
Transfer Learning with
Pretrained Language Models
and Large Language Models

Natalie Parde

UIC CS 521

Language
continually
develops
and
evolves.

• Estimated vocabulary size of a young adult
speaker of American English: ~30k-100k
words

• On average, 7-10 new words need to be
learned per day through age 20!

• Early on in humans: Vocabulary is learned via
spoken interactions with peers and caregivers

• Later: Vocabulary is mostly learned as a by-
product of reading

Natalie Parde - UIC CS 521 2

Can computers
learn language
in the same
way?

• Learning language through experience
(e.g., through spoken interactions with
peers in a situated environment) is an
example of grounded language
learning

• Meaning is tied to an experiential
(either implied or explicit) common
ground between speakers

red red

Natalie Parde - UIC CS 521 3

Recap: The
distributional
hypothesis
states that we
can learn
language based
solely on its
context

• Word embedding techniques “learn”
meaning using measures of the
frequency with which words occur close
to one another in large text corpora

• Recall:

• Word2Vec

• GloVe

Natalie Parde - UIC CS 521 4

What does this look like?

super

Start with an input t

Natalie Parde - UIC CS 521 5

What does this look like?

0

0

1

…

0

Get the one-hot vector for t

s
u
p

e
r

Natalie Parde - UIC CS 521 6

What does this look like?

…

Feed it into a layer of n units

(where n is the desired

embedding size), each of

which computes a weighted

sum of inputs0

0

1

…

0

s
u
p

e
r

Natalie Parde - UIC CS 521 7

What does this look like?

…

Feed the outputs from those

units into a final unit that

predicts whether a word c is

a valid context for t

P(+ | t,c)

0

0

1

…

0

s
u
p

e
r

Natalie Parde - UIC CS 521 8

What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

Create one of those output

units for every possible c

0

0

1

…

0

s
u
p

e
r

Natalie Parde - UIC CS 521 9

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

Each unit in the intermediate

layer applies a specific

weight to each input it

receives

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤3 + ⋯ + 0 ∗ 𝑤𝑛

Natalie Parde - UIC CS 521 10

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

Since our inputs are one-hot

vectors, this means we’ll end

up with a specific set of

weights (one for each unit)

for each input word

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤13 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤23 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤𝑛3 + ⋯ + 0 ∗ 𝑤𝑛

Natalie Parde - UIC CS 521 11

These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.1 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.7 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.8 + ⋯ + 0 ∗ 𝑤𝑛

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 521 12

GloVe

• While Word2Vec is a popular predictive word embedding model, researchers have also
developed high-performing models that incorporate aspects of count-based models

• One example: Global Vectors for Word Representation (GloVe)

• Why is this useful?

• Predictive models → black box

• They work, but why?

• GloVe models are easier to interpret

• GloVe models also encode the ratios of co-occurrence probabilities between different
words …this makes these vectors useful for word analogy tasks

Natalie Parde - UIC CS 521 13

How does GloVe work?

c1 … cn

t1 123 … 456

… … … …

tn 0 … 789

Build a huge word-context

co-occurrence matrix

Define soft constraints for each word pair 𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 = log 𝑋𝑖𝑗

Define a cost function

𝐽 = ෍

𝑖=1

𝑉

෍

𝑗=1

𝑉

𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log 𝑋𝑖𝑗)2

Minimize the cost function to

learn ideal embedding values

for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

Natalie Parde - UIC CS 521 14

Word2Vec
and GloVe
are both
static word
embeddings.

• A given word has the same embedding,
regardless of its context

• Reasonable in many cases, but not always

• What if a word has multiple senses?

• What if a word starts appearing in new
contexts?

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle

washed up on the bank.
0.4 0.2 0.5 0.7 0.1

Are you going to bank on that

proposal being funded?
0.4 0.2 0.5 0.7 0.1

Natalie Parde - UIC CS 521 15

Contextual
Word

Embeddings

• Word representations that differ depending on
the context in which the word appears

• Vocabulary words do not map to specific,
predefined vectors

• We typically learn contextual word
representations using pretrained language
models

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle

washed up on the bank.
0.4 0.3 0.2 0.7 0.5

Are you going to bank on that

proposal being funded?
0.1 0.2 0.4 0.3 0.1

Natalie Parde - UIC CS 521 16

What base architecture should
we use for pretrained
language models?

• Limitations of RNNs:
• Processing long-distance

dependencies through many
recurrences can eventually lead
to loss of valuable information

• Recurrent models cannot
productively leverage parallel
resources

Natalie Parde - UIC CS 521 17

Transformers

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention

Computation

19

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention

Computation

20

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention

Computation

21

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention

Computation

22

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input

CS

521

is

the

greatest

Self-Attention

Computation

23

Computing
Self-
Attention

• Take the dot product between a given input element 𝑥𝑖 and each
input element (𝑥1, … , 𝑥𝑖) up until that point

• score 𝑥𝑖, 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗

• Apply softmax normalization to create a vector of weights, 𝛼𝑖,
indicating proportional relevance of each sequence element to the
current focus of attention, 𝑥𝑖

• 𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗 ∀𝑗 ≤ 𝑖 =
𝑒

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,𝑥𝑗)

σ𝑘=1
𝑖 𝑒𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,𝑥𝑘) ∀𝑗 ≤ 𝑖

• Take the sum of inputs thus far weighted by 𝛼𝑖 to produce an output
𝑦𝑖

• 𝑦𝑖 = σ𝑗≤𝑖 𝛼𝑖𝑗𝑥𝑗

Natalie Parde - UIC CS 521 24

How do Transformers learn?

• Continually updating weight matrices applied to inputs

• Weight matrices are learned for each of three roles when
computing self-attention:

• Query: The focus of attention when it is being compared to inputs up
until that point, 𝑊𝑄

• Key: An input that is being compared to the focus of attention, 𝑊𝐾

• Value: A value being used to compute the output for the current focus
of attention, 𝑊𝑉

Natalie Parde - UIC CS 521 25

Training Transformers

• Weight matrices are applied to inputs in the context of their respective roles

• 𝑞𝑖 = 𝑊𝑄𝑥𝑖

• 𝑘𝑖 = 𝑊𝐾𝑥𝑖

• 𝑣𝑖 = 𝑊𝑉𝑥𝑖

• Then, we can update our equations for computing self-attention so that these
roles are reflected in them:

• score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

• 𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 ∀𝑗 ≤ 𝑖

• 𝑦𝑖 = σ𝑗≤𝑖 𝛼𝑖𝑗𝑣𝑗

Natalie Parde - UIC CS 521 26

is

Self-Attention

Natalie Parde - UIC CS 521

CS

521

is

the

greatest

Input Self-Attention Computation

kis

vis

score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

qis

𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗

𝑦𝑖 = ෍

𝑗≤𝑖

𝛼𝑖𝑗𝑣𝑗

k521

v521
q521

kCS

vCS
qCS

27

Practical Considerations

• Combining a dot product with an exponential (as in softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the dimensionality of the key (and query) vectors, 𝑑𝑘

• score 𝑥𝑖, 𝑥𝑗 =
𝑞𝑖⋅𝑘𝑗

𝑑𝑘

• Each 𝑦𝑖 is computed independently, so we can parallelize computations using matrix multiplication where
𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊𝑄𝑋

• 𝐾 = 𝑊𝐾𝑋

• 𝑉 = 𝑊𝑉𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

• Make sure to avoid including knowledge of future words in autoregressive language modeling
settings!

Natalie Parde - UIC CS 521 28

Transformer Blocks

• Self-attention is the central component of a Transformer block, which also
includes:

• Feedforward layers

• Residual connections

• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e

e
d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

Output

Natalie Parde - UIC CS 521 29

Multihead Attention

• Each self-attention layer represents a single attention
head

• Multihead attention places multiple attention heads in
parallel in the Transformer model

• Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction

Natalie Parde - UIC CS 521

30

Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights

• 𝑄 = 𝑊𝑖
𝑄

𝑋

• 𝐾 = 𝑊𝑖
𝐾𝑋

• 𝑉 = 𝑊𝑖
𝑉𝑋

• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors
of equal length

• These heads are concatenated and then reduced to the original input/output
dimensionality

• head𝑖 = SelfAttention(𝑊𝑖
𝑄

𝑋, 𝑊𝑖
𝐾𝑋, 𝑊𝑖

𝑉𝑋)

• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊𝑂(head1⨁head2 ⨁… ⨁head𝑛)

31

Multihead Attention

Natalie Parde - UIC CS 521

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e

e
d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

⨁

S
e
lf-A

tte
n

tio
n

 L
a
y
e
r

𝑊𝑂
Output

32

Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position

• Update weights during the training process

• Input embedding with positional information = word embedding + positional
embedding

• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521

33

Transformers as Autoregressive
Language Models

Natalie Parde - UIC CS 521

Transformers Transformer

Block
softmax

are

are
softmax

fun

fun </s>

softmax

Transformer

Block

Transformer

Block

loss

loss

loss

34

Encoder-
Decoder
Models with
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps

sequential input to an output representation

• Decoder (Transformer model) attends to the
encoder representation and generates
sequential output autoregressively

• However….
• Transformer blocks in the decoder include

an extra cross-attention layer

35Natalie Parde - UIC CS 521

Cross-
Attention

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e

r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e
e

d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

Output

• Same form as multiheaded self-attention in a normal Transformer
block, with one difference: queries come from the previous layer of the
decoder as usual, but keys and values come from the output of the
encoder

• 𝐐 = 𝐖𝐐𝐇𝑑𝑒𝑐[𝑖−1]

• 𝐊 = 𝐖𝐐𝐇𝑒𝑛𝑐

• 𝐕 = 𝐖𝐕𝐇𝑒𝑛𝑐

• CrossAttention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝐊T

𝑑𝑘
𝐕

Reminder: Normal Transformer block

36Natalie Parde - UIC CS 521

Updated Decoder Transformer Block

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e

e
d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e
Output

C
ro

s
s
-A

tte
n

tio
n

L
a

y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

37Natalie Parde - UIC CS 521

Encoder-
Decoder
Models with
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to

the entire encoder sequence

• Training Transformer-based
encoder-decoders is similar to
training RNN-based encoder-
decoders

• Use teacher forcing

• Train autoregressively

38Natalie Parde - UIC CS 521

Bidirectional
Encoder
Representations
from
Transformers
(BERT)

• Popular method for building
pretrained language models

• Many variations
• DistilBERT

• RoBERTa

• SpanBERT

• Makes use of a bidirectional
Transformer encoder

Natalie Parde - UIC CS 521 39

BERT was
transformative
to the NLP
field!

Natalie Parde - UIC CS 521 40

• Statistical n-gram language
models

• Feature-based classifiers

• Task-specific neural architectures

Prior to BERT:

• Pretrained neural language
models

• Task-specific fine-tuning

After BERT:

Bidirectional
Transformer
Encoders

• We’ve already seen how causal Transformers work

• Well-suited for language modeling problems since
they prevent consideration of future context

• However, these models are inherently constrained

• What about tasks for which future context is readily
available?

Natalie Parde - UIC CS 521 41

Many NLP
tasks don’t
need to
restrict the
model from
viewing
future
context.

• Sequence classification

• (Sometimes) sequence labeling

• In general, most tasks that aren’t
performed in real time

Natalie Parde - UIC CS 521 42

Transformers aren’t innately constrained to
processing from sequence beginning to end.

• With language modeling, self-attention computations are limited to
current and prior context to avoid trivializing the problem

• Self-attention can be computed using the same equations we’ve
already seen when allowing future context to be considered

• When that happens, the encoder produces sequences of output
embeddings that are contextualized based on the entire input
sequence

Natalie Parde - UIC CS 521 43

Bidirectional Self-Attention Layer

is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis

vis

score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

qis
𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗

𝑦𝑖 = ෍

𝑗≤𝑖

𝛼𝑖𝑗𝑣𝑗

k521

v521q521

kCS

vCS
qCS

Natalie Parde - UIC CS 521 44

Bidirectional Self-Attention Layer

is

CS

521

is

the

greatest

Input

Self-Attention Computation

kis

vis

score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

qis
𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗

𝑦𝑖 = ෍

𝑗≤𝑖

𝛼𝑖𝑗𝑣𝑗

k521

v521q521

kCS

vCS
qCS

kthe

vtheqthe

kgreatest

vgreatestqgreatest

Natalie Parde - UIC CS 521 45

More
formally….

• Step 1: Generate key, query,
and value embeddings for each
element of the input vector 𝐱

• q𝑖 = 𝐖𝐐𝐱𝑖

• k𝑖 = 𝐖𝐊𝐱𝑖

• v𝑖 = 𝐖𝐕𝐱𝑖

Natalie Parde - UIC CS 521 46

More
formally….

• Step 2: Compute attention
weights ⍺ by applying a softmax
over the element-wise
comparison scores between all
possible query-key pairs in the
full input sequence

• score𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

• 𝛼𝑖𝑗 =
exp(score𝑖𝑗)

σ𝑘=1
𝑛 exp(score𝑖𝑘)

Natalie Parde - UIC CS 521 47

More
formally….

• Step 3: Compute the output
vector 𝐡𝑖 as the attention-
weighted sum of all of the input
value vectors v

• 𝐡𝒊 = σ𝑗=1
𝑛 𝛼𝑖𝑗v𝑗

Natalie Parde - UIC CS 521 48

Visually….

q1 ∙ k1 q1 ∙ k2 q1 ∙ k3 q1 ∙ k4 q1 ∙ k5

q2 ∙ k1 q2 ∙ k2 q2 ∙ k3 q2 ∙ k4 q2 ∙ k5

q3 ∙ k1 q3 ∙ k2 q3 ∙ k3 q3 ∙ k4 q3 ∙ k5

q4 ∙ k1 q4 ∙ k2 q4 ∙ k3 q4 ∙ k4 q4 ∙ k5

q5 ∙ k1 q5 ∙ k2 q5 ∙ k3 q5 ∙ k4 q5 ∙ k5

𝐐𝐊𝐓 matrix for a causal

Transformer encoder

Natalie Parde - UIC CS 521 49

Visually….

q1 ∙ k1 q1 ∙ k2 q1 ∙ k3 q1 ∙ k4 q1 ∙ k5

q2 ∙ k1 q2 ∙ k2 q2 ∙ k3 q2 ∙ k4 q2 ∙ k5

q3 ∙ k1 q3 ∙ k2 q3 ∙ k3 q3 ∙ k4 q3 ∙ k5

q4 ∙ k1 q4 ∙ k2 q4 ∙ k3 q4 ∙ k4 q4 ∙ k5

q5 ∙ k1 q5 ∙ k2 q5 ∙ k3 q5 ∙ k4 q5 ∙ k5

𝐐𝐊𝐓 matrix for a

bidirectional
Transformer encoder

Natalie Parde - UIC CS 521 50

Bidirectional
Transformer
Encoders

• All other elements remain the same as seen in causal
Transformers!

• Inputs are segmented using subword tokenization

• Inputs are combined with positional embeddings

• Transformer blocks include a self-attention layer and
a feedforward layer, augmented with normalization
layers and residual connections

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e

r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e
e

d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

Output

Natalie Parde - UIC CS 521 51

BERT-
Specific
Architectural
Details

Natalie Parde - UIC CS 521 52

Subword vocabulary
of 30k tokens

generated using the
WordPiece algorithm

768-dimensional
hidden layers

12 Transformer
blocks

12 attention heads in
each self-attention

layer

In total, this
comprises 100M

trainable
parameters!

Training a
WordPiece
Tokenizer

WordPiece Tokenization

• Starting at the beginning of the text to tokenize, find the
longest matching subword in the vocabulary

• Split on this subword

• Move forward to the first position after the split

• Repeat

• If there are no matching subwords in the vocabulary,
tokenize the text as [UNK]

Natalie Parde - UIC CS 521 54

Additional BERT Details

• Since subword tokenization is used, for some NLP tasks (e.g., named
entity tagging) it is necessary to map subwords back to words

• BERT is costly to train (time and memory requirements grow
quadratically with input length)

• To increase efficiency, a fixed input length of 512 subword tokens
is used---when working with longer texts, it’s necessary to partition
the text into different segments

Natalie Parde - UIC CS 521 55

Training
Bidirectional
Encoders

• With causal Transformer encoders, we
employed autoregressive language modeling
(next word prediction) as the training task

• With bidirectional Transformer encoders, this
task becomes trivial …the answer is now
directly available from the context!

CS 521 is the greatest Bidirectional
Transformer

CS

521

is

the

?

Natalie Parde - UIC CS 521 56

A new task is
needed for training
bidirectional
encoders….

• Cloze Task: Instead of trying to predict
the next word, learn how to predict the
best word to fill in the blank

• How do we do this?

• During training, mask out one or
more elements from the input
sequence

• Generate a probability
distribution over the vocabulary
for each of the missing elements

• Use the cross-entropy loss from
these probabilities to drive the
learning process

After such a late _____

working on my project, it was

____ to wake up this morning!

Natalie Parde - UIC CS 521 57

Cloze Task

• This task can be generalized to any method
that:

1. Corrupts the training input

2. Asks the model to recover the original
training input

• What are some ways to corrupt the training
input?

• Masks

• Substitutions

• Reorderings

• Deletions

• Extraneous insertions into the training
text

Natalie Parde - UIC CS 521 58

Masking
Words

• Original approach for corrupting input
when training bidirectional Transformer
encoders

• BERT uses a masking technique known
as masked language modeling (MLM)

After such a late night working

on my project, it was hard to

wake up this morning!

Natalie Parde - UIC CS 521 59

Masked
Language
Modeling

• Uses unannotated text from a large corpus

• Presents the models with sentences from the
corpus

• For each sentence, a random sample of
tokens is selected to be used in one of the
following ways:

• The token is replaced with a [MASK] token

• The token is replaced with another
randomly sampled token

• The token is left unchanged

Natalie Parde - UIC CS 521 60

What is the intuition behind these corruptions?

61

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• [MASK] token: The model learns to predict the masked words using
only the available context ([MASK] isn’t even in the training
vocabulary!)

• Random token: The model learns to favor contextual cues more
heavily than the word itself when encoding meaning

• Same token: The model learns to rely at least a little bit on the
specific word in its specific contextual position

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

Natalie Parde - UIC CS 521 62

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

Natalie Parde - UIC CS 521 63

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Natalie Parde - UIC CS 521 64

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 65

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 66

Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such a [MASK]

night working on my

project, it was hard to

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning

Natalie Parde - UIC CS 521 67

Masked
Language
Modeling

• Training objective:

• Predict the original inputs for each
of the sampled tokens using a
bidirectional encoder

• Make better predictions with each
iteration based on cross-entropy
loss

• Gradients that form the basis for
weight updates are based on
average loss over the sampled
learning tokens

• Although all tokens play a role in the
self-attention layer, only the
sampled tokens are used for
learning

Natalie Parde - UIC CS 521 68

Masked
Language

Modeling in
BERT

• Same process as shown, but uses subword
tokens instead

• 15% of tokens in the training sequence are
sampled

• Of these:

• 80% are replaced with [MASK]

• 10% are replaced with randomly
selected tokens

• 10% are left unchanged

Natalie Parde - UIC CS 521 69

Summary:
Transformers

and Masked
Language
Modeling

• Contextual word embeddings are typically
generated using pretrained language models

• A popular sequence processing architecture for
training modern language models is the
Transformer

• Bidirectional Transformer encoders were
used to create BERT, a transformative
pretrained language model

• Masked language modeling is a learning
objective for bidirectional Transformer encoders
that forces the model to predict potentially
masked or otherwise corrupted words, based on
the surrounding context

Natalie Parde - UIC CS 521 70

What if the most useful
language segment for
our task isn’t a single
token?

• Lots of tasks have larger units of
interest:

• Question answering

• Syntactic parsing

• Coreference resolution

• Semantic role labeling

• Solution: Apply a span-oriented
masked learning objective

Natalie Parde - UIC CS 521 71

Masking
Spans

• Span: A contiguous sequence of one or
more words selected from a training
sample, prior to subword tokenization

• How can we select spans for masking?
1. Decide on a span length

• In SpanBERT, this is sampled from a geometric
distribution biased toward shorter spans, with an
upper bound of 10

2. Given this span length, sample a starting
location

Natalie Parde - UIC CS 521 72

Masking Spans

• All sampling actions are performed at the
span level

• All tokens in the selected span are
replaced with [MASK]

• All tokens in the selected span are
replaced with randomly sampled
tokens

• All tokens in the selected span are left
as is

• After sampling actions are performed, the
input is passed through the same
Transformer architecture seen previously

Natalie Parde - UIC CS 521 73

Masked
Language
Modeling in
SpanBERT

• Analogous to “standard” BERT:
• In 80% of spans, tokens are

replaced with [MASK]

• In 10% of spans, tokens are
replaced with randomly sampled
tokens

• In 10% of spans, tokens are left
unchanged

• Total token substitution is limited
to 15% of the input

Natalie Parde - UIC CS 521 74

Masking Spans

After such a late night

working on my project,

it was hard to wake up

this morning!

After such [MASK] [MASK]

night working on my

project, it was hard to

wake up winter driving!

Natalie Parde - UIC CS 521 75

Span-Based Masked Language Modeling

After such a late night

working on my project,

it was hard to wake up

this morning!

After such [MASK] [MASK]

night working on my

project, it was hard to

wake up winter driving!

Natalie Parde - UIC CS 521 76

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

After such a late night

working on my project,

it was hard to wake up

this morning!

After such [MASK] [MASK]

night working on my

project, it was hard to

wake up winter driving!

Natalie Parde - UIC CS 521 77

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

After such a late night

working on my project,

it was hard to wake up

this morning!

After such [MASK] [MASK]

night working on my

project, it was hard to

wake up winter driving!

Natalie Parde - UIC CS 521 78

Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

late project morning

After such a late night

working on my project,

it was hard to wake up

this morning!

After such [MASK] [MASK]

night working on my

project, it was hard to

wake up winter driving!

a on my this

Natalie Parde - UIC CS 521 79

What kind of
information
should be
included in a
span-level
representation?

• Create span-level
representations based on:

• Tokens within the span

• Span boundaries

• Boundary representations are
usually derived from:

• First and last words of the span

• Words immediately before or
after the span

Natalie Parde - UIC CS 521 80

Span Boundary Objective

• Augments the masked language modeling objective in SpanBERT,
altering the loss function to account for the span boundary objective

• 𝐿 𝐱 = 𝐿𝑀𝐿𝑀 𝐱 + 𝐿𝑆𝐵𝑂(𝐱)

• Leverages the model’s ability to predict words inside a span based on
those just outside of it

• 𝐿𝑆𝐵𝑂 𝐱 = − log 𝑃(𝐱|𝐱𝑠−1, 𝐱𝑒+1, 𝐩𝑖−𝑠+1)

Word before the span Word after the span
Positional embedding indicating which

word in the span is being predicted

Natalie Parde - UIC CS 521 81

Bidirectional
Transformer
encoders can
also help us
learn another
important piece
of information!

• In many NLP tasks, it is crucial to learn
the relationship between pairs of
sentences

• Detecting paraphrases

• Determining entailment

• Measuring discourse coherence

Natalie Parde - UIC CS 521 82

BERT also
uses a

second
learning

objective that
helps us

perform this
task.

• What is this other learning
objective?

• Next sentence prediction (NSP)

Natalie Parde - UIC CS 521 83

Next Sentence Prediction

• Present the model with pairs of
sentences

• Predict whether each pair is an actual
pair of adjacent sentences, or a pair of
unrelated sentences

• In BERT, training pairs are evenly
balanced across these two classes

• Base the loss on how well the model can
distinguish actual pairs from unrelated
pairs

After such a late night working

on my project, it was hard to

wake up this morning! I did

though, because I had to give

my project presentation.

After such a late night working

on my project, it was hard to

wake up this morning! A winter

storm warning has been issued

for your area.

Natalie Parde - UIC CS 521 84

How does
NSP
training
work?

• Two new tokens are added to
the input:

• [CLS] is prepended to the input
sentence pair

• [SEP] is placed between the
sentences and after the final
token of the second sentence

• Embeddings representing
each segment (first sentence
and second sentence) are
added to the word and
positional embeddings

Natalie Parde - UIC CS 521 85

Additional Tokens

After such a late night

working on my project,

it was hard to wake up

this morning! I did

though, because I had

to give my project

presentation.

[CLS] After such a late

night working on my

project, it was hard to wake

up this morning! [SEP] I

did though, because I had

to give my project

presentation. [SEP]

Natalie Parde - UIC CS 521 86

Once we’ve made these
adjustments….

• The output vector associated with the
[CLS] token represents the next sentence
prediction

• Specifically, a learned set of classification
weights 𝐖𝐍𝐒𝐏 ∈ ℝ2×𝑑ℎ is used to predict
one of two classes from the raw [CLS]
vector 𝐡𝑖

• 𝑦𝑖 = softmax(𝐖𝐍𝐒𝐏𝐡𝑖)

• A cross-entropy loss is used for the NSP
loss

• In BERT, the final loss function is a linear
combination of the NSP and MLM loss
functions

Natalie Parde - UIC CS 521 87

Next Sentence Prediction

After such a late night

working on my project,

it was hard to wake up

this morning! I did

though, because I had

to give my project

presentation.

[CLS] After such a late

night working on my

project, it was hard to wake

up this morning! [SEP] I

did though, because I had

to give my project

presentation. [SEP]

Natalie Parde - UIC CS 521 88

Next Sentence Prediction

[CLS] p1 s1

…

After such a late night

working on my project,

it was hard to wake up

this morning! I did

though, because I had

to give my project

presentation.

[CLS] After such a late

night working on my

project, it was hard to wake

up this morning! [SEP] I

did though, because I had

to give my project

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 89

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

After such a late night

working on my project,

it was hard to wake up

this morning! I did

though, because I had

to give my project

presentation.

[CLS] After such a late

night working on my

project, it was hard to wake

up this morning! [SEP] I

did though, because I had

to give my project

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 90

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

Actually Adjacent

After such a late night

working on my project,

it was hard to wake up

this morning! I did

though, because I had

to give my project

presentation.

[CLS] After such a late

night working on my

project, it was hard to wake

up this morning! [SEP] I

did though, because I had

to give my project

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 521 91

BERT-Specific Training Details

• Corpora:

• Early Transformer-based language models (including BERT) used
BooksCorpus (800M words) and English Wikipedia (2.5B words)

• More recent state-of-the-art models learn from even larger corpora

• When training BERT, pairs of sentences were sampled such that their maximum
combined length does not exceed 512 tokens

• Original BERT models converged after approximately 40 training iterations

Natalie Parde - UIC CS 521 92

Training models like BERT
can be expensive and time-
consuming….

• However, this pretraining process can result in
models that can be used and reused for numerous
tasks

• Pretrained word embeddings and learned
parameters to produce new contextual
embeddings

• Base models that can be fine-tuned for transfer
learning purposes

Natalie Parde - UIC CS 521 93

Transfer Learning
through Fine-Tuning

• Pretrained language models facilitate
generalization across large text corpora

• This generalization makes it easier to
incorporate these models effectively in
downstream applications

• The process of learning an interface between a
pretrained language model and a specific
downstream task is called fine-tuning

Natalie Parde - UIC CS 521 94

Fine-
Tuning

Many
different
applications
have made
use of fine-
tuning!

• Sequence classification

• Sequence labeling

• Sentence-pair inference

• Span-based operations

Natalie Parde - UIC CS 521 96

Sequence
Classification

How do we fine-
tune for
sequence
classification
tasks?

• Learn a set of weights, 𝐖𝐂 ∈ ℝ𝑛×𝑑ℎ, to map the
sequence representation to a set of scores over
𝑛 possible classes

• 𝑑ℎ is the dimensionality of the language
model’s hidden layers

• Requires supervised training data for the target
task

• Learning process that optimizes 𝐖𝐂 is driven by
cross-entropy loss between the softmax output
and the target task label

Natalie Parde - UIC CS 521 98

How do we
classify test
documents

for sequence
classification

tasks?

N
a

ta
lie

 P
a

rd
e

 - U
IC

 C
S

 5
2
1

• Pass the input sample through
the pretrained language model
to generate an output
representation 𝐡𝐂𝐋𝐒

• Multiply the output
representation by the learned
weights 𝐖𝐂

• Pass the resulting vector
through a softmax:

• 𝐲 = softmax(𝐖𝐂𝐡𝐂𝐋𝐒)

Example: Sequence Classification

Natalie Parde - UIC CS 521 100

I’m so excited about the

winter storm warning.

Example: Sequence Classification

[CLS] p1

Natalie Parde - UIC CS 521 101

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Example: Sequence Classification

Natalie Parde - UIC CS 521 102

[CLS] p1

Bidirectional Transformer Encoder

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Example: Sequence Classification

[CLS] p1

Bidirectional Transformer Encoder

sarcasm

Natalie Parde - UIC CS 521 103

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

What differs between this and earlier
neural classifiers?

• If we want, we can use the computed loss to update not only the
classifier weights, but also the weights for the pretrained language
model itself

• However, substantial changes are rarely necessary!

• Reasonable classification performance is often achieved with only
minimal changes to the language model parameters

• These changes are generally limited to updates over the final few
layers of the model

Natalie Parde - UIC CS 521 104

Pair-Wise
Sequence

Classification

N
a

ta
lie

 P
a

rd
e

 - U
IC

 C
S

 5
2
1

• Subcategory of sequence
classification that focuses
on classifying pairs of
input sentences

• Useful for:

• Logical entailment

• Paraphrase detection

• Discourse analysis

How does fine-
tuning work for
pair-wise
sequence
classification?

• Similar to pretraining with the NSP
objective

• Pairs of labeled sentences are
presented to the model, separated by
[SEP] and prepended with [CLS]

• During classification, the output [CLS]
vector is multiplied by classification weights
and passed through a softmax to generate
label predictions

Natalie Parde - UIC CS 521 106

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 107

• Popular NLP task, also referred to as natural language inference

• Classify sentence pairs such that:

• Sentence A entails Sentence B

• Sentence A contradicts Sentence B

• The relationship between Sentence A and Sentence B is neutral

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 108

It’s a snow day! There

is snow outside.

Example: Pair-Wise Sequence Classification (Entailment Task)

Natalie Parde - UIC CS 521 109

It’s a snow day! There

is snow outside.

[CLS] It’s a snow day!

[SEP] There is snow

outside. [SEP]

[CLS] p1

Natalie Parde - UIC CS 521 110

It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

Example: Pair-Wise Sequence Classification (Entailment Task)

…

[CLS] It’s a snow day! [SEP]

There is snow outside. [SEP]

s1 s1 s1 s1 s1 s1 s1 s1

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 111

Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]

There is snow outside. [SEP]

Bidirectional Transformer Encoder

Entails

Natalie Parde - UIC CS 521 112

Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]

There is snow outside. [SEP]

Sequence Labeling

113

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Similar to approach used for sequence classification

• However, the output vector for each input token is passed to a
classification head that produces a softmax distribution over the possible
classes

• The output tag sequence can be determined by a variety of methods

• Common: Greedy approach accepting the argmax class for each token

• 𝐲𝑖 = softmax(𝐖𝐾𝐳𝑖), where 𝑘 ∈ 𝐾 is the set of tags for the task

• 𝐭𝑖 = argmax
𝑘

(𝐲𝑖)

• Alternative: Distribution over labels can be passed to a CRF layer,
allowing consideration of global tag-level transitions

Common
Sequence
Labeling Tasks

• Part-of-speech tagging

• Named entity recognition

• Shallow parsing

Natalie Parde - UIC CS 521 114

Example: Sequence Labeling

Natalie Parde - UIC CS 521 115

It is a beautiful winter

day in Chicago.

Example: Sequence Labeling

Natalie Parde - UIC CS 521 116

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 117

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Sequence Labeling

Bidirectional Transformer Encoder

PRP

Natalie Parde - UIC CS 521 118

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

VBZ DT JJ NN NN IN NNP

Complication
with BERT
(and related
models)….

119

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Subword tokenization doesn’t play
well with tasks requiring word-level
labels

• How to address this?

• During training, assign the gold
standard label for a word to all its
constituent subwords

• During testing, recover word-level
labels from subwords as part of
the decoding process

Recovering
Word-Level
Labels

• Simplest approach:

• For a given word, use the predicted
label for its first subword as the
label for the entire word

• More complex approaches consider
the distribution of label probabilities
across all subwords for a given word

Natalie Parde - UIC CS 521 120

Nat #a #lie

NNP DT VB

Natalie

NNP

Span-Based
Sequence
Labeling

• Carries attributes of both
sequence classification and
token-level sequence labeling

• Goal: Make decisions using
representations of spans of
tokens

• Common Tasks:

• Identify spans of interest

• Classify spans

• Determine relations among
spans

Natalie Parde - UIC CS 521 121

Common
Span-Based
Sequence
Labeling
Applications

Natalie Parde - UIC CS 521 122

Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution

Span-
Based
Sequence
Labeling

How do we
represent
spans for
span-based
sequence
labeling?

Natalie Parde - UIC CS 521 124

• Most span representations incorporate
both:

• Span boundary representations

• Summary representations of span content

• These component representations are
often concatenated with one another

Span Boundary Representations

125

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Simple approach: Just use the contextual embeddings of the start and
end tokens of the span as the span boundary representations

• However, internally this doesn’t offer a way to distinguish between
the start and end tokens

• Words may carry different meaning at the beginning of a span than
at the end!

• More complex approach: Use separate feedforward networks to learn
representations for the beginning and end of the span

• 𝐬𝑖 = FFNN𝑠(𝐡𝑖)

• 𝐞𝑗 = FFNN𝑒(𝐡𝑗)

Summary Representations

126

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Simple approach: Just use the average of the output embeddings for
words within the span as the summary representation

• 𝐠𝑖𝑗 =
1

𝑗−𝑖 +1
σ𝑘=𝑖

𝑗
𝐡𝑘

• More complex approach: Place more representational emphasis on
the head of the span

• Can be done using syntactic parse information (if available) or a
self-attention layer (if not)

• 𝐠𝑖𝑗 = SelfAttention(𝐡𝑖:𝑗)

How does
fine-tuning
work in
span-
based
sequence
labeling?

127

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 5

2
1

• Learn the weights/parameters for:

• Task classification head

• Boundary representations

• Summary representation

• Final classification output:

• 𝐬𝐩𝐚𝐧𝑖𝑗 = [𝐬𝑖; 𝐞𝑗; 𝐠𝑖𝑗]

• 𝐲𝑖𝑗 = softmax(FFNN(𝐬𝐩𝐚𝐧𝑖𝑗))

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 128

It is a beautiful winter day in Chicago.

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 129

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Natalie Parde - UIC CS 521 130

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 131

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 132

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 133

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 134

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 135

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

Self Attention

FFNN

Self Attention

FFNN

Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 136

It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

NP

Self Attention

FFNN

NP

Self Attention

FFNN

PP

Advantages of
Span-Based
Sequence
Labeling

• Only require one label assignment per
span

• In comparison, BIO-based methods
require labels for each constituent
token

• Naturally accommodate hierarchical
and/or overlapping labels

• BIO-based methods assign a single
label per token

Natalie Parde - UIC CS 521 137

We’ve learned a
lot about transfer
learning and
pretrained
language models
…how can we
implement them?

https://huggingface.co/docs/transf
ormers/index

https://www.tensorflow.org/text/tut
orials/classify_text_with_bert

https://pytorch.org/hub/huggingfac
e_pytorch-transformers/

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

Where do
large
language
models
(LLMs) fit
in?

• What is “large”?

• Not clearly defined, but generally speaking,
anything “BERT-sized” (~110 million
parameters) or larger

• Trained on massive quantities of text data
to predict which word(s) should appear,
given a context

• Can theoretically use any architecture that
works for this setting, but in practice,
modern LLMs are Transformer models

UIC CS 521 - Natalie Parde 139

How are LLMs
pretrained?

• Can be pretrained with numerous objectives

• Masked language modeling

• Next sentence prediction

• Autoregressive generation

• Different pretraining objectives are useful for
different purposes

• Pretraining for masked language modeling
may produce LLMs that are especially well-
suited for classification

• Pretraining for autoregressive generation may
produce LLMs that are especially well-suited
for longer-form generation tasks

UIC CS 521 - Natalie Parde 140

What’s most popular right now?

• The most popular LLMs right now (e.g., GPT-X or LLaMa) are
pretrained for autoregressive generation

• Given the sequence of words that have been generated so far, decide
which word should come next

Generative Pretrained Transformer

G P T

UIC CS 521 - Natalie Parde 141

Is this a
step back?

• First came autoregressive
generation, then came masked
language modeling, then came
…autoregressive generation
again?

• Autoregressive generation
without instruction tuning is
only useful for limited
purposes (e.g.,
autocomplete)

• Autoregressive generation
+ instruction tuning +
reinforcement learning with
human feedback (+ better
prefixes) is a very recent
development, and much
more useful!

UIC CS 521 - Natalie Parde 142

In fact, these recent developments have
ushered in a new training paradigm.

• Why?

• Fine-tuning pretrained models to perform new tasks works very well in
many cases, but it still requires that you have a reasonably large
supervised training set for the target task

• In some cases, we only have a very tiny amount of training data (or none
at all) for our target task!

Rule-Based Era

•Prior to ~1990s

Statistical and (Early) Neural Era

•1990s to 2010s

Pretrain and Finetune Era

•Late 2010s to present

Pretrain and Prompt Era

•Early 2020s to present

UIC CS 521 - Natalie Parde 143

Introducing: Pretrain (and Optionally Fine-
Tune) and Prompt
• Intuition:

• If we take LLMs that have been pretrained on a wide variety of language
data, we can prompt them to produce the correct labels or output for new
tasks

Here are two training instances:

Data: "Natalie was soooooo happy she had booked a 5 a.m. flight.”

Label: SARCASTIC

Data: “Natalie loved early morning flights because she could get to

her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance. Fill in the correct label:

Data: “Natalie was sooooooooooo excited to wait in an early morning

airport security line.” Label:

LLM
SARCASTIC

UIC CS 521 - Natalie Parde 144

This new paradigm has seen remarkably
rapid uptake in the NLP community!

Full, Main Conference

Papers with “Prompt” in Title

ACL 2022 22

EMNLP 2022 41

ACL 2023 36

EMNLP 2023 44

ACL 2024 38

EMNLP 2024 55

UIC CS 521 - Natalie Parde 145

At the core of most
recent work are
generative pretrained
Transformers (GPTs).

https://cdn.openai.com/research-
covers/language-
unsupervised/language_understandi
ng_paper.pdf

UIC CS 521 - Natalie Parde 146

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Popular
Large

(Generative)
Language

Models

UIC CS 521 - Natalie Parde 147

Open vs. Closed
Models

UIC CS 521 - Natalie Parde 148

Open vs. Closed Models

• However, very recent interest (and helpful
efforts from community members!) have led
to the public release of several open-source
LLMs

• Fully accessible and modifiable

• Architecture is fully explorable

• Free!

• Examples:

• Llama: https://www.llama.com/

• OLMo: https://allenai.org/olmo

UIC CS 521 - Natalie Parde 149

https://www.llama.com/
https://allenai.org/olmo

LLM
Resources

https://huggingface.co/spaces/Hugging
FaceH4/open_llm_leaderboard

https://arxiv.org/abs/2303.18223

https://github.com/RUCAIBox/LLM
Survey

https://huggingface.co/models?pipeline
_tag=text-generation&sort=trending

UIC CS 521 - Natalie Parde 150

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://arxiv.org/abs/2303.18223
https://github.com/RUCAIBox/LLMSurvey
https://github.com/RUCAIBox/LLMSurvey
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending

Summary:
Transfer
Learning with
Pretrained
Language
Models and
Large
Language
Models

Natalie Parde - UIC CS 521 151

Bidirectional Transformer
encoders learn
representations by
optimizing for two tasks:

Masked language
modeling

Next sentence
prediction

Pretrained language models can be fine-
tuned for a variety of downstream tasks by
adding classification heads to the end of the
model

These tasks may
include:

Sequence classification

Sequence labeling

Span-based sequence
labeling

Large language models are typically
generative pretrained Transformer models
with an autoregressive language modeling
learning objective

	Slide 1: Transfer Learning with Pretrained Language Models and Large Language Models
	Slide 2: Language continually develops and evolves.
	Slide 3: Can computers learn language in the same way?
	Slide 4: Recap: The distributional hypothesis states that we can learn language based solely on its context
	Slide 5: What does this look like?
	Slide 6: What does this look like?
	Slide 7: What does this look like?
	Slide 8: What does this look like?
	Slide 9: What does this look like?
	Slide 10: Behind the scenes….
	Slide 11: Behind the scenes….
	Slide 12: These are the weights we’re interested in!
	Slide 13: GloVe
	Slide 14: How does GloVe work?
	Slide 15: Word2Vec and GloVe are both static word embeddings.
	Slide 16: Contextual Word Embeddings
	Slide 17: What base architecture should we use for pretrained language models?
	Slide 18: Transformers
	Slide 19: Self-Attention
	Slide 20: Self-Attention
	Slide 21: Self-Attention
	Slide 22: Self-Attention
	Slide 23: Self-Attention
	Slide 24: Computing Self-Attention
	Slide 25: How do Transformers learn?
	Slide 26: Training Transformers
	Slide 27: Self-Attention
	Slide 28: Practical Considerations
	Slide 29: Transformer Blocks
	Slide 30: Multihead Attention
	Slide 31: Computing Multihead Attention
	Slide 32: Multihead Attention
	Slide 33: Positional Embeddings
	Slide 34: Transformers as Autoregressive Language Models
	Slide 35: Encoder-Decoder Models with Transformers
	Slide 36: Cross-Attention
	Slide 37: Updated Decoder Transformer Block
	Slide 38: Encoder-Decoder Models with Transformers
	Slide 39: Bidirectional Encoder Representations from Transformers (BERT)
	Slide 40: BERT was transformative to the NLP field!
	Slide 41: Bidirectional Transformer Encoders
	Slide 42: Many NLP tasks don’t need to restrict the model from viewing future context.
	Slide 43: Transformers aren’t innately constrained to processing from sequence beginning to end.
	Slide 44: Bidirectional Self-Attention Layer
	Slide 45: Bidirectional Self-Attention Layer
	Slide 46: More formally….
	Slide 47: More formally….
	Slide 48: More formally….
	Slide 49: Visually….
	Slide 50: Visually….
	Slide 51: Bidirectional Transformer Encoders
	Slide 52: BERT-Specific Architectural Details
	Slide 53: Training a WordPiece Tokenizer
	Slide 54: WordPiece Tokenization
	Slide 55: Additional BERT Details
	Slide 56: Training Bidirectional Encoders
	Slide 57: A new task is needed for training bidirectional encoders….
	Slide 58: Cloze Task
	Slide 59: Masking Words
	Slide 60: Masked Language Modeling
	Slide 61: What is the intuition behind these corruptions?
	Slide 62: Masked Language Modeling
	Slide 63: Masked Language Modeling
	Slide 64: Masked Language Modeling
	Slide 65: Masked Language Modeling
	Slide 66: Masked Language Modeling
	Slide 67: Masked Language Modeling
	Slide 68: Masked Language Modeling
	Slide 69: Masked Language Modeling in BERT
	Slide 70: Summary: Transformers and Masked Language Modeling
	Slide 71: What if the most useful language segment for our task isn’t a single token?
	Slide 72: Masking Spans
	Slide 73: Masking Spans
	Slide 74: Masked Language Modeling in SpanBERT
	Slide 75: Masking Spans
	Slide 76: Span-Based Masked Language Modeling
	Slide 77: Span-Based Masked Language Modeling
	Slide 78: Span-Based Masked Language Modeling
	Slide 79: Span-Based Masked Language Modeling
	Slide 80: What kind of information should be included in a span-level representation?
	Slide 81: Span Boundary Objective
	Slide 82: Bidirectional Transformer encoders can also help us learn another important piece of information!
	Slide 83: BERT also uses a second learning objective that helps us perform this task.
	Slide 84: Next Sentence Prediction
	Slide 85: How does NSP training work?
	Slide 86: Additional Tokens
	Slide 87: Once we’ve made these adjustments….
	Slide 88: Next Sentence Prediction
	Slide 89: Next Sentence Prediction
	Slide 90: Next Sentence Prediction
	Slide 91: Next Sentence Prediction
	Slide 92: BERT-Specific Training Details
	Slide 93: Training models like BERT can be expensive and time-consuming….
	Slide 94: Transfer Learning through Fine-Tuning
	Slide 95: Fine-Tuning
	Slide 96: Many different applications have made use of fine-tuning!
	Slide 97: Sequence Classification
	Slide 98: How do we fine-tune for sequence classification tasks?
	Slide 99: How do we classify test documents for sequence classification tasks?
	Slide 100: Example: Sequence Classification
	Slide 101: Example: Sequence Classification
	Slide 102: Example: Sequence Classification
	Slide 103: Example: Sequence Classification
	Slide 104: What differs between this and earlier neural classifiers?
	Slide 105: Pair-Wise Sequence Classification
	Slide 106: How does fine-tuning work for pair-wise sequence classification?
	Slide 107: Example: Pair-Wise Sequence Classification (Entailment Task)
	Slide 108: Example: Pair-Wise Sequence Classification (Entailment Task)
	Slide 109: Example: Pair-Wise Sequence Classification (Entailment Task)
	Slide 110
	Slide 111
	Slide 112: Example: Pair-Wise Sequence Classification (Entailment Task)
	Slide 113: Sequence Labeling
	Slide 114: Common Sequence Labeling Tasks
	Slide 115: Example: Sequence Labeling
	Slide 116: Example: Sequence Labeling
	Slide 117: Example: Sequence Labeling
	Slide 118: Example: Sequence Labeling
	Slide 119: Complication with BERT (and related models)….
	Slide 120: Recovering Word-Level Labels
	Slide 121: Span-Based Sequence Labeling
	Slide 122: Common Span-Based Sequence Labeling Applications
	Slide 123: Span-Based Sequence Labeling
	Slide 124: How do we represent spans for span-based sequence labeling?
	Slide 125: Span Boundary Representations
	Slide 126: Summary Representations
	Slide 127: How does fine-tuning work in span-based sequence labeling?
	Slide 128: Example: Span-Based Sequence Labeling
	Slide 129: Example: Span-Based Sequence Labeling
	Slide 130: Example: Span-Based Sequence Labeling
	Slide 131: Example: Span-Based Sequence Labeling
	Slide 132: Example: Span-Based Sequence Labeling
	Slide 133: Example: Span-Based Sequence Labeling
	Slide 134: Example: Span-Based Sequence Labeling
	Slide 135: Example: Span-Based Sequence Labeling
	Slide 136: Example: Span-Based Sequence Labeling
	Slide 137: Advantages of Span-Based Sequence Labeling
	Slide 138: We’ve learned a lot about transfer learning and pretrained language models …how can we implement them?
	Slide 139: Where do large language models (LLMs) fit in?
	Slide 140: How are LLMs pretrained?
	Slide 141: What’s most popular right now?
	Slide 142: Is this a step back?
	Slide 143: In fact, these recent developments have ushered in a new training paradigm.
	Slide 144: Introducing: Pretrain (and Optionally Fine-Tune) and Prompt
	Slide 145: This new paradigm has seen remarkably rapid uptake in the NLP community!
	Slide 146: At the core of most recent work are generative pretrained Transformers (GPTs).
	Slide 147: Popular Large (Generative) Language Models
	Slide 148: Open vs. Closed Models
	Slide 149: Open vs. Closed Models
	Slide 150: LLM Resources
	Slide 151: Summary: Transfer Learning with Pretrained Language Models and Large Language Models

