
Machine Translation and 
Advanced Deep Learning Models 

for Sequence Processing
Natalie Parde

UIC CS 521



Review: 
Essentials 
of Deep 
Learning

2

Natalie Parde - UIC CS 521

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Stacked models

Bidirectional models



Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-

dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 521 3



Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 521 4



Feedforward Neural Networks

Input

Data is fed forward 

from input to the 

first hidden layer

Output

Natalie Parde - UIC CS 521 5



Feedforward Neural Networks

Input Output

Data is fed forward from 

the first hidden layer to 

the second hidden layer

Natalie Parde - UIC CS 521 6



Feedforward Neural Networks

Input Output

Data is fed forward from 

the second hidden layer 

to the output unit

Natalie Parde - UIC CS 521 7



Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 521 8



Why does this work?

• When computational units are combined, the outputs from each 
successive layer provide new representations for the input 
that can better separate the data into the target classes

x1

x2

0

1XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 9



Why does this work?

• When computational units are combined, the outputs from each 
successive layer provide new representations for the input 
that can better separate the data into the target classes

x1

x2

0

1XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 521 10



Review: 
Essentials 
of Deep 
Learning

11

Natalie Parde - UIC CS 521

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Stacked models

Bidirectional models



Convolutional 
Neural 
Networks

• Neural networks that incorporate one or 
more convolutional layers

• Designed to reflect the inner workings of the 
visual cortex system

• Require that fewer parameters are learned 
relative to feedforward networks for 
equivalent input data

Natalie Parde - UIC CS 521 12



In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 1

Natalie Parde - UIC CS 521 13



In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Stride size = 2

Natalie Parde - UIC CS 521 14



After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Kernel size = 2x5

Stride size = 2

Feature Map

Natalie Parde - UIC CS 521 15



After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

Kernel size = 2x5

Stride size = 2

Natalie Parde - UIC CS 521 16



After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521
Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5

Stride size = 2

Natalie Parde - UIC CS 521 17



After applying a convolution with specific 
region (kernel) and stride sizes to an input 
matrix, we end up with a feature map.

I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5

Stride size = 2

Natalie Parde - UIC CS 521 18



I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

It’s common to extract multiple different 
feature maps from the same input.

Natalie Parde - UIC CS 521 19



Pooling Layers

I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 20



The output from pooling layers is passed 
along as input to the rest of the network.

Input Output
I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

521

Feature Map

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

I

love

waking

up

early

for

CS

521

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 521 21



Review: 
Essentials 
of Deep 
Learning

22

Natalie Parde - UIC CS 521

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Stacked models

Bidirectional models



Recurrent 
Neural 
Networks 
(RNNs)

23

Natalie Parde - UIC CS 521

Built-in capacity to handle temporal 
information

• Contain cycles within their connections, where the 
value of a unit is dependent upon outputs from 
previous timesteps

Can accept variable length inputs without 
the use of fixed-size windows

Many varieties exist

• “Vanilla” RNNs

• Long short-term memory networks (LSTMs)

• Gated recurrent units (GRUs)



Vanilla RNN Unit

xt

Current input

Natalie Parde - UIC CS 521 24



Vanilla RNN Unit

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 521 25



Vanilla RNN Unit

xt ht

Current input
Information from xt

Information from xt-1 (activation 

value from previous input)

Natalie Parde - UIC CS 521 26



Vanilla RNN Unit

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 

value from previous input)

Natalie Parde - UIC CS 521 27



Sequence 
processing 
models like 
RNNs are also 
useful for many 
classification 
problems.

• Sequence Labeling Tasks: Given a fixed 
set of labels, assign a label to each 
element of a sequence

• Example: Part-of-speech tagging

• Inputs → word embeddings

• Outputs → label probabilities generated 
by the softmax (or other activation) 
function over the set of all labels

• Sequence Classification Tasks: Given 
an input sequence, assign the entire 
sequence to a class (rather than the 
individual tokens within it)

Natalie Parde - UIC CS 521

28



Sequence Labeling

h0 a

determiner

t1

h1

Natalie Parde - UIC CS 521 29



Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

adjective

Natalie Parde - UIC CS 521 30



Sequence Labeling

h0 a

determiner

t1

delicious

t2

h1

h2

latte

t3

h3

adjective

noun

Natalie Parde - UIC CS 521 31



How to use RNNs for sequence 
classification?

1

Pass the sequence 
through an RNN one 
word at a time, as usual

2

Assume that the hidden 
layer for the final word, 
hn, acts as a 
compressed 
representation of the 
entire sequence

3

Use hn as input to a 
subsequent feedforward 
neural network

4

Choose a class via 
softmax over all the 
possible classes

Natalie Parde - UIC CS 521 32



Sequence Classification

recurrent RNN

neural RNN

network RNN

Natalie Parde - UIC CS 521 33



Sequence Classification

recurrent RNN

neural RNN

network RNN

hn

FNN MACHINE_LEARNING

Natalie Parde - UIC CS 521 34



Long Short-Term Memory 
Networks (LSTMs)

• Remove information no longer needed 
from the context, and add information 
likely to be needed later

• Do this by:

• Adding an explicit context layer to the 
architecture

• This layer controls the flow of 
information into and out of network 
layers using specialized neural units 
called gates

Natalie Parde - UIC CS 521 35



What does this process look like in a 
single LSTM unit?

Natalie Parde - UIC CS 521 36



What does this process look like in a 
single LSTM unit?

𝑐𝑡−1

𝑥𝑡

ℎ𝑡−1

Natalie Parde - UIC CS 521 37



What does this process look like in a 
single LSTM unit?

𝑐𝑡−1

𝑥𝑡

ℎ𝑡−1

𝜎 ⨀

Forget

Natalie Parde - UIC CS 521 38



What does this process look like in a 
single LSTM unit?

𝑐𝑡−1

𝑥𝑡

ℎ𝑡−1

𝜎 ⨀

Forget

𝜎

tanh

⨀ +

Add

Natalie Parde - UIC CS 521 39



What does this process look like in a 
single LSTM unit?

𝑐𝑡−1

𝑥𝑡

ℎ𝑡−1

𝜎 ⨀

Forget

𝜎

tanh

⨀ +

Add

𝜎

tanh

⨀

Output

Natalie Parde - UIC CS 521 40



What does this process look like in a 
single LSTM unit?

𝑐𝑡−1

𝑥𝑡

ℎ𝑡−1

𝜎 ⨀

Forget

𝜎

tanh

⨀ +

Add

𝜎

tanh

⨀

Output

ℎ𝑡

𝑐𝑡

Natalie Parde - UIC CS 521 41



Gated 
Recurrent 

Units (GRUs)

• Also manage the context that is passed 
through to the next timestep, but do so 
using a simpler architecture than LSTMs

• No separate context vector

• Only two gates

• Reset gate

• Update gate

• Gates still use a similar design to that 
seen in LSTMs

• Feedforward layer + sigmoid 
activation + pointwise 
multiplication with the layer being 
gated, resulting in a binary-like mask

Natalie Parde - UIC CS 521 42



What does this process look like in a 
single GRU unit?

Natalie Parde - UIC CS 521 43



What does this process look like in a 
single GRU unit?

𝑥𝑡

ℎ𝑡−1

Natalie Parde - UIC CS 521 44



What does this process look like in a 
single GRU unit?

𝑥𝑡

ℎ𝑡−1

𝜎
tanh

⨀

Reset

Natalie Parde - UIC CS 521 45



What does this process look like in a 
single GRU unit?

𝑥𝑡

ℎ𝑡−1

𝜎
tanh

⨀

𝜎 +

Reset Update

Natalie Parde - UIC CS 521 46



What does this process look like in a 
single GRU unit?

𝑥𝑡

ℎ𝑡−1

𝜎
tanh

⨀

𝜎 +

Reset Update

ℎ𝑡

Natalie Parde - UIC CS 521 47



Review: 
Essentials 
of Deep 
Learning

48

Natalie Parde - UIC CS 521

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Stacked models

Bidirectional models



Stacked RNNs

RNN

hn1

RNN

hn2

RNN

hn3

• Use the entire sequence of outputs from one RNN 
as the input sequence to another

• Capable of outperforming single-layer networks

• Why?

• Having more layers allows the network to 
learn representations at differing levels of 
abstraction across layers

• Early layers → more fundamental 
properties

• Later layers → more meaningful groups 
of fundamental properties

• Optimal number of RNNs to stack together?

• Depends on application and training set

• More RNNs in the stack → increased training costs

Natalie Parde - UIC CS 521 49



Review: 
Essentials 
of Deep 
Learning

50

Natalie Parde - UIC CS 521

Feedforward neural networks

Convolutional neural networks

Recurrent neural networks

Stacked models

Bidirectional models



Bidirectional 
RNNs

• How can we make use of information 
both before and after the current 
timestep?

• Train an RNN on an input sequence in 
reverse

• ℎ𝑡
𝑏 = 𝑅𝑁𝑁𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑡

𝑛)

• ℎ𝑡
𝑏 corresponds to information from the current 

timestep to the end of the sequence

• Combine the forward and backward 
networks

Natalie Parde - UIC CS 521 51



Bidirectional 
RNNs

• Two independent RNNs

• One where the input is processed from start 
to end

• One where the input is processed from end 
to start

• Outputs combined into a single representation 
that captures both the prior and future contexts 
of an input at each timestep

• ℎ𝑡 = ℎ𝑡
𝑓

⨁ℎ𝑡
𝑏

• How to combine the contexts?

• Concatenation

• Element-wise addition, multiplication, etc.

Natalie Parde - UIC CS 521 52



Bidirectional RNNs

RNNNatalie ran to BSB 337

Natalie Parde - UIC CS 521 53



Bidirectional RNNs

RNN

RNN

Natalie ran to BSB 337

337 BSB to ran Natalie

Natalie Parde - UIC CS 521 54



Bidirectional RNNs

RNN

RNN

Natalie ran to BSB 337

337 BSB to ran Natalie

+
ℎ𝑡

ℎ𝑡
𝑓

ℎ𝑡
𝑏

Natalie Parde - UIC CS 521 55



Sequence Classification with a Bidirectional RNN

recurrent
RNN

neural
RNN

network
RNN

FNN

MACHINE_LEARNING

network
RNN

neural
RNN

recurrent

RNN

+

Natalie Parde - UIC CS 521 56



57Natalie Parde - UIC CS 521

Machine Translation: The process of automatically converting 

a text from one language to another.



Machine translation is 
increasingly ubiquitous, but 
also challenging for many 
reasons.

Natalie Parde - UIC CS 521 58

Structural and lexical 
differences between languages

Differences in word order

Morphological differences

Stylistic and cultural 
differences



Cross-Linguistic Similarities 
and Differences

• Typological Differences: 

• Systematic structural differences between languages

• Morphological Differences:

• Number of morphemes per word

• Isolating languages: Each word generally has 
one morpheme

• Polysynthetic languages: Each word may have 
many morphemes

• Degree to which morphemes can be segmented

• Agglutinative languages: Morphemes have 
well-defined boundaries

• Fusion languages: Morphemes may be 
conflated with one another

Natalie Parde - UIC CS 521 59



Cross-
Linguistic 
Similarities 
and 
Differences

• Syntactic Differences:

• Primary difference between languages: Word order

• SVO languages: Verb tends to come between the subject 
and object

• SOV languages: Verb tends to come at the end of basic 
clauses

• VSO languages: Verb tends to come at the beginning of 
basic clauses

• Languages with similar basic word order also tend to share other 
similarities

• SVO languages generally have prepositions

• SOV languages generally have postpositions

• Differences in Argument Structure and Linking

• Verb-framed languages: Mark the direction of motion on the verb, 
leaving its satellites (particles, prepositional phrases, and adverbial 
phrases) to mark the manner of motion

• Satellite-framed languages: Mark the direction of motion on the 
satellite, leaving the verb to mark the manner of motion

Natalie Parde - UIC CS 521 60

The bottle floated out. La botella salió flotando.

The bottle exited floating.



Cross-
Linguistic 
Similarities 
and 
Differences

• Differences in Permissible Omissions:

• Pro-Drop languages: Can omit pronouns when talking about 
certain referents

• Some pro-drop languages permit more pronoun omission than 
others

• Referentially dense and sparse languages

• Converting text from pro-drop languages (e.g., Japanese) to 
non-pro-drop languages (e.g., English) requires that all missing 
pronoun locations are identified and their appropriate 
anaphors recovered

• Differences in noun-adjective order

• Blue house → Maison bleue

• Differences in homonymy and polysemy

• Differences in grammatical constraints

• Some languages require gender for nouns

• Some languages require gender for pronouns

• Lexical gaps

• No word or phrase in the target language can express the 
meaning of a word in the source language

Natalie Parde - UIC CS 521 61



Machine 
Translation

• Classical Machine Translation

• Direct translation

• Transfer approaches

• Interlingua approaches

• Statistical methods

• Modern Machine Translation

• Encoder-decoder models

62Natalie Parde - UIC CS 521



Classical 
Machine 

Translation

• Direct translation

1. Take a large bilingual dictionary

2. Proceed through the source text word by word

3. Translate each word according to the dictionary

• No intermediate structures

• Simple reordering rules may be applied

• For example, moving adjectives so that they are after nouns 
when translating from English to French

• Dictionary entries may be relatively complex

• Rule-based programs for translating a word to the target 
language

blue house

t1 t2

bleue maison

t1 t2

63Natalie Parde - UIC CS 521



Classical Machine Translation

• Transfer approaches

• Parse the input text

• Apply rules to transform the source language parse structure into a target 
language parse structure

• Two subcategories of transformations:

• Syntactic transfer

• Lexical transfer

Natalie Parde - UIC CS 521 64

blue house

amod

maison bleue

amod



Transfer Approaches

Adjective Noun

Nominal

Noun Adjective

Nominal • Syntactic Transfer: Modifies the source 
parse tree to resemble the target parse tree

• For some languages, may also include 
thematic structures

• Directional or locative 
prepositional phrases vs. recipient 
prepositional phrases

• Lexical Transfer: Generally based on a 
bilingual dictionary

• As with direct translation, dictionary 
entries can be complex to 
accommodate many possible 
translations

Natalie Parde - UIC CS 521 65



Classical 
Machine 
Translation

• Interlingua approaches

• Convert the source language text into an abstract 
meaning representation

• Generate the target language text based on the 
abstract meaning representation

• Require more analysis work than transfer approaches

• Semantic analysis

• Sentiment analysis

• No need for syntactic or lexical transformations

Natalie Parde - UIC CS 521 66

blue house maison bleue



Interlingua Approaches

• Goal: Represent all sentences that mean the same 
thing in the same way, regardless of language

• What kind of representation scheme should be used?

• Classical approaches:

• First-order logic

• Semantic primitives

• Event-based representation

• More recently, neural machine translation models 
follow a similar intuition

blue house

maison bleue

casa azul

청와대

67Natalie Parde - UIC CS 521



When to use 
each 
classical 
approach?

68

Natalie Parde - UIC CS 521

• Pros:

• Simple

• Easy to implement

• Cons:

• Cannot reliably handle long-distance reorderings

• Cannot handle reorderings involving phrases or larger structures

• Too focused on individual words

Direct Translation

• Pros:

• Can handle more complex language phenomena than direct translation

• Cons:

• Still not sufficient for many cases!

Transfer Approaches

• Pros:

• Direct mapping between meaning representation and lexical realization

• No need for transformation rules

• Cons:

• Extra (often unnecessary) work

• Classical approaches require an exhaustive analysis and formalization of the 
semantics of the domain

Interlingua Approaches



Statistical 
Machine 
Translation

• Models automatically learn to map from the source 
language to the target language

• No need for intermediate transformation rules

• No need for an explicitly defined internal meaning 
representation

• Goal: Produce an output that maximizes some function 
representing translation faithfulness and fluency

• One possible approach: Bayesian noisy channel 
model

• Assume a possible target language translation ti 
and a source language sentence s

• Select the translation t’ from the set of all possible 
translations ti ∈ T that maximizes the probability 
P(ti|s), using Bayes’ rule

Natalie Parde - UIC CS 521 69



The 
Phrase-
Based 
Translation 
Model

• Computes the probability that a given 
translation ti generates the original 
sentence s based on its constituent 
phrases

• Stages of phrase-based translation:
1. Group the words from the source sentence 

into phrases

2. Translate each source phrase into a target 
language phrase

3. (Optionally) reorder the target language 
phrases

70Natalie Parde - UIC CS 521



Probability in Phrase-Based Translation 
Models

• Relies on two probabilities:

• Translation probability

• Probability of generating a source language phrase from a target 
language phrase, 𝜙 ഥ𝑡𝑖 , ഥ𝑠𝑖

• Distortion probability

• Probability of two consecutive target language phrases being separated in 
the source language by a word span of a particular length, 𝑑(𝑎𝑖 − 𝑏𝑖−1)

• To learn these probabilities, we need to train two sets of parameters:

• 𝜙 ഥ𝑡𝑖 , ഥ𝑠𝑖

• 𝑑(𝑎𝑖 − 𝑏𝑖−1)

• We learn these using phrase-aligned bilingual training sets

Natalie Parde - UIC CS 521 71



Decoding for 
Phrase-Based 
Machine Translation

• Aligned phrases can be stored in a phrase-translation 
table

• Decoding algorithms can then search through this 
table to find the overall translation that maximizes the 
phrase translation probabilities

Mina did not slap the green witch

Mina no dió una bofetada a la bruja verde

NULL

Natalie Parde - UIC CS 521 72



Summary: 
Review of 

Deep Learning 
Architectures 
and Classical 

Machine 
Translation

• Popular deep learning architectures in natural language 
processing include feedforward neural networks, 
convolutional neural networks, and recurrent neural 
networks

• These architectures can be stacked or combined to form 
bidirectional architectures

• Machine translation is challenging due to many 
typological, morphological, and other differences 
between languages

• Classical machine translation used dictionary-based, 
direct transfer, and interlingua approaches

• A popular statistical MT model is the Bayesian noisy 
channel approach, which relies on phrase-based 
translation



Machine 
Translation

• Classical Machine Translation

• Direct translation

• Transfer approaches

• Interlingua approaches

• Statistical methods

• Modern Machine Translation

• Encoder-decoder models

74Natalie Parde - UIC CS 521



Encoder-Decoder Models

• Generate contextually-appropriate, arbitrary-length output sequences

• Basic premise:

• Use a neural network to encode an input to an internal representation

• Pass that internal representation as input to a second neural network

• Use that neural network to decode the internal representation to a task-
specific output sequence

• This method allows networks to be trained in an end-to-end fashion

Natalie Parde - UIC CS 521 75



Where did this 
idea come from?

Sequence processing models 
generate language using a 
process of autoregressive 
generation:

• Start with a seed token (e.g., 
<s>)

• Predict the most likely next 
word in the sequence

• Use that word as input at the 
next timestep

• Repeat until an end token (or 
max length) is reached

<s> RNN

softmax

recurrent

recurrent RNN

softmax

neural

neural RNN network

76Natalie Parde - UIC CS 521



This setup can be 
extended to generate text 
given a specific prefix….

• Pass the specified prefix through the 
language model, in sequence

• End with the hidden state 
corresponding to the last word of the 
prefix

• Start the autoregressive process at 
that point

• Goal: Output sequence should be 
a reasonable completion of the 
prefix

bidirectional RNN
softmax

recurrent

recurrent RNN
softmax

neural

neural RNN network

stacked RNN

Natalie Parde - UIC CS 521 77



We can build upon this idea to transform 
one type of sequence to another.

• Machine translation example:

1. Take a sequence of text from Language #1

2. Take the translation of that text from Language #2

3. Concatenate the two sequences, separated by a marker

4. Use these concatenated sequences to train the autoregressive model

5. Test the model by passing in only the first part of a concatenated 
sequence (text from Language #1) and checking to see what the 
generated completion (text from Language #2) looks like

78Natalie Parde - UIC CS 521



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

79Natalie Parde - UIC CS 521



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

80Natalie Parde - UIC CS 521



Intuition: Machine Translation

Hi, I’m Natalie. Bonjour, je m'appelle Natalie.

Hi, I’m Natalie. </s> Bonjour, je m’appelle Natalie.

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

81Natalie Parde - UIC CS 521



Intuition: Machine Translation

Hi, I’m Mina.

Hi, I’m Mina. </s>

Hi, RNN
I’m RNN

Mina. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Mina. RNN

Hi, RNN
I’m RNN Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

82Natalie Parde - UIC CS 521



Key 
Elements of 
an Encoder-

Decoder 
Network

• Encoder
• Accepts an input sequence, 𝑥1

𝑛

• Generates a sequence of contextualized 
representations, ℎ1

𝑛

• Context vector
• A function, 𝑐, of ℎ1

𝑛 that conveys the basic 
meaning of 𝑥1

𝑛 to the decoder

• (Might just be equivalent to ℎ1
𝑛)

• Decoder
• Accepts 𝑐 as input

• Generates an arbitrary-length sequence of 
hidden states, ℎ1

𝑚, from which a corresponding 
sequence of output states 𝑦1

𝑚 can be obtained

83Natalie Parde - UIC CS 521



Encoders

• Can be any type of neural network, but is generally assumed to be a sequence 
processing model:

• Feedforward network

• CNN

• RNN

• LSTM/BiLSTM

• GRU/BiGRU

• Transformer

• These networks can be stacked on top of one another

More common

84Natalie Parde - UIC CS 521



Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN

• LSTM

• GRU

• Transformer

• Formally….

• 𝑐 = ℎ𝑛
𝑒

• ℎ0
𝑑 = 𝑐

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 )

• 𝑧𝑡 = 𝑓(ℎ𝑡
𝑑)

• 𝑦𝑡 = softmax(𝑧𝑡)

Natalie Parde - UIC CS 521 85

Final hidden state of the encoder

First hidden state of the decoder



Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN

• LSTM

• GRU

• Transformer

• Formally….

• 𝑐 = ℎ𝑛
𝑒

• ℎ0
𝑑 = 𝑐

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 )

• 𝑧𝑡 = 𝑓(ℎ𝑡
𝑑)

• 𝑦𝑡 = softmax(𝑧𝑡)

Natalie Parde - UIC CS 521 86

Some type of 

sequence 

processing model

Embedding for the output 

sampled from the previous step



Decoders • Need to perform autoregressive generation 
to produce the output sequence

• Can be any type of sequence processing 
network

• RNN

• LSTM

• GRU

• Transformer

• Formally….

• 𝑐 = ℎ𝑛
𝑒

• ℎ0
𝑑 = 𝑐

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 )

• 𝑧𝑡 = 𝑓(ℎ𝑡
𝑑)

• 𝑦𝑡 = softmax(𝑧𝑡)

Natalie Parde - UIC CS 521 87

Regular ending steps (activation function 

applied to hidden state outputs, and 

softmax applied to activation outputs)



A couple useful extensions….

• Formally….

• 𝑐 = ℎ𝑛
𝑒

• ℎ0
𝑑 = 𝑐

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 ) → ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 , 𝑐)

• 𝑧𝑡 = 𝑓(ℎ𝑡
𝑑)

• 𝑦𝑡 = softmax(𝑧𝑡)

Make the context vector available at each 

timestep when decoding, so that its 

influence doesn’t diminish over time

88Natalie Parde - UIC CS 521



A couple useful extensions….

• Formally….

• 𝑐 = ℎ𝑛
𝑒

• ℎ0
𝑑 = 𝑐

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 ) → ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 , 𝑐)

• 𝑧𝑡 = 𝑓(ℎ𝑡
𝑑)

• 𝑦𝑡 = softmax(𝑧𝑡) → 𝑦𝑡 = softmax(ෟ𝑦𝑡−1, 𝑧𝑡 , 𝑐) 

Condition output on not only the hidden state, but 

the previous output and encoder context (easier 

to keep track of what’s been generated already)

89Natalie Parde - UIC CS 521



What other ways can we improve the 
decoder’s output quality?

• Beam search

• Improved context vector

• Final hidden state tends to be more focused on the end of the 
input sequence

• Can be addressed by using bidirectional RNNs, summing the 
encoder hidden states, or averaging the encoder hidden states

90Natalie Parde - UIC CS 521



Beam Search

• Selects from multiple possible outputs by framing the 
task as a state space search

• Combines breadth-first search with a heuristic filter

• Continually prunes search space to stay a fixed 
size (beam width)

• Results in a set of b hypotheses, where b is the beam 
width

91Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 3

92Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1

𝑦𝑡+1

93Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

94Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 3

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

95Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

96Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 2

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

Decoder

Decoder

Decoder

97Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 1

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

Decoder

Decoder

Decoder

𝑦𝑡+3 =</s>

𝑦𝑡+3

98Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦𝑡

𝑦𝑡+1

𝑦𝑡+1
Decoder

Decoder

Decoder

Decoder𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

Decoder

Decoder

Decoder

𝑦𝑡+3 =</s>

𝑦𝑡+3 Decoder 𝑦𝑡+4 =</s>

99Natalie Parde - UIC CS 521



How does beam search work?

Decoder

Beam Size = 0

Decoder

Decoder

Decoder

𝑦𝑡

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder
Decoder

𝑦𝑡+1

𝑦𝑡+1

𝑦𝑡+1

𝑦𝑡+2

𝑦𝑡+2

𝑦𝑡+2 =</s>

𝑦𝑡+3 =</s>

𝑦𝑡+3
𝑦𝑡+4 =</s>

100Natalie Parde - UIC CS 521



How do we 
choose a best 

hypothesis?

• Probabilistic scoring scheme

• Pass all or a subset of hypotheses to a 
downstream application

101Natalie Parde - UIC CS 521



So far, the encoder context 
vectors we’ve seen have 
been simple and static.

• Can we do better?

• Yes!

Natalie Parde - UIC CS 521 102



Attention 
Mechanism

• Takes entire encoder context into 
account

• Can be embodied in a fixed-size vector

103Natalie Parde - UIC CS 521



Recall….

• We’ve already made our context vector 
available at each timestep when decoding

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 , 𝑐)

• The first step in creating our attention 
mechanism is to update our hidden state 
such that it is conditioned on an updated 
context vector with each decoding step

• ℎ𝑡
𝑑 = 𝑔(ෟ𝑦𝑡−1, ℎ𝑡−1

𝑑 , 𝑐𝑡)

104Natalie Parde - UIC CS 521



How do we 
dynamically 
create a new 
context 
vector at 
each step?

• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder hidden 
state, ℎ𝑖−1

𝑑

• 𝑠𝑐𝑜𝑟𝑒 ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒 = ℎ𝑖−1
𝑑 ∙ ℎ𝑗

𝑒

105Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

106Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

107Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒 = ℎ𝑖−1
𝑑 ∙ ℎ𝑗

𝑒

108Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒 = ℎ𝑖−1
𝑑 ∙ ℎ𝑗

𝑒

109Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒 = ℎ𝑖−1
𝑑 ∙ ℎ𝑗

𝑒

110Natalie Parde - UIC CS 521



Vector of Context Scores

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

𝑠𝑐𝑜𝑟𝑒 ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒 = ℎ𝑖−1
𝑑 ∙ ℎ𝑗

𝑒

111Natalie Parde - UIC CS 521



How can we 
make use of 

context scores?

• Parameterize these scores with weights

• This allows the model to learn which 
aspects of similarity between the encoder 
and decoder states are important

112Natalie Parde - UIC CS 521



Attention 
Weights

• Normalize context scores to create a 
vector of weights, 𝛼𝑖𝑗

• 𝛼𝑖𝑗 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒)∀𝑗 ∈ 𝑒)

• Provides the proportional relevance of 
each encoder hidden state 𝑗 to the 
current decoder state 𝑖

• Finally, take a weighted average over all 
the encoder hidden states to create a 
fixed-length context vector for the current 
decoder state

• 𝑐𝑖 = σ𝑗 𝛼𝑖𝑗ℎ𝑗
𝑒

113Natalie Parde - UIC CS 521



Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

114Natalie Parde - UIC CS 521



Thus, we finally have an encoder-
decoder model with attention!

Hi, RNN
I’m RNN

Natalie. RNN </s> RNN

Bonjour RNN
je RNN m’appelle RNN Natalie. RNN

𝛼𝑖𝑗 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒)) 𝛼𝑖𝑗 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒)) 𝛼𝑖𝑗 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖−1
𝑑 , ℎ𝑗

𝑒))
𝛼𝑖𝑗 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑖−1

𝑑 , ℎ𝑗
𝑒))

Σ

115Natalie Parde - UIC CS 521



Other 
Attention 
Weights

• More sophisticated scoring functions can be used 
as well

• Common: Parameterize the attention score with its 
own set of trainable weights

• score 𝐡𝑖−1
𝑑 , 𝐡𝑗

𝑒 = 𝐡𝑡−1
𝑑 𝐖𝑠𝐡𝑗

𝑒

• Advantage: Allows the encoder and decoder to 
use vectors with different dimensionality (dot-
product attention requires the encoder and 
decoder hidden states to have the same 
dimensionality)

116Natalie Parde - UIC CS 521



Practical Details for Building MT 
Systems

• MT systems typically use a fixed vocabulary generated using byte pair encoding 
or other wordpiece algorithms

• Vocabulary is usually shared across the source and target languages

Vocabulary

• Parallel corpora with the same content communicated in multiple languages

• Common sources:

• Government documents for nations with multiple official languages

• Subtitles for movies and TV shows

• Often, text from the source and target language(s) is aligned at the sentence 
level

Corpora

117Natalie Parde - UIC CS 521



What if we 
don’t 
have 
much 
training 
data?

• Parallel corpora are difficult to find, especially 
for lower-resource language pairs

• Backtranslation:

1. Train an intermediate target-to-source 
MT system on a small parallel corpus

2. Translate additional monolingual data 
from the target language to the source 
language using this intermediate system

3. Consider this new, synthetic parallel data 
as additional training data

4. Train a source-to-target MT system on 
the expanded training dataset

118Natalie Parde - UIC CS 521



How do we 
evaluate 
machine 

translation 
models?

• Translation quality tends to be 
very subjective!

• Two common approaches:

• Human ratings

• Automated metrics

119Natalie Parde - UIC CS 521



Evaluating 
Machine 

Translation 
Using Human 

Ratings

• Typically evaluated along multiple 
dimensions

• Tend to check for both fluency and 
adequacy

• Fluency:
• Clarity

• Naturalness

• Style

• Adequacy:
• Fidelity

• Informativeness

120Natalie Parde - UIC CS 521



Evaluating 
Machine 
Translation 
Using Human 
Ratings

• How to get quantitative measures of 
fluency?

• Ask humans to rate different 
aspects of fluency along a scale

• Measure how long it takes humans 
to read a segment of text

• Ask humans to guess the identity of 
the missing word

• “After such a late night working 
on my project, it was hard to 
wake up this _____!”

121Natalie Parde - UIC CS 521



Evaluating Machine Translation Using 
Human Ratings

• How to get quantitative measures of adequacy?

• Ask bilingual raters to rate how much information was preserved in the 
translation

• Ask monolingual raters to do the same, given access to a gold standard 
reference translation

• Ask raters to answer multiple-choice questions about content present in a 
translation

122Natalie Parde - UIC CS 521



Another set 
of human 

evaluation 
metrics 

considers 
post-

editing.

• Ask a human to post-edit or “fix” a 
translation

• Compute the number of edits required to 
correct the output to an acceptable level

• Can be measured via number of word changes, 
number of keystrokes, amount of time taken, etc.

123Natalie Parde - UIC CS 521



Automated 
Metrics

• Less accurate than human 
evaluation, but:

• Useful for iteratively testing 
system improvements

• Can be used as an automatic 
loss function

• Two main families:

• Character- or word-overlap

• Embedding similarity

124Natalie Parde - UIC CS 521



Popular Lexical Overlap Metrics

• BLEU

• Measure of word overlap

• METEOR

• Measure of word overlap, considering stemming and synonymy

• Character F-Score (chrF)

• Measure of character n-gram overlap

125Natalie Parde - UIC CS 521



BLEU

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Weighted average of the number of n-gram overlaps with 
human translations

• Precision-based metric

• What percentage of words in the candidate translation also 
occur in the gold standard translation(s)?

• To compute BLEU:

• Count how many times each n-gram is used in the 
candidate translation, c ngram

• Clip that amount so that the highest it can be is 
cmax(ngram), defined as the maximum number of times it 
is used in a reference translation

• Compute precision for each word in the candidate 
translation: 

• Divide (a) summed across each candidate, the sum of n-gram 
frequencies for n-grams appearing in both the candidate and reference, 
by (b) summed across each candidate, the sum of n-gram frequences 
for n-grams appearing in the candidate

• Take the geometric mean of the modified n-gram 
precisions for unigrams, bigrams, trigrams, and 4-grams

126



Then, add a penalty for translation 
brevity….

• Otherwise, extremely short translations (e.g., “the”) could receive perfect scores!

• The penalty is based on:

• The sum of the lengths of the reference sentences, r

• The sum of the lengths of the candidate translations, c

• Formally, the penalty is set to:

𝐵𝑃 = ൝
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟

𝑐
) 𝑖𝑓 𝑐 ≤ 𝑟

• The full BLEU score for a set of translations is then:

• 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ς𝑛=1
4 prec𝑛)

1

4

127Natalie Parde - UIC CS 521



Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

128Natalie Parde - UIC CS 521



Example: Computing BLEU

Mina didn’t slap the green witch.

Mina no dió una bofetada a la bruja verde. Source Sentence

Reference Translation

Mina did not give a slap to the green witch. Candidate Translation

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)
𝐵𝑃 = ቐ

1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

129Natalie Parde - UIC CS 521



Example: Computing BLEU
Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

Unigram Unigram Frequency 

(Candidate)

Unigram Frequency 

(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

130Natalie Parde - UIC CS 521



Example: Computing BLEU

𝑝1 =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
=

6

11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

Unigram Unigram Frequency 

(Candidate)

Unigram Frequency 

(Reference)

Mina 1 1

did 1 0

not 1 0

give 1 0

a 1 0

slap 1 1

to 1 0

the 1 1

green 1 1

witch 1 1

. 1 1

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

131Natalie Parde - UIC CS 521



Example: Computing BLEU

Bigram Bigram Frequency 

(Candidate)

Bigram Frequency 

(Reference)

Mina did 1 0

did not 1 0

not give 1 0

give a 1 0

a slap 1 0

slap to 1 0

to the 1 0

the green 1 1

green witch 1 1

witch . 1 1

𝑝2 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
=

3

10

𝑝1 =
1 + 0 + 0 + 0 + 0 + 1 + 0 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
=

6

11

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

132Natalie Parde - UIC CS 521



Example: Computing BLEU

Trigram Trigram Frequency 

(Candidate)

Trigram Frequency 

(Reference)

Mina did not 1 0

did not give 1 0

not give a 1 0

give a slap 1 0

a slap to 1 0

slap to the 1 0

to the green 1 0

the green witch 1 1

green witch . 1 1

𝑝1 =
6

11
𝑝2 =

3

10

𝑝3 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
=

2

9

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

133Natalie Parde - UIC CS 521



Example: Computing BLEU

4-gram 4-gram Frequency 

(Candidate)

4-gram Frequency 

(Reference)

Mina did not give 1 0

did not give a 1 0

not give a slap 1 0

give a slap to 1 0

a slap to the 1 0

slap to the green 1 0

to the green witch 1 0

the green witch . 1 1

𝑝1 =
6

11
𝑝2 =

3

10
𝑝3 =

2

9

𝑝4 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
=

1

8

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

134Natalie Parde - UIC CS 521



Example: Computing BLEU

𝑝1 =
6

11
𝑝2 =

3

10
𝑝3 =

2

9
𝑝4 =

1

8

r = 7

c = 11

𝐵𝑃 = 1

Mina didn’t slap the green witch. Mina did not give a slap to the green witch.

prec𝑛 =
σ

𝑐∈{Candidates}
σngram∈𝐶 min(c ngram , cmax(ngram))

σ
𝑐∈{Candidates}

σngram∈𝐶 c(ngram)

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∗ (ෑ

𝑛=1

4

prec𝑛)
1
4

𝐵𝑃 = ቐ
1 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟
𝑐) 𝑖𝑓 𝑐 ≤ 𝑟

𝐵𝐿𝐸𝑈 = 1 ∗ (ς𝑛=1
4 prec𝑛)

1

4= 1 ∗ (
6

11
∗

3

10
∗

2

9
∗

1

8
)

1

4= 1 ∗ 0.00454545454
1

4 = 1 ∗ 0.25965358893 = 0.26

135Natalie Parde - UIC CS 521



What are 
good 
BLEU 

scores?



Limitations of BLEU

• Word or phrase order is of minimal importance

• When computing unigram precision, a word can exist anywhere in the 
translation!

• Does not consider word similarity

• Relatively low correlation with human ratings

• Nonetheless, BLEU is reasonable to use in cases when a quick, automated metric 
is needed to assess translation performance

137Natalie Parde - UIC CS 521



Character 
F-Score 
(chrF)



How is chrF computed?



Example: Computing chrF

CS 521 is the best

140Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

141Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

142Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams, ….

12 unigrams, 11 bigrams, ….

143Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-grams 

in the hypothesis that are also in the reference
k=3

chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

144Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

C S 5 2 1 i s t h e b e s t

C S 5 2 1 i s g r e a t

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

145Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS S5 52 21 1i is st th he eb be es st

CS S5 52 21 1i is sg gr re ea at

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

146Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

147Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: Τ9
12 = 0.75 Unigram chrR: Τ9

14 = 0.64

148Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: Τ9
12 = 0.75 Unigram chrR: Τ9

14 = 0.64

Bigram chrP: Τ6
11 = 0.55 Bigram chrR: Τ6

13 = 0.46

149Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

9 unigrams are in both the hypothesis and the reference

6 bigrams are in both the hypothesis and the reference

5 trigrams are in both the hypothesis and the reference

Unigram chrP: Τ9
12 = 0.75 Unigram chrR: Τ9

14 = 0.64

Bigram chrP: Τ6
11 = 0.55 Bigram chrR: Τ6

13 = 0.46

Trigram chrP: Τ5
10 = 0.5 Trigram chrR: Τ5

12 = 0.42

150Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: Τ9
12 = 0.75 Unigram chrR: Τ9

14 = 0.64

Bigram chrP: Τ6
11 = 0.55 Bigram chrR: Τ6

13 = 0.46

Trigram chrP: Τ5
10 = 0.5 Trigram chrR: Τ5

12 = 0.42

chrP: 
0.75+0.55+0.5

3
= 0.6

151Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

Unigram chrP: Τ9
12 = 0.75 Unigram chrR: Τ9

14 = 0.64

Bigram chrP: Τ6
11 = 0.55 Bigram chrR: Τ6

13 = 0.46

Trigram chrP: Τ5
10 = 0.5 Trigram chrR: Τ5

12 = 0.42

chrP: 
0.75+0.55+0.5

3
= 0.6 chrR: 

0.64+0.46+0.42

3
= 0.51

152Natalie Parde - UIC CS 521



Example: Computing chrF

CS 521 is the best CS 521 is great

CS5 S52 521 21i 1is ist sth the heb ebe bes est

CS5 S52 521 21i 1is isg sgr gre rea eat

14 unigrams, 13 bigrams

12 unigrams, 11 bigrams

chrP: averaged % of character unigrams, bigrams, …, k-

grams in the hypothesis that are also in the reference
k=3chrR: averaged % of character unigrams, bigrams, …, k-grams 

in the reference that are also in the hypothesis

chrP: 
0.75+0.55+0.5

3
= 0.6 chrR: 

0.64+0.46+0.42

3
= 0.51

chrF2 =
5 ∗ chrP ∗ chrR

4 ∗ chrP + chrR
=

5 ∗ 0.6 ∗ 0.51

4 ∗ 0.6 + 0.51
= 0.53

153Natalie Parde - UIC CS 521



Limitations 
of chrF

• Focuses on differences at a very local scale 
(i.e., character n-grams)

• Doesn’t measure discourse coherence

• Best at measuring performance for different 
versions of the same system, rather than 
comparing different systems

154Natalie Parde - UIC CS 521



Embedding
-Based 
Evaluation 
Methods

• Measuring exact word- or character-level 
overlap might be overly strict

• Good translations may use words that 
are synonymous to those in the 
reference!

• Embedding-based methods measure the 
semantic overlap between reference and 
hypothesis translations

155Natalie Parde - UIC CS 521



Popular Embedding-Based Methods 
for Evaluating MT Systems

https://github.com/Unbabel/COMET

https://github.com/google-research/bleurt

https://github.com/Tiiiger/bert_score

• https://github.com/Unbabel/COMET

COMET

• https://github.com/google-research/bleurt

BLEURT

• https://github.com/Tiiiger/bert_score

BERTScore

156Natalie Parde - UIC CS 521

https://github.com/Unbabel/COMET
https://github.com/google-research/bleurt
https://github.com/Tiiiger/bert_score


Summary: 
Encoder-
Decoder 
Models and 
Evaluating 
MT Systems

• Encoder-decoder models draw upon 
similar techniques for autoregressive 
language modeling to convert input to an 
intermediate vector representation and 
then convert that intermediate 
representation to output

• Attention scores help the encoder-
decoder model’s context vector focus 
on the most relevant information from the 
input for a given decoder timestep

• MT systems are commonly evaluated 
using both human ratings and 
automated metrics

• Popular automated metrics include 
BLEU, chrF, and embedding-based 
measures

Natalie Parde - UIC CS 521 157


	Slide 1: Machine Translation and Advanced Deep Learning Models for Sequence Processing
	Slide 2: Review: Essentials of Deep Learning
	Slide 3: Feedforward Neural Networks
	Slide 4: Feedforward Neural Networks
	Slide 5: Feedforward Neural Networks
	Slide 6: Feedforward Neural Networks
	Slide 7: Feedforward Neural Networks
	Slide 8: Feedforward Neural Networks
	Slide 9: Why does this work?
	Slide 10: Why does this work?
	Slide 11: Review: Essentials of Deep Learning
	Slide 12: Convolutional Neural Networks
	Slide 13: In NLP, convolutions are typically performed on entire rows of an input matrix, where each row corresponds to a word.
	Slide 14: In NLP, convolutions are typically performed on entire rows of an input matrix, where each row corresponds to a word.
	Slide 15: After applying a convolution with specific region (kernel) and stride sizes to an input matrix, we end up with a feature map.
	Slide 16: After applying a convolution with specific region (kernel) and stride sizes to an input matrix, we end up with a feature map.
	Slide 17: After applying a convolution with specific region (kernel) and stride sizes to an input matrix, we end up with a feature map.
	Slide 18: After applying a convolution with specific region (kernel) and stride sizes to an input matrix, we end up with a feature map.
	Slide 19: It’s common to extract multiple different feature maps from the same input.
	Slide 20: Pooling Layers
	Slide 21: The output from pooling layers is passed along as input to the rest of the network.
	Slide 22: Review: Essentials of Deep Learning
	Slide 23: Recurrent Neural Networks (RNNs)
	Slide 24: Vanilla RNN Unit
	Slide 25: Vanilla RNN Unit
	Slide 26: Vanilla RNN Unit
	Slide 27: Vanilla RNN Unit
	Slide 28: Sequence processing models like RNNs are also useful for many classification problems.
	Slide 29: Sequence Labeling
	Slide 30: Sequence Labeling
	Slide 31: Sequence Labeling
	Slide 32: How to use RNNs for sequence classification?
	Slide 33: Sequence Classification
	Slide 34: Sequence Classification
	Slide 35: Long Short-Term Memory Networks (LSTMs)
	Slide 36: What does this process look like in a single LSTM unit?
	Slide 37: What does this process look like in a single LSTM unit?
	Slide 38: What does this process look like in a single LSTM unit?
	Slide 39: What does this process look like in a single LSTM unit?
	Slide 40: What does this process look like in a single LSTM unit?
	Slide 41: What does this process look like in a single LSTM unit?
	Slide 42: Gated Recurrent Units (GRUs)
	Slide 43: What does this process look like in a single GRU unit?
	Slide 44: What does this process look like in a single GRU unit?
	Slide 45: What does this process look like in a single GRU unit?
	Slide 46: What does this process look like in a single GRU unit?
	Slide 47: What does this process look like in a single GRU unit?
	Slide 48: Review: Essentials of Deep Learning
	Slide 49: Stacked RNNs
	Slide 50: Review: Essentials of Deep Learning
	Slide 51: Bidirectional RNNs
	Slide 52: Bidirectional RNNs
	Slide 53: Bidirectional RNNs
	Slide 54: Bidirectional RNNs
	Slide 55: Bidirectional RNNs
	Slide 56: Sequence Classification with a Bidirectional RNN
	Slide 57
	Slide 58: Machine translation is increasingly ubiquitous, but also challenging for many reasons.
	Slide 59: Cross-Linguistic Similarities and Differences
	Slide 60: Cross-Linguistic Similarities and Differences
	Slide 61: Cross-Linguistic Similarities and Differences
	Slide 62: Machine Translation
	Slide 63: Classical Machine Translation
	Slide 64: Classical Machine Translation
	Slide 65: Transfer Approaches
	Slide 66: Classical Machine Translation
	Slide 67: Interlingua Approaches
	Slide 68: When to use each classical approach?
	Slide 69: Statistical Machine Translation
	Slide 70: The Phrase-Based Translation Model
	Slide 71: Probability in Phrase-Based Translation Models
	Slide 72: Decoding for Phrase-Based Machine Translation
	Slide 73: Summary: Review of Deep Learning Architectures and Classical Machine Translation
	Slide 74: Machine Translation
	Slide 75: Encoder-Decoder Models
	Slide 76: Where did this idea come from?
	Slide 77: This setup can be extended to generate text given a specific prefix….
	Slide 78: We can build upon this idea to transform one type of sequence to another.
	Slide 79: Intuition: Machine Translation
	Slide 80: Intuition: Machine Translation
	Slide 81: Intuition: Machine Translation
	Slide 82: Intuition: Machine Translation
	Slide 83: Key Elements of an Encoder-Decoder Network
	Slide 84: Encoders
	Slide 85: Decoders
	Slide 86: Decoders
	Slide 87: Decoders
	Slide 88: A couple useful extensions….
	Slide 89: A couple useful extensions….
	Slide 90: What other ways can we improve the decoder’s output quality?
	Slide 91: Beam Search
	Slide 92: How does beam search work?
	Slide 93: How does beam search work?
	Slide 94: How does beam search work?
	Slide 95: How does beam search work?
	Slide 96: How does beam search work?
	Slide 97: How does beam search work?
	Slide 98: How does beam search work?
	Slide 99: How does beam search work?
	Slide 100: How does beam search work?
	Slide 101: How do we choose a best hypothesis?
	Slide 102: So far, the encoder context vectors we’ve seen have been simple and static.
	Slide 103: Attention Mechanism
	Slide 104: Recall….
	Slide 105: How do we dynamically create a new context vector at each step?
	Slide 106: Vector of Context Scores
	Slide 107: Vector of Context Scores
	Slide 108: Vector of Context Scores
	Slide 109: Vector of Context Scores
	Slide 110: Vector of Context Scores
	Slide 111: Vector of Context Scores
	Slide 112: How can we make use of context scores?
	Slide 113: Attention Weights
	Slide 114: Thus, we finally have an encoder-decoder model with attention!
	Slide 115: Thus, we finally have an encoder-decoder model with attention!
	Slide 116: Other Attention Weights
	Slide 117: Practical Details for Building MT Systems
	Slide 118: What if we don’t have much training data?
	Slide 119: How do we evaluate machine translation models?
	Slide 120: Evaluating Machine Translation Using Human Ratings
	Slide 121: Evaluating Machine Translation Using Human Ratings
	Slide 122: Evaluating Machine Translation Using Human Ratings
	Slide 123: Another set of human evaluation metrics considers post-editing.
	Slide 124: Automated Metrics
	Slide 125: Popular Lexical Overlap Metrics
	Slide 126: BLEU
	Slide 127: Then, add a penalty for translation brevity….
	Slide 128: Example: Computing BLEU
	Slide 129: Example: Computing BLEU
	Slide 130: Example: Computing BLEU
	Slide 131: Example: Computing BLEU
	Slide 132: Example: Computing BLEU
	Slide 133: Example: Computing BLEU
	Slide 134: Example: Computing BLEU
	Slide 135: Example: Computing BLEU
	Slide 136: What are good BLEU scores?
	Slide 137: Limitations of BLEU
	Slide 138: Character F-Score (chrF)
	Slide 139: How is chrF computed?
	Slide 140: Example: Computing chrF
	Slide 141: Example: Computing chrF
	Slide 142: Example: Computing chrF
	Slide 143: Example: Computing chrF
	Slide 144: Example: Computing chrF
	Slide 145: Example: Computing chrF
	Slide 146: Example: Computing chrF
	Slide 147: Example: Computing chrF
	Slide 148: Example: Computing chrF
	Slide 149: Example: Computing chrF
	Slide 150: Example: Computing chrF
	Slide 151: Example: Computing chrF
	Slide 152: Example: Computing chrF
	Slide 153: Example: Computing chrF
	Slide 154: Limitations of chrF
	Slide 155: Embedding-Based Evaluation Methods
	Slide 156: Popular Embedding-Based Methods for Evaluating MT Systems
	Slide 157: Summary: Encoder-Decoder Models and Evaluating MT Systems

