tuning
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Fine-Tuning
• Facilitates the creation of downstream applications 

on top of pretrained language models through the 
addition of a small set of application-specific 
parameters

• Labeled data from the downstream task domain is 
used to train these application-specific parameters

• In general, the pretrained language model is 
frozen or only minimally adjusted during this 
process
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Many 
different 
applications 
have made 
use of fine-
tuning!

• Sequence classification
• Sequence labeling
• Sentence-pair inference
• Span-based operations
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Sequence 
Classification



How do we fine-
tune for 
sequence 
classification 
tasks?

• Learn a set of weights, 𝐖𝐂 ∈ ℝ(×+N, to map the 
sequence representation to a set of scores over 
𝑛 possible classes

• 𝑑, is the dimensionality of the language 
model’s hidden layers

• Requires supervised training data for the target 
task

• Learning process that optimizes 𝐖𝐂 is driven by 
cross-entropy loss between the softmax output 
and the target task label
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How do we 
classify test 
documents 

for sequence 
classification 

tasks?

N
atalie P

arde - U
IC

 C
S

 521

• Pass the input sample through 
the pretrained language model 
to generate an output 
representation 𝐡𝐂𝐋𝐒

• Multiply the output 
representation by the learned 
weights 𝐖𝐂

• Pass the resulting vector 
through a softmax:

• 𝐲 = softmax(𝐖𝐂𝐡𝐂𝐋𝐒)



Example: Sequence Classification

Natalie Parde - UIC CS 521 104

I’m so excited about the 
winter storm warning.



Example: Sequence Classification

[CLS] p1
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I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



Example: Sequence Classification
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[CLS] p1

Bidirectional Transformer Encoder

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



Example: Sequence Classification

[CLS] p1

Bidirectional Transformer Encoder

sarcasm
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I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



What differs between this and earlier 
neural classifiers?

• If we want, we can use the computed loss to update not only the 
classifier weights, but also the weights for the pretrained language 
model itself

• However, substantial changes are rarely necessary!
• Reasonable classification performance is often achieved with only 

minimal changes to the language model parameters
• These changes are generally limited to updates over the final few 

layers of the model
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Pair-Wise 
Sequence 

Classification
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• Subcategory of sequence 
classification that focuses 
on classifying pairs of 
input sentences

• Useful for:
• Logical entailment
• Paraphrase detection
• Discourse analysis



How does fine-
tuning work for 
pair-wise 
sequence 
classification?

• Similar to pretraining with the NSP 
objective

• Pairs of labeled sentences are 
presented to the model, separated by 
[SEP] and prepended with [CLS]

• During classification, the output [CLS] 
vector is multiplied by classification weights 
and passed through a softmax to generate 
label predictions
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Example: Pair-Wise Sequence Classification (Entailment Task)
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• Popular NLP task, also referred to as natural language inference
• Classify sentence pairs such that: 

• Sentence A entails Sentence B
• Sentence A contradicts Sentence B
• The relationship between Sentence A and Sentence B is neutral



Example: Pair-Wise Sequence Classification (Entailment Task)
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It’s a snow day!  There 
is snow outside.



Example: Pair-Wise Sequence Classification (Entailment Task)
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It’s a snow day!  There 
is snow outside.

[CLS] It’s a snow day! 
[SEP]  There is snow 
outside. [SEP]



[CLS] p1
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It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

Example: Pair-Wise Sequence Classification (Entailment Task)

…

[CLS] It’s a snow day! [SEP]  
There is snow outside. [SEP]

s1 s1 s1 s1 s1 s1 s1 s1



Bidirectional Transformer Encoder
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Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]  
There is snow outside. [SEP]



Bidirectional Transformer Encoder

Entails
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Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]  
There is snow outside. [SEP]



Sequence Labeling
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• Similar to approach used for sequence classification
• However, the output vector for each input token is passed to a 

classification head that produces a softmax distribution over the possible 
classes

• The output tag sequence can be determined by a variety of methods
• Common: Greedy approach accepting the argmax class for each token

• 𝐲* = softmax(𝐖0𝐳*), where 𝑘 ∈ 𝐾 is the set of tags for the task
• 𝐭* = argmax

1
(𝐲*)

• Alternative: Distribution over labels can be passed to a CRF layer, 
allowing consideration of global tag-level transitions



Common 
Sequence 
Labeling Tasks
• Part-of-speech tagging
• Named entity recognition
• Shallow parsing
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Example: Sequence Labeling
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It is a beautiful winter 
day in Chicago.



Example: Sequence Labeling

[CLS] p1
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Sequence Labeling

Bidirectional Transformer Encoder
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Sequence Labeling

Bidirectional Transformer Encoder

PRP
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

VBZ DT JJ NN NN IN NNP



Complication 
with BERT 
(and related 
models)….

123
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• Subword tokenization doesn’t play 
well with tasks requiring word-level 
labels

• How to address this?
• During training, assign the gold 

standard label for a word to all its 
constituent subwords

• During testing, recover word-level 
labels from subwords as part of 
the decoding process



Recovering 
Word-Level 
Labels

• Simplest approach:
• For a given word, use the predicted 

label for its first subword as the 
label for the entire word

• More complex approaches consider 
the distribution of label probabilities 
across all subwords for a given word
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Nat #a #lie

NNP DT VB

Natalie

NNP



Span-Based 
Sequence 
Labeling

• Carries attributes of both 
sequence classification and 
token-level sequence labeling

• Goal: Make decisions using 
representations of spans of 
tokens

• Common Tasks:
• Identify spans of interest
• Classify spans
• Determine relations among 

spans
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Common 
Span-Based 
Sequence 
Labeling 
Applications
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Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution



Span-
Based 
Sequence 
Labeling



How do we 
represent 
spans for 
span-based 
sequence 
labeling?
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• Most span representations incorporate 
both:

• Span boundary representations
• Summary representations of span content

• These component representations are 
often concatenated with one another



Span Boundary Representations

129
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• Simple approach: Just use the contextual embeddings of the start and 
end tokens of the span as the span boundary representations

• However, internally this doesn’t offer a way to distinguish between
the start and end tokens

• Words may carry different meaning at the beginning of a span than 
at the end!

• More complex approach: Use separate feedforward networks to learn 
representations for the beginning and end of the span

• 𝐬> = FFNNQ(𝐡>)
• 𝐞B = FFNNS(𝐡B)



Summary Representations

130
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• Simple approach: Just use the average of the output embeddings for 
words within the span as the summary representation

• 𝐠>B =
I

BR> TI
∑XH>
B 𝐡X

• More complex approach: Place more representational emphasis on 
the head of the span

• Can be done using syntactic parse information (if available) or a 
self-attention layer (if not)

• 𝐠>B = SelfAttention(𝐡>:B)



How does 
fine-tuning 
work in 
span-
based 
sequence 
labeling?
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• Learn the weights/parameters for:
• Task classification head
• Boundary representations
• Summary representation

• Final classification output:
• 𝐬𝐩𝐚𝐧>B = [𝐬>; 𝐞B; 𝐠>B]
• 𝐲>B = softmax(FFNN(𝐬𝐩𝐚𝐧>B))



Example: Span-Based Sequence Labeling
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It is a beautiful winter day in Chicago.



Example: Span-Based Sequence Labeling
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 135

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

Self Attention

FFNN

Self Attention

FFNN



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 140

[CLS] p1 It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

NP

Self Attention
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Advantages of 
Span-Based 
Sequence 
Labeling

• Only require one label assignment per 
span

• In comparison, BIO-based methods 
require labels for each constituent 
token

• Naturally accommodate hierarchical 
and/or overlapping labels

• BIO-based methods assign a single 
label per token
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We’ve learned a 
lot about transfer 
learning, 
pretrained 
models, and 
contextual 
embeddings 
…how can we 
implement them?

https://huggingface.co/docs/transf
ormers/index

https://www.tensorflow.org/text/tut
orials/classify_text_with_bert

https://pytorch.org/hub/huggingfac
e_pytorch-transformers/

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/


Summary: 
Transfer 

Learning with 
Pretrained 
Language 

Models and 
Contextual 

Embeddings

• Bidirectional Transformer encoders learn 
representations by optimizing for two tasks:

• Masked language modeling
• Next sentence prediction

• Pretrained language models can be fine-
tuned for a variety of downstream tasks by 
adding classification heads to the end of the 
model and (optionally) updating the weight 
parameters in its last few layers

• These tasks may include:
• Sequence classification
• Sequence labeling
• Span-based sequence labeling


