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Language 
continually 
develops 
and 
evolves.

• Estimated vocabulary size of a young adult 
speaker of American English: ~30k-100k 
words

• On average, 7-10 new words need to be 
learned per day through age 20!

• Early on in humans: Vocabulary is learned via 
spoken interactions with peers and caregivers

• Later: Vocabulary is mostly learned as a by-
product of reading
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Can computers 
learn language 
in the same 
way?

• Learning language through experience 
(e.g., through spoken interactions with 
peers in a situated environment) is an 
example of grounded language 
learning

• Meaning is tied to an experiential 
(either implied or explicit) common 
ground between speakers

red red
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Recap: The 
distributional 
hypothesis 
states that we 
can learn 
language based 
solely on its 
context

• Word embedding techniques “learn” 
meaning using measures of the 
frequency with which words occur close 
to one another in large text corpora

• Recall:

• Word2Vec

• GloVe
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What does this look like?

super

Start with an input t
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What does this look like?

0

0
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Get the one-hot vector for t
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What does this look like?

…

Feed it into a layer of n units 

(where n is the desired 

embedding size), each of 

which computes a weighted 

sum of inputs0
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…
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s
u
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e
r
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What does this look like?

…

Feed the outputs from those 

units into a final unit that 

predicts whether a word c is 

a valid context for t

P(+ | t,c)

0

0

1

…

0

s
u
p

e
r
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What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

Create one of those output 

units for every possible c
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

Each unit in the intermediate 

layer applies a specific 

weight to each input it 

receives

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤3 + ⋯ + 0 ∗ 𝑤𝑛
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

Since our inputs are one-hot 

vectors, this means we’ll end 

up with a specific set of 

weights (one for each unit) 

for each input word

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤13 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤23 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 𝑤𝑛3 + ⋯ + 0 ∗ 𝑤𝑛
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These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

s
u
p

e
r

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.1 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.7 + ⋯ + 0 ∗ 𝑤𝑛

𝑧 = 0 ∗ 𝑤1 + 0 ∗ 𝑤2 + 1 ∗ 0.8 + ⋯ + 0 ∗ 𝑤𝑛

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 521 12



GloVe

• While Word2Vec is a popular predictive word embedding model, researchers have also 
developed high-performing models that incorporate aspects of count-based models

• One example: Global Vectors for Word Representation (GloVe)

• Why is this useful?

• Predictive models → black box

• They work, but why?

• GloVe models are easier to interpret

• GloVe models also encode the ratios of co-occurrence probabilities between different 
words …this makes these vectors useful for word analogy tasks
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How does GloVe work?

c1 … cn

t1 123 … 456

… … … …

tn 0 … 789

Build a huge word-context 

co-occurrence matrix

Define soft constraints for each word pair 𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 = log 𝑋𝑖𝑗

Define a cost function

𝐽 = ෍

𝑖=1

𝑉

෍

𝑗=1

𝑉

𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log 𝑋𝑖𝑗 )2

Minimize the cost function to 

learn ideal embedding values 

for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3
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Word2Vec 
and GloVe 
are both 
static word 
embeddings.

• A given word has the same embedding, 
regardless of its context

• Reasonable in many cases, but not always

• What if a word has multiple senses?

• What if a word starts appearing in new 
contexts?

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle 

washed up on the bank.
0.4 0.2 0.5 0.7 0.1

Are you going to bank on that 

proposal being funded?
0.4 0.2 0.5 0.7 0.1
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Contextual 
Word 

Embeddings

• Word representations that differ depending on 
the context in which the word appears

• Vocabulary words do not map to specific, 
predefined vectors

• We typically learn contextual word 
representations using pretrained language 
models

Did you deposit that check at the bank? 0.4 0.2 0.5 0.7 0.1

A message in a bottle 

washed up on the bank.
0.4 0.3 0.2 0.7 0.5

Are you going to bank on that 

proposal being funded?
0.1 0.2 0.4 0.3 0.1

Natalie Parde - UIC CS 521 16



What base architecture should 
we use for pretrained 
language models?

• Limitations of RNNs:
• Processing long-distance 

dependencies through many 
recurrences can eventually lead 
to loss of valuable information

• Recurrent models cannot 
productively leverage parallel 
resources
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Transformers



Self-Attention
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Self-Attention
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Computing 
Self-
Attention

• Take the dot product between a given input element 𝑥𝑖 and each 
input element (𝑥1, … , 𝑥𝑖) up until that point

• score 𝑥𝑖, 𝑥𝑗 = 𝑥𝑖 ⋅ 𝑥𝑗

• Apply softmax normalization to create a vector of weights, 𝛼𝑖, 
indicating proportional relevance of each sequence element to the 
current focus of attention, 𝑥𝑖

• 𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗 ∀𝑗 ≤ 𝑖 =
𝑒

𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,𝑥𝑗)

σ𝑘=1
𝑖 𝑒𝑠𝑐𝑜𝑟𝑒(𝑥𝑖,𝑥𝑘) ∀𝑗 ≤ 𝑖

• Take the sum of inputs thus far weighted by 𝛼𝑖 to produce an output 
𝑦𝑖

• 𝑦𝑖 = σ𝑗≤𝑖 𝛼𝑖𝑗𝑥𝑗

Natalie Parde - UIC CS 521 24



How do Transformers learn?

• Continually updating weight matrices applied to inputs

• Weight matrices are learned for each of three roles when 
computing self-attention:

• Query: The focus of attention when it is being compared to inputs up 
until that point, 𝑊𝑄

• Key: An input that is being compared to the focus of attention, 𝑊𝐾

• Value: A value being used to compute the output for the current focus 
of attention, 𝑊𝑉
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Training Transformers

• Weight matrices are applied to inputs in the context of their respective roles

• 𝑞𝑖 = 𝑊𝑄𝑥𝑖

• 𝑘𝑖 = 𝑊𝐾𝑥𝑖

• 𝑣𝑖 = 𝑊𝑉𝑥𝑖

• Then, we can update our equations for computing self-attention so that these 
roles are reflected in them:

• score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

• 𝛼𝑖𝑗 = softmax score 𝑥𝑖 , 𝑥𝑗 ∀𝑗 ≤ 𝑖

• 𝑦𝑖 = σ𝑗≤𝑖 𝛼𝑖𝑗𝑣𝑗
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is

Self-Attention
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kis

vis

score 𝑥𝑖 , 𝑥𝑗 = 𝑞𝑖 ⋅ 𝑘𝑗

qis

𝛼𝑖𝑗 = softmax score 𝑥𝑖, 𝑥𝑗

𝑦𝑖 = ෍

𝑗≤𝑖

𝛼𝑖𝑗𝑣𝑗

k521
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kCS

vCS
qCS

27



Practical Considerations

• Combining a dot product with an exponential (as in softmax) may lead to arbitrarily large values

• It is common to scale the scoring function based on the dimensionality of the key (and query) vectors, 𝑑𝑘

• score 𝑥𝑖, 𝑥𝑗 =
𝑞𝑖⋅𝑘𝑗

𝑑𝑘

• Each 𝑦𝑖 is computed independently, so we can parallelize computations using matrix multiplication where 
𝑋 is a matrix containing all input embeddings

• 𝑄 = 𝑊𝑄𝑋

• 𝐾 = 𝑊𝐾𝑋

• 𝑉 = 𝑊𝑉𝑋

• SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

• Make sure to avoid including knowledge of future words in autoregressive language modeling 
settings!
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Transformer Blocks

• Self-attention is the central component of a Transformer block, which also 
includes:

• Feedforward layers

• Residual connections

• Normalizing layers

• Transformer blocks can be stacked, just like RNN layers

Input

S
e
lf-A

tte
n

tio
n

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

F
e

e
d
fo

rw
a
rd

 L
a
y
e
r

A
d
d
 a

n
d
 N

o
rm

a
liz

e

Output

Natalie Parde - UIC CS 521 29



Multihead Attention

• Each self-attention layer represents a single attention 
head

• Multihead attention places multiple attention heads in 
parallel in the Transformer model

• Since each attention head has its own set of weights, 
each one can learn different aspects of the relations 
between input elements at the same level of 
abstraction

Natalie Parde - UIC CS 521
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Computing Multihead Attention

Natalie Parde - UIC CS 521

• Each head in the self-attention layer is parameterized with its own weights

• 𝑄 = 𝑊𝑖
𝑄

𝑋

• 𝐾 = 𝑊𝑖
𝐾𝑋

• 𝑉 = 𝑊𝑖
𝑉𝑋

• The output of a multihead attention layer with 𝑛 heads comprises 𝑛 vectors 
of equal length

• These heads are concatenated and then reduced to the original input/output 
dimensionality

• head𝑖 = SelfAttention(𝑊𝑖
𝑄

𝑋, 𝑊𝑖
𝐾𝑋, 𝑊𝑖

𝑉𝑋)

• MultiheadAttention 𝑄, 𝐾, 𝑉 = 𝑊𝑂(head1⨁head2 ⨁… ⨁head𝑛)
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Multihead Attention
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Positional Embeddings

• Since Transformers don’t make use of recurrent connections, they instead 
employ separate positional embeddings to encode positionality

• Randomly initialize an embedding for each input position

• Update weights during the training process

• Input embedding with positional information = word embedding + positional 
embedding

• Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
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Transformers as Autoregressive 
Language Models

Natalie Parde - UIC CS 521
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Encoder-
Decoder 
Models with 
Transformers

• Similar to other encoder-decoder models
• Encoder (Transformer model) maps 

sequential input to an output representation

• Decoder (Transformer model) attends to the 
encoder representation and generates 
sequential output autoregressively

• However….
• Transformer blocks in the decoder include 

an extra cross-attention layer
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Cross-
Attention
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• Same form as multiheaded self-attention in a normal Transformer 
block, with one difference: queries come from the previous layer of the 
decoder as usual, but keys and values come from the output of the 
encoder

• 𝐐 = 𝐖𝐐𝐇𝑑𝑒𝑐[𝑖−1]

• 𝐊 = 𝐖𝐐𝐇𝑒𝑛𝑐

• 𝐕 = 𝐖𝐕𝐇𝑒𝑛𝑐

• CrossAttention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝐊T

𝑑𝑘
𝐕

Reminder: Normal Transformer block
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Updated Decoder Transformer Block
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Encoder-
Decoder 
Models with 
Transformers

• Why is cross-attention useful?
• Allows the decoder to attend to 

the entire encoder sequence

• Training Transformer-based 
encoder-decoders is similar to 
training RNN-based encoder-
decoders

• Use teacher forcing

• Train autoregressively
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Bidirectional 
Encoder 
Representations 
from 
Transformers 
(BERT)

• Popular method for building 
pretrained language models

• Many variations
• DistilBERT

• RoBERTa

• SpanBERT

• Makes use of a bidirectional 
Transformer encoder
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BERT was 
transformative 
to the NLP 
field!
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• Statistical n-gram language 
models

• Feature-based classifiers

• Task-specific neural architectures

Prior to BERT:

• Pretrained neural language 
models

• Task-specific fine-tuning

After BERT:



Bidirectional 
Transformer 
Encoders

• We’ve already seen how causal Transformers work

• Well-suited for language modeling problems since 
they prevent consideration of future context

• However, these models are inherently constrained

• What about tasks for which future context is readily 
available?
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Many NLP 
tasks don’t 
need to 
restrict the 
model from 
viewing 
future 
context.

• Sequence classification

• (Sometimes) sequence labeling

• In general, most tasks that aren’t 
performed in real time
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Transformers aren’t innately constrained to 
processing from sequence beginning to end.

• With language modeling, self-attention computations are limited to 
current and prior context to avoid trivializing the problem

• Self-attention can be computed using the same equations we’ve 
already seen when allowing future context to be considered

• When that happens, the encoder produces sequences of output 
embeddings that are contextualized based on the entire input 
sequence
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Bidirectional Self-Attention Layer
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Bidirectional Self-Attention Layer
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More 
formally….

• Step 1: Generate key, query, 
and value embeddings for each 
element of the input vector 𝐱

• q𝑖 = 𝐖𝐐𝐱𝑖

• k𝑖 = 𝐖𝐊𝐱𝑖

• v𝑖 = 𝐖𝐕𝐱𝑖
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More 
formally….

• Step 2: Compute attention 
weights ⍺ by applying a softmax 
over the element-wise 
comparison scores between all 
possible query-key pairs in the 
full input sequence

• score𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

• 𝛼𝑖𝑗 =
exp(score𝑖𝑗)

σ𝑘=1
𝑛 exp(score𝑖𝑘)
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More 
formally….

• Step 3: Compute the output 
vector 𝐡𝑖 as the attention-
weighted sum of all of the input 
value vectors v

• 𝐡𝒊 = σ𝑗=1
𝑛 𝛼𝑖𝑗v𝑗
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Visually….

q1 ∙ k1 q1 ∙ k2 q1 ∙ k3 q1 ∙ k4 q1 ∙ k5

q2 ∙ k1 q2 ∙ k2 q2 ∙ k3 q2 ∙ k4 q2 ∙ k5

q3 ∙ k1 q3 ∙ k2 q3 ∙ k3 q3 ∙ k4 q3 ∙ k5

q4 ∙ k1 q4 ∙ k2 q4 ∙ k3 q4 ∙ k4 q4 ∙ k5

q5 ∙ k1 q5 ∙ k2 q5 ∙ k3 q5 ∙ k4 q5 ∙ k5

𝐐𝐊𝐓 matrix for a causal 

Transformer encoder
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Visually….

q1 ∙ k1 q1 ∙ k2 q1 ∙ k3 q1 ∙ k4 q1 ∙ k5

q2 ∙ k1 q2 ∙ k2 q2 ∙ k3 q2 ∙ k4 q2 ∙ k5

q3 ∙ k1 q3 ∙ k2 q3 ∙ k3 q3 ∙ k4 q3 ∙ k5

q4 ∙ k1 q4 ∙ k2 q4 ∙ k3 q4 ∙ k4 q4 ∙ k5

q5 ∙ k1 q5 ∙ k2 q5 ∙ k3 q5 ∙ k4 q5 ∙ k5

𝐐𝐊𝐓 matrix for a 

bidirectional 
Transformer encoder
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Bidirectional 
Transformer 
Encoders

• All other elements remain the same as seen in causal 
Transformers!

• Inputs are segmented using subword tokenization

• Inputs are combined with positional embeddings

• Transformer blocks include a self-attention layer and 
a feedforward layer, augmented with normalization 
layers and residual connections
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BERT-
Specific 
Architectural 
Details
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Subword vocabulary 
of 30k tokens 

generated using the 
WordPiece algorithm

768-dimensional 
hidden layers

12 Transformer 
blocks

12 attention heads in 
each self-attention 

layer

In total, this 
comprises 100M 

trainable 
parameters!



Training a 
WordPiece 
Tokenizer



WordPiece Tokenization

• Starting at the beginning of the text to tokenize, find the 
longest matching subword in the vocabulary

• Split on this subword

• Move forward to the first position after the split

• Repeat

• If there are no matching subwords in the vocabulary, 
tokenize the text as [UNK]
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Additional BERT Details

• Since subword tokenization is used, for some NLP tasks (e.g., named 
entity tagging) it is necessary to map subwords back to words

• BERT is costly to train (time and memory requirements grow 
quadratically with input length)

• To increase efficiency, a fixed input length of 512 subword tokens 
is used---when working with longer texts, it’s necessary to partition 
the text into different segments
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Training 
Bidirectional 
Encoders

• With causal Transformer encoders, we 
employed autoregressive language modeling 
(next word prediction) as the training task

• With bidirectional Transformer encoders, this 
task becomes trivial …the answer is now 
directly available from the context!

CS 521 is the greatest Bidirectional 
Transformer

CS

521

is

the

?
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A new task is 
needed for training 
bidirectional 
encoders….

• Cloze Task: Instead of trying to predict 
the next word, learn how to predict the 
best word to fill in the blank

• How do we do this?

• During training, mask out one or 
more elements from the input 
sequence

• Generate a probability 
distribution over the vocabulary 
for each of the missing elements

• Use the cross-entropy loss from 
these probabilities to drive the 
learning process

After such a late _____ 

working on my project, it was 

____ to wake up this morning!
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Cloze Task

• This task can be generalized to any method 
that:

1. Corrupts the training input

2. Asks the model to recover the original 
training input

• What are some ways to corrupt the training 
input?

• Masks

• Substitutions

• Reorderings

• Deletions

• Extraneous insertions into the training 
text
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Masking 
Words

• Original approach for corrupting input 
when training bidirectional Transformer 
encoders

• BERT uses a masking technique known 
as masked language modeling (MLM)

After such a late night working 

on my project, it was hard to 

wake up this morning!
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Masked 
Language 
Modeling

• Uses unannotated text from a large corpus

• Presents the models with sentences from the 
corpus

• For each sentence, a random sample of 
tokens is selected to be used in one of the 
following ways:

• The token is replaced with a [MASK] token

• The token is replaced with another 
randomly sampled token

• The token is left unchanged
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What is the intuition behind these corruptions?
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• [MASK] token: The model learns to predict the masked words using 
only the available context ([MASK] isn’t even in the training 
vocabulary!)

• Random token: The model learns to favor contextual cues more 
heavily than the word itself when encoding meaning

• Same token: The model learns to rely at least a little bit on the 
specific word in its specific contextual position



Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!
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Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!
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Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17
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Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder
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Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder
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Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such a [MASK] 

night working on my 

project, it was hard to 

wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning
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Masked 
Language 
Modeling

• Training objective:

• Predict the original inputs for each 
of the sampled tokens using a 
bidirectional encoder

• Make better predictions with each 
iteration based on cross-entropy 
loss

• Gradients that form the basis for 
weight updates are based on 
average loss over the sampled 
learning tokens

• Although all tokens play a role in the 
self-attention layer, only the 
sampled tokens are used for 
learning
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Masked 
Language 

Modeling in 
BERT

• Same process as shown, but uses subword 
tokens instead

• 15% of tokens in the training sequence are 
sampled

• Of these:

• 80% are replaced with [MASK]

• 10% are replaced with randomly 
selected tokens

• 10% are left unchanged
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Summary: 
Transformers 

and Masked 
Language 
Modeling

• Contextual word embeddings are typically 
generated using pretrained language models

• A popular sequence processing architecture for 
training modern language models is the 
Transformer

• Bidirectional Transformer encoders were 
used to create BERT, a transformative 
pretrained language model

• Masked language modeling is a learning 
objective for bidirectional Transformer encoders 
that forces the model to predict potentially 
masked or otherwise corrupted words, based on 
the surrounding context
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What if the most useful 
language segment for 
our task isn’t a single 
token?

• Lots of tasks have larger units of 
interest:

• Question answering

• Syntactic parsing

• Coreference resolution

• Semantic role labeling

• Solution: Apply a span-oriented 
masked learning objective
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Masking 
Spans

• Span: A contiguous sequence of one or 
more words selected from a training 
sample, prior to subword tokenization

• How can we select spans for masking?
1. Decide on a span length

• In SpanBERT, this is sampled from a geometric 
distribution biased toward shorter spans, with an 
upper bound of 10

2. Given this span length, sample a starting 
location
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Masking Spans

• All sampling actions are performed at the 
span level

• All tokens in the selected span are 
replaced with [MASK]

• All tokens in the selected span are 
replaced with randomly sampled 
tokens

• All tokens in the selected span are left 
as is

• After sampling actions are performed, the 
input is passed through the same 
Transformer architecture seen previously
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Masked 
Language 
Modeling in 
SpanBERT

• Analogous to “standard” BERT:
• In 80% of spans, tokens are 

replaced with [MASK]

• In 10% of spans, tokens are 
replaced with randomly sampled 
tokens

• In 10% of spans, tokens are left 
unchanged

• Total token substitution is limited 
to 15% of the input
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Masking Spans

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such [MASK] [MASK] 

night working on my 

project, it was hard to 

wake up winter driving!
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Span-Based Masked Language Modeling

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such [MASK] [MASK] 

night working on my 

project, it was hard to 

wake up winter driving!
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Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such [MASK] [MASK] 

night working on my 

project, it was hard to 

wake up winter driving!
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Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such [MASK] [MASK] 

night working on my 

project, it was hard to 

wake up winter driving!
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Span-Based Masked Language Modeling

After p1 such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

winter p16 driving p17

Bidirectional Transformer Encoder

late project morning

After such a late night 

working on my project, 

it was hard to wake up 

this morning!

After such [MASK] [MASK] 

night working on my 

project, it was hard to 

wake up winter driving!

a on my this
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What kind of 
information 
should be 
included in a 
span-level 
representation?

• Create span-level 
representations based on:

• Tokens within the span 

• Span boundaries

• Boundary representations are 
usually derived from:

• First and last words of the span

• Words immediately before or 
after the span
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Span Boundary Objective

• Augments the masked language modeling objective in SpanBERT, 
altering the loss function to account for the span boundary objective

• 𝐿 𝐱 = 𝐿𝑀𝐿𝑀 𝐱 + 𝐿𝑆𝐵𝑂(𝐱)

• Leverages the model’s ability to predict words inside a span based on 
those just outside of it

• 𝐿𝑆𝐵𝑂 𝐱 = − log 𝑃(𝐱|𝐱𝑠−1, 𝐱𝑒+1, 𝐩𝑖−𝑠+1)

Word before the span Word after the span
Positional embedding indicating which 

word in the span is being predicted
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Bidirectional 
Transformer 
encoders can 
also help us 
learn another 
important piece 
of information!

• In many NLP tasks, it is crucial to learn 
the relationship between pairs of 
sentences

• Detecting paraphrases

• Determining entailment

• Measuring discourse coherence
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BERT also 
uses a 

second 
learning 

objective that 
helps us 

perform this 
task.

• What is this other learning 
objective?

• Next sentence prediction (NSP)
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Next Sentence Prediction

• Present the model with pairs of 
sentences

• Predict whether each pair is an actual 
pair of adjacent sentences, or a pair of 
unrelated sentences

• In BERT, training pairs are evenly 
balanced across these two classes

• Base the loss on how well the model can 
distinguish actual pairs from unrelated 
pairs

After such a late night working 

on my project, it was hard to 

wake up this morning!  I did 

though, because I had to give 

my project presentation.

After such a late night working 

on my project, it was hard to 

wake up this morning!  A winter 

storm warning has been issued 

for your area.
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How does 
NSP 
training 
work?

• Two new tokens are added to 
the input:

• [CLS] is prepended to the input 
sentence pair

• [SEP] is placed between the 
sentences and after the final 
token of the second sentence

• Embeddings representing 
each segment (first sentence 
and second sentence) are 
added to the word and 
positional embeddings
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Additional Tokens

After such a late night 

working on my project, 

it was hard to wake up 

this morning! I did 

though, because I had 

to give my project 

presentation.

[CLS] After such a late 

night working on my 

project, it was hard to wake 

up this morning! [SEP] I 

did though, because I had 

to give my project 

presentation. [SEP]
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Once we’ve made these 
adjustments….

• The output vector associated with the 
[CLS] token represents the next sentence 
prediction

• Specifically, a learned set of classification 
weights 𝐖𝐍𝐒𝐏 ∈ ℝ2×𝑑ℎ is used to predict 
one of two classes from the raw [CLS] 
vector 𝐡𝑖

• 𝑦𝑖 = softmax(𝐖𝐍𝐒𝐏𝐡𝑖)

• A cross-entropy loss is used for the NSP 
loss

• In BERT, the final loss function is a linear 
combination of the NSP and MLM loss 
functions
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Next Sentence Prediction

After such a late night 

working on my project, 

it was hard to wake up 

this morning! I did 

though, because I had 

to give my project 

presentation.

[CLS] After such a late 

night working on my 

project, it was hard to wake 

up this morning! [SEP] I 

did though, because I had 

to give my project 

presentation. [SEP]
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Next Sentence Prediction

[CLS] p1 s1

…

After such a late night 

working on my project, 

it was hard to wake up 

this morning! I did 

though, because I had 

to give my project 

presentation.

[CLS] After such a late 

night working on my 

project, it was hard to wake 

up this morning! [SEP] I 

did though, because I had 

to give my project 

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

After such a late night 

working on my project, 

it was hard to wake up 

this morning! I did 

though, because I had 

to give my project 

presentation.

[CLS] After such a late 

night working on my 

project, it was hard to wake 

up this morning! [SEP] I 

did though, because I had 

to give my project 

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

Actually Adjacent

After such a late night 

working on my project, 

it was hard to wake up 

this morning! I did 

though, because I had 

to give my project 

presentation.

[CLS] After such a late 

night working on my 

project, it was hard to wake 

up this morning! [SEP] I 

did though, because I had 

to give my project 

presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentation p30 s2 [SEP] p31 s2
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BERT-Specific Training Details

• Corpora:

• Early Transformer-based language models (including BERT) used 
BooksCorpus (800M words) and English Wikipedia (2.5B words)

• More recent state-of-the-art models learn from even larger corpora

• When training BERT, pairs of sentences were sampled such that their maximum 
combined length does not exceed 512 tokens

• Original BERT models converged after approximately 40 training iterations

Natalie Parde - UIC CS 521 92



Training models like BERT 
can be expensive and time-
consuming….

• However, this pretraining process can result in 
models that can be used and reused for numerous 
tasks

• Pretrained word embeddings and learned 
parameters to produce new contextual 
embeddings

• Base models that can be fine-tuned for transfer 
learning purposes
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Transfer Learning 
through Fine-Tuning

• Pretrained language models facilitate 
generalization across large text corpora

• This generalization makes it easier to 
incorporate these models effectively in 
downstream applications

• The process of learning an interface between a 
pretrained language model and a specific 
downstream task is called fine-tuning
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Fine-
Tuning



Many 
different 
applications 
have made 
use of fine-
tuning!

• Sequence classification

• Sequence labeling

• Sentence-pair inference

• Span-based operations
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Sequence 
Classification



How do we fine-
tune for 
sequence 
classification 
tasks?

• Learn a set of weights, 𝐖𝐂 ∈ ℝ𝑛×𝑑ℎ, to map the 
sequence representation to a set of scores over 
𝑛 possible classes

• 𝑑ℎ is the dimensionality of the language 
model’s hidden layers

• Requires supervised training data for the target 
task

• Learning process that optimizes 𝐖𝐂 is driven by 
cross-entropy loss between the softmax output 
and the target task label
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How do we 
classify test 
documents 

for sequence 
classification 

tasks?
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• Pass the input sample through 
the pretrained language model 
to generate an output 
representation 𝐡𝐂𝐋𝐒

• Multiply the output 
representation by the learned 
weights 𝐖𝐂

• Pass the resulting vector 
through a softmax:

• 𝐲 = softmax(𝐖𝐂𝐡𝐂𝐋𝐒)



Example: Sequence Classification
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I’m so excited about the 

winter storm warning.



Example: Sequence Classification

[CLS] p1
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I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



Example: Sequence Classification
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[CLS] p1

Bidirectional Transformer Encoder

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



Example: Sequence Classification

[CLS] p1

Bidirectional Transformer Encoder

sarcasm
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I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9



What differs between this and earlier 
neural classifiers?

• If we want, we can use the computed loss to update not only the 
classifier weights, but also the weights for the pretrained language 
model itself

• However, substantial changes are rarely necessary!

• Reasonable classification performance is often achieved with only 
minimal changes to the language model parameters

• These changes are generally limited to updates over the final few 
layers of the model
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Pair-Wise 
Sequence 

Classification
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• Subcategory of sequence 
classification that focuses 
on classifying pairs of 
input sentences

• Useful for:

• Logical entailment

• Paraphrase detection

• Discourse analysis



How does fine-
tuning work for 
pair-wise 
sequence 
classification?

• Similar to pretraining with the NSP 
objective

• Pairs of labeled sentences are 
presented to the model, separated by 
[SEP] and prepended with [CLS]

• During classification, the output [CLS] 
vector is multiplied by classification weights 
and passed through a softmax to generate 
label predictions
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Example: Pair-Wise Sequence Classification (Entailment Task)
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• Popular NLP task, also referred to as natural language inference

• Classify sentence pairs such that: 

• Sentence A entails Sentence B

• Sentence A contradicts Sentence B

• The relationship between Sentence A and Sentence B is neutral



Example: Pair-Wise Sequence Classification (Entailment Task)
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It’s a snow day!  There 

is snow outside.



Example: Pair-Wise Sequence Classification (Entailment Task)
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It’s a snow day!  There 

is snow outside.

[CLS] It’s a snow day! 

[SEP]  There is snow 

outside. [SEP]



[CLS] p1
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It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

Example: Pair-Wise Sequence Classification (Entailment Task)

…

[CLS] It’s a snow day! [SEP]  

There is snow outside. [SEP]

s1 s1 s1 s1 s1 s1 s1 s1



Bidirectional Transformer Encoder
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Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]  

There is snow outside. [SEP]



Bidirectional Transformer Encoder

Entails
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Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] p1 It’s p2 a p3 snow p4 day p5 [SEP] p6 outside p10 [SEP] p11

…

[CLS] It’s a snow day! [SEP]  

There is snow outside. [SEP]



Sequence Labeling
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• Similar to approach used for sequence classification

• However, the output vector for each input token is passed to a 
classification head that produces a softmax distribution over the possible 
classes

• The output tag sequence can be determined by a variety of methods

• Common: Greedy approach accepting the argmax class for each token

• 𝐲𝑖 = softmax(𝐖𝐾𝐳𝑖), where 𝑘 ∈ 𝐾 is the set of tags for the task

• 𝐭𝑖 = argmax
𝑘

(𝐲𝑖)

• Alternative: Distribution over labels can be passed to a CRF layer, 
allowing consideration of global tag-level transitions



Common 
Sequence 
Labeling Tasks

• Part-of-speech tagging

• Named entity recognition

• Shallow parsing
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Example: Sequence Labeling
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It is a beautiful winter 

day in Chicago.



Example: Sequence Labeling
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Sequence Labeling

Bidirectional Transformer Encoder
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Sequence Labeling

Bidirectional Transformer Encoder

PRP
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

VBZ DT JJ NN NN IN NNP



Complication 
with BERT 
(and related 
models)….
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• Subword tokenization doesn’t play 
well with tasks requiring word-level 
labels

• How to address this?

• During training, assign the gold 
standard label for a word to all its 
constituent subwords

• During testing, recover word-level 
labels from subwords as part of 
the decoding process



Recovering 
Word-Level 
Labels

• Simplest approach:

• For a given word, use the predicted 
label for its first subword as the 
label for the entire word

• More complex approaches consider 
the distribution of label probabilities 
across all subwords for a given word
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Nat #a #lie

NNP DT VB

Natalie

NNP



Span-Based 
Sequence 
Labeling

• Carries attributes of both 
sequence classification and 
token-level sequence labeling

• Goal: Make decisions using 
representations of spans of 
tokens

• Common Tasks:

• Identify spans of interest

• Classify spans

• Determine relations among 
spans
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Common 
Span-Based 
Sequence 
Labeling 
Applications
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Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution



Span-
Based 
Sequence 
Labeling



How do we 
represent 
spans for 
span-based 
sequence 
labeling?

Natalie Parde - UIC CS 521 124

• Most span representations incorporate 
both:

• Span boundary representations

• Summary representations of span content

• These component representations are 
often concatenated with one another



Span Boundary Representations
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• Simple approach: Just use the contextual embeddings of the start and 
end tokens of the span as the span boundary representations

• However, internally this doesn’t offer a way to distinguish between 
the start and end tokens

• Words may carry different meaning at the beginning of a span than 
at the end!

• More complex approach: Use separate feedforward networks to learn 
representations for the beginning and end of the span

• 𝐬𝑖 = FFNN𝑠(𝐡𝑖)

• 𝐞𝑗 = FFNN𝑒(𝐡𝑗)



Summary Representations
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• Simple approach: Just use the average of the output embeddings for 
words within the span as the summary representation

• 𝐠𝑖𝑗 =
1

𝑗−𝑖 +1
σ𝑘=𝑖

𝑗
𝐡𝑘

• More complex approach: Place more representational emphasis on 
the head of the span

• Can be done using syntactic parse information (if available) or a 
self-attention layer (if not)

• 𝐠𝑖𝑗 = SelfAttention(𝐡𝑖:𝑗)



How does 
fine-tuning 
work in 
span-
based 
sequence 
labeling?
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• Learn the weights/parameters for:

• Task classification head

• Boundary representations

• Summary representation

• Final classification output:

• 𝐬𝐩𝐚𝐧𝑖𝑗 = [𝐬𝑖; 𝐞𝑗; 𝐠𝑖𝑗]

• 𝐲𝑖𝑗 = softmax(FFNN(𝐬𝐩𝐚𝐧𝑖𝑗))



Example: Span-Based Sequence Labeling
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It is a beautiful winter day in Chicago.



Example: Span-Based Sequence Labeling
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder

Natalie Parde - UIC CS 521 132
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Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention Self Attention Self Attention



Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

Self Attention
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Self Attention
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Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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It p2 is p3 a p4 beautiful p5 winter p6 day p7 in p8 Chicago p9

Self Attention

FFNN

NP

Self Attention

FFNN

NP

Self Attention

FFNN

PP



Advantages of 
Span-Based 
Sequence 
Labeling

• Only require one label assignment per 
span

• In comparison, BIO-based methods 
require labels for each constituent 
token

• Naturally accommodate hierarchical 
and/or overlapping labels

• BIO-based methods assign a single 
label per token
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We’ve learned a 
lot about transfer 
learning and 
pretrained 
language models 
…how can we 
implement them?

https://huggingface.co/docs/transf
ormers/index

https://www.tensorflow.org/text/tut
orials/classify_text_with_bert

https://pytorch.org/hub/huggingfac
e_pytorch-transformers/

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/


Where do 
large 
language 
models 
(LLMs) fit 
in?

• What is “large”?

• Not clearly defined, but generally speaking, 
anything “BERT-sized” (~110 million 
parameters) or larger

• Trained on massive quantities of text data 
to predict which word(s) should appear, 
given a context

• Can theoretically use any architecture that 
works for this setting, but in practice, 
modern LLMs are Transformer models
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How are LLMs 
pretrained?

• Can be pretrained with numerous objectives

• Masked language modeling

• Next sentence prediction

• Autoregressive generation

• Different pretraining objectives are useful for 
different purposes

• Pretraining for masked language modeling 
may produce LLMs that are especially well-
suited for classification

• Pretraining for autoregressive generation may 
produce LLMs that are especially well-suited 
for longer-form generation tasks
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What’s most popular right now?

• The most popular LLMs right now (e.g., GPT-X or LLaMa) are 
pretrained for autoregressive generation

• Given the sequence of words that have been generated so far, decide 
which word should come next

Generative Pretrained Transformer

G P T

UIC CS 521 - Natalie Parde 141



Is this a 
step back?

• First came autoregressive 
generation, then came masked 
language modeling, then came 
…autoregressive generation 
again?

• Autoregressive generation 
without instruction tuning is 
only useful for limited 
purposes (e.g., 
autocomplete)

• Autoregressive generation 
+ instruction tuning + 
reinforcement learning with 
human feedback (+ better 
prefixes) is a very recent 
development, and much 
more useful!
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In fact, these recent developments have 
ushered in a new training paradigm.

• Why?

• Fine-tuning pretrained models to perform new tasks works very well in 
many cases, but it still requires that you have a reasonably large 
supervised training set for the target task

• In some cases, we only have a very tiny amount of training data (or none 
at all) for our target task!

Rule-Based Era

•Prior to ~1990s

Statistical and (Early) Neural Era

•1990s to 2010s

Pretrain and Finetune Era

•Late 2010s to present

Pretrain and Prompt Era

•Early 2020s to present
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Introducing: Pretrain (and Optionally Fine-
Tune) and Prompt
• Intuition:

• If we take LLMs that have been pretrained on a wide variety of language 
data, we can prompt them to produce the correct labels or output for new 
tasks

Here are two training instances:

Data: "Natalie was soooooo happy she had booked a 5 a.m. flight.” 

Label: SARCASTIC

Data: “Natalie loved early morning flights because she could get to 

her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance.  Fill in the correct label:

Data: “Natalie was sooooooooooo excited to wait in an early morning 

airport security line.” Label:

LLM
SARCASTIC
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This new paradigm has seen remarkably 
rapid uptake in the NLP community!

# Full, Main Conference 

Papers with “Prompt” in Title

ACL 2022 22

EMNLP 2022 41

ACL 2023 36

EMNLP 2023 44

ACL 2024 38

EMNLP 2024 55
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At the core of most 
recent work are 
generative pretrained 
Transformers (GPTs).

https://cdn.openai.com/research-
covers/language-
unsupervised/language_understandi
ng_paper.pdf
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https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


Popular 
Large 

(Generative) 
Language 

Models
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Open vs. Closed 
Models
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Open vs. Closed Models

• However, very recent interest (and helpful 
efforts from community members!) have led 
to the public release of several open-source 
LLMs

• Fully accessible and modifiable

• Architecture is fully explorable

• Free!

• Examples:

• Llama: https://www.llama.com/

• OLMo: https://allenai.org/olmo

UIC CS 521 - Natalie Parde 149

https://www.llama.com/
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LLM 
Resources

https://huggingface.co/spaces/Hugging
FaceH4/open_llm_leaderboard

https://arxiv.org/abs/2303.18223

https://github.com/RUCAIBox/LLM
Survey

https://huggingface.co/models?pipeline
_tag=text-generation&sort=trending
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Summary: 
Transfer 
Learning with 
Pretrained 
Language 
Models and 
Large 
Language 
Models
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Bidirectional Transformer 
encoders learn 
representations by 
optimizing for two tasks:

Masked language 
modeling

Next sentence 
prediction

Pretrained language models can be fine-
tuned for a variety of downstream tasks by 
adding classification heads to the end of the 
model

These tasks may 
include:

Sequence classification

Sequence labeling

Span-based sequence 
labeling

Large language models are typically 
generative pretrained Transformer models 
with an autoregressive language modeling 
learning objective
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