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« Estimated vocabulary size of a young adult
speaker of American English: ~30k-100k
words

L an g U ag e « On average, 7-10 new words need to be

learned per day through age 20!

con tl Nu al Iy « Early on in humans: Vocabulary is learned via

spoken interactions with peers and caregivers

d evel O p S  Later: Vocabulary is mostly learned as a by-

product of reading

and .
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Can computers + Learning language through experience

learn lan guage (e.g., through spoken interactions with
: peers in a situated environment) is an
In the same example of grounded language
Way’) learning

* Meaning is tied to an experiential
(either implied or explicit) common
ground between speakers

o ©

@ red
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Recap: The » Word embedding techniques “learn”

d iS'[l"i buti()nal meaning using measures of the
_ frequency with which words occur close
hypOth esIS to one another in large text corpora
states that we  Recall
I  Word2Vec
can learn e

language based
solely on its
context
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What does this look like?

Start with an input t
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What does this look like?

Get the one-hot vector for t
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What does this look like?

super

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs
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What does this look like?

(

/‘

super

4"

\

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t
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What does this look like?

/‘

‘?‘

| \___ =
Create one of those output
units for every possible c
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Behind the scenes....

Each unit in the intermediate
layer applies a specific
weight to each input it
receives
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Behind the scenes....

Since our inputs are one-hot | ¢

vectors, this means we’'ll end
up with a specific set of )
weights (one for each unit) 7 (

—\ |\ for each input word
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These are the weights we’re interested in! \/
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GloVe

While Word2Vec is a popular predictive word embedding model, researchers have also
developed high-performing models that incorporate aspects of count-based models

One example: Global Vectors for Word Representation (GloVe)

Why is this useful?
* Predictive models — black box
« They work, but why?
» GloVe models are easier to interpret

GloVe models also encode the ratios of co-occurrence probabilities between different
words ...this makes these vectors useful for word analogy tasks



How does GloVe work?
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Define soft constraints for each word pair

\ S

Build a huge Word—contei)

cOo-occurrence matrix
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Define a cost function | | L “~ learn ideal embedding values
- J = z f(XU)(W;TW]‘Fbl‘Fb] —lOgXij )2 for Wi; and W;
i=1j=1
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« A given word has the same embedding,
regardless of its context

WO rd 2VeC * Reasonable in many cases, but not always

 What if a word has multiple senses?

aln d G I Ove « What if a word starts appearing in new

contexts?
are both -
S t at | C WO rd ﬁ)id you deposit that check at the bank?

p—

em b ed d | n g S . {A message in a bottle }

washed up on the bank

Are you going to bank on that
&roposal being funded?
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» WWord representations that differ depending on
the context in which the word appears

 VVocabulary words do not map to specific,
predefined vectors

* We typically learn contextual word
representations using pretrained language
models

CO n teXt u al ﬁ)id y;u depositvthat check at the bank?
Word
Embeddings

p—

(fmessagemasotte |

Are you going to bank on that
&roposal being funded?
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What base architecture should
we use for pretrained
language models?

e Limitations of RNNSs:

* Processing long-distance
dependencies through many
recurrences can eventually lead
to loss of valuable information

 Recurrent models cannot
productively leverage parallel
resources

Natalie Parde - UIC CS 521
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« Entirely do away with recurrences

« Stacks of:
 Linear layers
» Feedforward layers
» Self-attention layers

e For a given element in a
sequence, determines which

Natalie Parde - UIC CS 521

other element(s) up to that
TI’ a.n SfO r m e rS point are most relevant to it

« Each computation is
independent of other
computations — easy
parallelization

Each computation only
considers elements up to
that point in the sequence
— easy language
modeling
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Self-Attention
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Self-Attention
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Self-Attention
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» Take the dot product between a given input element x; and each
input element (x4, ..., x;) up until that point

® score(xi,xj) = Xi- Xj

CO m p U t I n g * Apply softmax normalization to create a vector of weights, «;,

indicating proportional relevance of each sequence element to the

Se I f- current focus of attention, x;

* a;j = softmax (score(xi,xj)) Vi<i=

escore (xjx j)

Z}'{_l escore(xl-,xk) Vj <1

Attention

» Take the sum of inputs thus far weighted by «; to produce an output
Vi
© Vi = Xjsi XijX;

Natalie Parde - UIC CS 521 24




How do Transformers learn?

« Continually updating weight matrices applied to inputs

* Weight matrices are learned for each of three roles when
computing self-attention:

* Query: The focus of attention when it is being compared to inputs up
until that point, W ¢

- Key: An input that is being compared to the focus of attention, W

» Value: A value being used to compute the output for the current focus
of attention, WV



Training Transformers

« Weight matrices are applied to inputs in the context of their respective roles
* q; = WO,
° ki = WKXl'
*V; = WVXi

 Then, we can update our equations for computing self-attention so that these
roles are reflected in them:

. score(xi,xj) =q; - k;
* a;;j = softmax (score(xi,xj)) Vi<i

* Vi = Nj<i AijVj

Natalie Parde - UIC CS 521 26
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Practical Considerations

» Combining a dot product with an exponential (as in softmax) may lead to arbitrarily large values

It is common to scale the scoring function based on the dimensionality of the key (and query) vectors, d,

> score(x;,xj) = 0\1/1'%]

« Each y; is computed independently, so we can parallelize computations using matrix multiplication where
X is a matrix containing all input embeddings

« Q=W%%

« K=WKX

e V=WVX

 SelfAttention(Q, K, V) = softmax (Q—KT) 14
Ja

» Make sure to avoid including knowledge of future words in autoregressive language modeling
settings!



Transformer Blocks

« Self-attention is the central component of a Transformer block, which also
Includes: ~

» Feedforward layers N
» Residual connections \
* Normalizing layers \

« Transformer blocks can be stacked, just like RNN layers

' 1oke uonuany-jes '
| zIfewIoN pue ppy '

——
e A

1aAe premiojpas '
| 9ZI[eWION pue ppy '




Multihead Attention

« Each self-attention layer represents a single attention
head

« Multihead attention places multiple attention heads in
parallel in the Transformer model

« Since each attention head has its own set of weights,
each one can learn different aspects of the relations
between input elements at the same level of
abstraction




Computing Multihead Attention

« Each head in the self-attention layer is parameterized with its own weights

‘Q=WiQX
« K = WXX
- V=W'X

« The output of a multinead attention layer with n heads comprises n vectors
of equal length

 These heads are concatenated and then reduced to the original input/output
dimensionality

* head; = SelfAttention(Vl/iQX, wEX, W) X)
« MultiheadAttention(Q, K,V) = W (head,®head, @... ®head,,)
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Multihead Attention

, Add and Normalize |

——— —

' Feedforward Layer
—
A
, Add and Normalize
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L ——

Input

e
Self-Attention Layer |
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‘___—_—________—___—
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Positional Embeddings

« Since Transformers don’t make use of recurrent connections, they instead
employ separate positional embeddings to encode positionality

« Randomly initialize an embedding for each input position

« Update weights during the training process

 Input embedding with positional information = word embedding + positional
embedding

« Static functions mapping positions to vectors can be used as an alternative

Natalie Parde - UIC CS 521
33



Transformers as Autoregressive
Language Models

] [vx o

softmax loss

T

softmax loss

.M_.b_./

softmax loss




« Similar to other encoder-decoder models
* Encoder (Transformer model) maps

Encoder- sequential input to an output representation

DEC 0 d er » Decoder (Transformer model) attends to the
. encoder representation and generates

Models with sequential output autoregressively

Transformers - However.. ..

» Transformer blocks in the decoder include
an extra cross-attention layer

Natalie Parde - UIC CS 521 35



Reminder: Normal Transformer block

mm mEs D EEE DN I IS S RS m e e

V Rl _ . =N
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> Q = Q
= > o S ‘
Input § 5 2 5 ~}—> Output
5 5 5 | !
< N S N I
@ o) = o)
f - — =

\_—_——————————_,I

- Same form as multiheaded self-attention in a normal Transformer
block, with one difference: queries come from the previous layer of the
decoder as usual, but keys and values come from the output of the

encoder
- Q= WQHdeC[i—l]
« K =W
e V= wVHenC

. QKT
e C Attent ,K, V) = soft (—)V
rossAttention(Q ) = softmax Ja
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Updated Decoder Transformer Block
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Encoder-

Decoder
Models with decoders

« Use teacher forcing

Tran SfO rmers * Train autoregressively

—

* Why Is cross-attention useful?
* Allows the decoder to attend to
the entire encoder sequence

* Training Transformer-based
encoder-decoders Is similar to
training RNN-based encoder-

‘ Natalie Parde - UIC CS 521 38



« Popular method for building
pretrained language models

Bidirectional o
* Many variations

Encoder

Representations * DistilBERT
from  ROBERTa
 SpanBERT

Transformers
(BERT)

« Makes use of a bidirectional
Transformer encoder

Natalie Parde - UIC CS 521
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== Prior to BERT:

« Statistical n-gram language
models

* Feature-based classifiers
» Task-specific neural architectures

mm After BERT:

 Pretrained neural language
models

 Task-specific fine-tuning

Natalie Parde - UIC CS 521

BERT was
transformative
to the NLP
fleld!
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Bidirectional

Transformer
Encoders

» We've already seen how causal Transformers work

« Well-suited for language modeling problems since
they prevent consideration of future context

« However, these models are inherently constrained

« What about tasks for which future context is readily
available?

Natalie Parde - UIC CS 521 41



Many NLP
tasks don’t
need to
restrict the

model from
viewing
future

context.

« Sequence classification
* (Sometimes) sequence labeling
* In general, most tasks that aren't

performed In real time

Natalie Parde - UIC CS 521

42



Transformers aren’t innately constrained to

processing from seqguence beginning to end.

« With language modeling, self-attention computations are limited to
current and prior context to avoid trivializing the problem

 Self-attention can be computed using the same equations we've
already seen when allowing future context to be considered

* When that happens, the encoder produces sequences of output
embeddings that are contextualized based on the entire input
sequence

Natalie Parde - UIC CS 521
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Bidirectional Self-Attention Layer
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Bldlrectlonal Self Attentlon Layer
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More

formally....

« Step 1. Generate key, query,
and value embeddings for each
element of the input vector x

- q; = W;
¢ ki = WKXi
e v; = WVx;

Natalie Parde - UIC CS 521
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« Step 2. Compute attention

weights o by applying a softmax
over the element-wise

comparison scores between all
More possible query-key pairs in the
fOrma”y_ . full input sequence

* score;; = (; * K;
exp(SCOre;;)

*Aij = yn score

Natalie Parde - UIC CS 521 47



More

formally....

» Step 3. Compute the output
vector h; as the attention-
weighted sum of all of the input
value vectors v

* by = 2= ayy,

Natalie Parde - UIC CS 521
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Visually....

_—

QKT matrix for a causal
Transformer encoder

Natalie Parde - UIC CS 521
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Visually....

-~

QKT matrix for a
bidirectional
Transformer encoder

Natalie Parde - UIC CS 521
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* All other elements remain the same as seen in causal
Transformers!

* Inputs are segmented using subword tokenization
* Inputs are combined with positional embeddings

« Transformer blocks include a self-attention layer and
a feedforward layer, augmented with normalization

B | d | reCt| on al layers and residual connections

Transformer
Encoders

Natalie Parde - UIC CS 521 51



Subword vocabulary
of 30k tokens
generated using the
WordPiece algorithm

768-dimensional
hidden layers

12 attention heads In
each self-attention
layer

In total, this
comprises 100M
trainable

parameters!

Natalie Parde - UIC CS 521

BERT-
Specific
Architectural
Detalls
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Training a
WordPiece

Tokenizer

 Start with special tokens and an initial
alphabet

« Split text in the training corpus at the
character level, adding a prefix to all
characters inside the word

» language — | ##a ##n ##g ##u
H#a #itg #ite

* Then:

« Compute scores for each adjacent
pair of tokens t; and t,
freq(titz)
freq(tyxfreq(t,)
» Merge the highest-scoring pair of
tokens and add the merged token
to the vocabulary

» Repeat until the desired
vocabulary size is reached

» score(ty, ty) =

53
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WordPiece Tokenization

 Starting at the beginning of the text to tokenize, find the
longest matching subword in the vocabulary

 Split on this subword
« Move forward to the first position after the split

* Repeat

« If there are no matching subwords in the vocabulary,
tokenize the text as [UNK]

Natalie Parde - UIC CS 521 54



Additional BERT Detalls

 Since subword tokenization is used, for some NLP tasks (e.g., named
entity tagging) it iIs necessary to map subwords back to words

 BERT Is costly to train (time and memory requirements grow
quadratically with input length)

* To increase efficiency, a fixed input length of 512 subword tokens
IS used---when working with longer texts, it's necessary to partition
the text into different segments

Natalie Parde - UIC CS 521 55



« With causal Transformer encoders, we
employed autoregressive language modeling
(next word prediction) as the training task

 With bidirectional Transformer encoders, this
task becomes trivial ...the answer is now

Tr a| N | N g directly available from the context!
Bidirectional
Encoders

CS 521 is the greateSt Bidirectional

Transformer

Natalie Parde - UIC CS 521 56



A new task IS
needed for training
bidirectional
encoders....

« Cloze Task: Instead of trying to predict
" the next word, learn how to predict the
/" Dbest word to fill in the blank

« How do we do this?

» During training, mask out one or
more elements from the input
sequence

» Generate a probability
I distribution over the vocabulary
for each of the missing elements

» Use the cross-entropy loss from

I
I
|
I
I
I

I

After such a late
working on my project, it was
to wake up this morning!

these probabilities to drive the
learning process

—_ =
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Cloze Task

» This task can be generalized to any method
that:

1. Corrupts the training input
2. Asks the model to recover the original
training input
+ What are some ways to corrupt the training
input?
« Masks

P

.

« Substitutions v

* Reorderings “

- Deletions o

« Extraneous insertions into the training v
text
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* Original approach for corrupting input
when training bidirectional Transformer
encoders

 BERT uses a masking technique known
as masked language modeling (MLM)

After such a late working @7
on my project, it was to

wake up this morning!

N

\ S &
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« Uses unannotated text from a large corpus
* Presents the models with sentences from the

Masked corpus
* For each sentence, a random sample of
tokens is selected to be used in one of the
L an g u ag e following ways:
* The token is replaced with a [MASK] token

M O d EI I n g » The token is replaced with another

randomly sampled token
* The token is left unchanged



What is the intuition behind these corruptions?

* [MASK] token: The model learns to predict the masked words using
only the available context ([MASK] isn’t even in the training

vocabulary!)

o1 « Random token: The model learns to favor contextual cues more

heavily than the word itself when encoding meaning

- Same token: The model learns to rely at least a little bit on the
specific word in its specific contextual position

TZS SO JIN - apled slfereN



Masked Language Modeling

After such a late night :
working on my project,
It was hard to wake up

this morning!

" _

After such a [MASK]
night working on my

— project, it was hard to

wake up this driving!

L

Natalie Parde - UIC CS 521
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Masked Language Modeling

After such a late night After such a [MASK]
working on my project, night working on my
it was hard to wake up — project, it was hard to
this morning! wake up this driving!

L |



Masked Language Modeling

— Y/ YA —— ——

HE ENE ESNE EN EB HE BN ENE BN HE HB
HEE BN ESN ESN EFNE ESN EFE ENE EN HEE BN
HEE ENE ESE EN BEB HE BN ENE BN HE HB
HEE ESE BN ESN EFN ESFE EE B [] HEE BN
HEE EN EN EN HEBN HE ENE EN EN HE HB
After pl such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 this p16 driving pl7
After such a late night After such a [MASK]

working on my project, night working on my
it was hard to wake up - project, it was hard to

this morning! wake up this driving!
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Masked Language Modeling

Bidirectional Transformer Encoder

B AN R N A

H B [] [] [] [] [] []
H N [] [] [] [] [] []
H B [] [] [] [] [] []
H N [] [] [] [] [] []
HEE HN H B HE B HE EN HE BN
After  p1 such p2 a p3 [MASK] p4 night p5 working p6 on my p8 project p9 this pl6 driving pl7

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night
working on my project,
it was hard to wake up —

this morning!
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Masked Language Modeling

Bidirectional Transformer Encoder

B AN R N A

H B [] [] [] [] [] []
H N [] [] [] [] [] []
H B [] [] [] [] [] []
H N [] [] [] [] [] []
HEE HN H B HE B HE EN HE BN
After pl such p2 a p3 [MASK] p4 night p5 working p6 on my p8 project p9 this pl6 driving p17

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night
working on my project,
it was hard to wake up —

this morning!
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Masked Language Modeling

late project morning

1) 1) 1)
dh dh dh

Bidirectional Transformer Encoder

B AN R N A

H B [] [] [] [] [] []
H N [] [] [] [] [] []
H B [] [] [] [] [] []
H N [] [] [] [] [] []
HEE HN H B HE B HE EN HE BN
After pl such p2 a p3 [MASK] p4 night p5 working p6 on my p8 project p9 this pl6 driving pl7

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After such a late night
working on my project,
it was hard to wake up —

this morning!
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* Training objective:
» Predict the original inputs for each

of the sampled tokens using a
bidirectional encoder

M k d « Make better predictions with each
a.S e iteration based on cross-entropy
loss

L a,n g u ag e * Gradients that form the basis for

] weight updates are based on
M 0O d el N average loss over the sampled
g learning tokens
 Although all tokens play a role in the
self-attention layer, only the

sampled tokens are used for
learning




« Same process as shown, but uses subword

tokens instead
MaS ked * 15% of tokens in the training sequence are
Language sampled
. . » Of these:
MO d el N g 11 » 80% are replaced with [MASK]
B E RT * 10% are replaced with randomly
selected tokens

« 10% are left unchanged



Summary:
Transformers
and Masked
Language
Modeling

Contextual word embeddings are typically
generated using pretrained language models

A popular sequence processing architecture for
training modern language models is the
Transformer

Bidirectional Transformer encoders were
used to create BERT, a transformative
pretrained language model

Masked language modeling is a learning
objective for bidirectional Transformer encoders
that forces the model to predict potentially
masked or otherwise corrupted words, based on
the surrounding context




What if the most useful
language segment for
our task isn’t a single
token?

* Lots of tasks have larger units of
Interest:

* Question answering

« Syntactic parsing

» Coreference resolution
« Semantic role labeling

 Solution: Apply a
masked learning objective

O



- Span: A contiguous seguence of one or
more words selected from a training
sample, prior to subword tokenization

* How can we select spans for masking?

1. Decide on a span length

 In SpanBERT, this is sampled from a geometric
distribution biased toward shorter spans, with an
upper bound of 10

2. Given this span length, sample a starting
location

Natalie Parde - UIC CS 521 72



Masking Spans

» All sampling actions are performed at the

Span |€V€| L(football) = Ly (football) + Lgpo(football)
® A” to ke ns |n the Selected Span are = —log P(football | x7) — log P(football | x4, X9, P3)
replaced Wlth [MASK] :;n Amegrican foofball g;me
 All tokens in the selected span are = =] ol Do Bl ] &l [l ]
replaced with randomly sampled f 1t 1t +t t 1t t 1t t t t 1
tO ke n S Transformer Encoder
- All tokens in the selected span are left t + t + t t t t+ ¢t t t 1
. ‘Super| | Bowl ‘ | 50 ‘ | was ‘ ‘[MASK]| |[MASK]| ‘[M-ASK]| ‘[MASK]| ‘ to | ‘detcrminc| ‘ the ‘ |champinn|
as IS
. . Figure 1: An illustration of SpanBERT training. The span an American football game is masked. The SBO uses
° After sam p | 18] g aCtIO ns are perfo rmed , the the output_representations of the boundary tokens, x4 and X9 (i.n blue), to predict each .toke.n in the.masked span.
. . The equation shows the MLM and SBO loss terms for predicting the token, football (in pink), which as marked
|n put |S paSSEd th rou g h th e Same by the position embedding ps3, is the third token from z4.

Transformer architecture seen previously



* Analogous to “standard” BERT:
 In 80% of spans, tokens are

M aS ked replaced with [MASK]
| an g U ag e * In 10% of spans, tokens are

replaced with randomly sampled
tokens

* In 10% of spans, tokens are left

Modeling In
Sp anBERT unchanged

» Total token substitution iIs limited
to 15% of the input
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Masking Spans

After such a late night B
working on my project,
It was hard to wake up

this morning!

— "= _

After such [MASK] [IMASK]
- night working on my
project, it was hard to

wake up winter driving!

s
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Span-Based Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my
project, it was hard to
wake up winter driving!



Span-Based Masked Language Modeling

— Y/ YA —— ——

After pl such p2 [MASK] p3 [MASK] p4 night p5 working p6

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!
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Span-Based Masked Language Modeling

Bidirectional Transformer Encoder

H B HE B L] L] H N

H B HE B L] L] H B

H B HE B L] L] H N

L] H N HE B L] L] H B

HEE BN EHENE BB HE EHENE EN EN HE EHN

After p1l such p2 [MASK] p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9 winter P16 driving p17

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!

After such a late night
working on my project,
it was hard to wake up
this morning!
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Span-Based Masked Language Modeling

a late on my  project this  morning

Bidirectional Transformer Encoder

L] L] L] L] L] L] L]
L] L] L] L] L] L] L]
L] L] L] L] L] L] L]
L] [] L] L] L] L] L] L]
HE HNE H B HE B HE HN HE B
After pl such p2 [MASK] p3 [MASK] p4 night p5 working p6 on my p8 project p9 winter pl16 driving pl7

After such a late night
working on my project,
it was hard to wake up
this morning!

After such [MASK] [MASK]
night working on my

project, it was hard to
wake up winter driving!
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 Create span-level
representations based on:

What kind of » Tokens within the span

information B;)SEZ;:) Ol:gd?QZZntat'ons are
 Bou |
should be Y Teh

) _ usually derived from:
included In a » First and last words of the span

Span -level * Words immediately before or
: fter th
representation? e TSP

I ‘ Natalie Parde - UIC CS 521 80




Span Boundary Objective

« Augments the masked language modeling objective in SpanBERT,
altering the loss function to account for the span boundary objective

* L(X) = Ly (X) + Lgpo (%)

» Leverages the model’s ability to predict words inside a span based on
those just outside of it

* LSBO(X) = —log P(X|Xs_1,Xe+1, Pi-s+1.)

Positional embedding indicating which

Word before the span Word after the span
P i word in the span is being predicted



Bidirectional
Transformer
encoders can
also help us

learn another
Important piece
of iInformation!

* In many NLP tasks, it is crucial to learn
the relationship between pairs of
sentences

» Detecting paraphrases
« Determining entailment
« Measuring discourse coherence

Natalie Parde - UIC CS 521
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BERT also
uses a
second
learning
objective that
helps us
perform this
task.

* What is this other learning
objective?
* Next sentence prediction (NSP)



Next Sentence Prediction

After such a late night working
on my project, it was hard to

* Present the model with pairs of wake up this morning! | did
sentences though, because | had to give

« Predict whether each pair is an actual my project presentation.
pair of adjacent sentences, or a pair of e
unrelated sentences

 In BERT, training pairs are evenly
balanced across these two classes

» Base the loss on how well the model can
distinguish actual pairs from unrelated

After such a late night working
on my project, it was hard to
wake up this morning! A winter

storm warning has been issued
pairs for your area.
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How does

NSP
training
work?

—

« TWo new tokens are added to
the Iinput:
« |[CLS] Is prepended to the input
sentence pair

« |SEP] Is placed between the
sentences and after the final
token of the second sentence

 Embeddings representing
each segment (first sentence
and second sentence) are
added to the word and
positional embeddings

‘ Natalie Parde - UIC CS 521
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Additional Tokens

After such a late night After such a late
working on my project, night working on my

it was hard to wake up project, it was hard to wake
this morning! | did | up this morning! I
though, because | had did though, because | had
to give my project to give my project
presentation. presentation.

e



Once we’ve made these

adjustments....

131 model = modeling.BertModel(

132 config=bert_config,

133 is_training=is_training,

134 input_ids=input_ids,

135 input_mask=input_mask,

136 token_type_ids=segment_ids,

137 use_one_hot_embeddings=use_one_hot_embeddings)

138

139 (masked_1m_1loss,

140 masked_1lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
141 bert_config, model.get_sequence_output(), model.get_embedding_table(),
142 masked_lm_positions, masked_lm_ids, masked_lm_weights)

143

144 (next_sentence_loss, next_sentence_example_loss,

145 next_sentence_log_probs) = get_next_sentence_output(

146 bert_config, model.get_pooled_output(), next_sentence_labels)
147

148 total_loss = masked_1lm_loss + next_sentence_loss

The output vector associated with the
[CLS] token represents the next sentence
prediction

Specifically, a learned set of classification
weights Wysp € R?%4" is used to predict
one of two classes from the raw [CLS]
vector h;

* y; = softmax(Wysph;)

A cross-entropy loss is used for the NSP
loss

In BERT, the final loss function is a linear
combination of the NSP and MLM loss
functions



Next Sentence Pre

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |
did though, because | had
to give my project
presentation. [SEP]

Iction



Next Sentence Prediction

EEEEE
: pEEEE |
EEEEE
EEEEE |
EEEEE |
EEEEE
EEEEE |
EEEEE
EEEE |
EEEE |
EEEE

[CLS] p4 sl presentation p30 s2

-
> HEHEN

sl After p2 sl such p3 sl

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]
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Next Sentence Prediction

Bidirectional Transformer Encoder

1

=
]
]
]
]
]
a

[CLS] sl After p2 s1 such p3 s1 p4 sl presentation p30 S2

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.
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Next Sentence Prediction

Actually Adjacent

— i

Bidirectional Transformer Encoder

1

presentation p30 s2

[CLS] pl1 s1 After p2 s1 such p3 si

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] |

did though, because | had
to give my project
presentation. [SEP]

After such a late night
working on my project,
it was hard to wake up
this morning! | did

though, because | had
to give my project

presentation.
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BERT-Specific Training Detalls

» Corpora:

« Early Transformer-based language models (including BERT) used
BooksCorpus (800M words) and English Wikipedia (2.5B words)

« More recent state-of-the-art models learn from even larger corpora

« When training BERT, pairs of sentences were sampled such that their maximum
combined length does not exceed 512 tokens

« Original BERT models converged after approximately 40 training iterations



Training models like BERT
can be expensive and time-
consuming....

« However, this pretraining process can result in
models that can be used and reused for numerous
tasks

« Pretrained word embeddings and learned
parameters to produce new contextual
embeddings

« Base models that can be fine-tuned for transfer
learning purposes
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Transfer Learning
through Fine-Tuning

 Pretrained language models facilitate
generalization across large text corpora

* This generalization makes it easier to
Incorporate these models effectively in
downstream applications

* The process of learning an interface between a
pretrained language model and a specific
downstream task is called fine-tuning

Natalie Parde - UIC CS 521
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» Facilitates the creation of downstream
applications on top of pretrained
language models through the addition
of a small set of application-specific
parameters

e Labeled data from the downstream
task domain is used to train these
application-specific parameters

* In general, the pretrained language
model is frozen or only minimally
adjusted during this process

95
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Many
different
applications
have made
use of fine-
tuning!

« Seguence classification
« Sequence labeling

« Sentence-pair inference
« Span-based operations



Sequence

Classification

Models often represent an input
sequence with a single representation

For example:

 Final hidden layer of an RNN
model

» [CLS] vector in a bidirectional
Transformer model (e.g., BERT)

This representation is sometimes
referred to as a sentence or
document embedding

This representation serves as input to
a classifier head for the downstream
task

2l
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' _ » Learn a set of weights, W¢ € R™*% to map the
How do we fine sequence representation to a set of scores over
tune for n possible classes
* d; is the dimensionality of the language
S eq u en CE _ model’s hidden layers
classification * Requires supervised training data for the target
tasks? task

 Learning process that optimizes W¢ is driven by
cross-entropy loss between the softmax output
and the target task label



TZG SO JIN - 8pled alfeleN

How do we
classify test
documents
for sequence
classification
tasks?

 Pass the input sample through
the pretrained language model
to generate an output
representation h¢pg

« Multiply the output
representation by the learned
weights W¢

 Pass the resulting vector
through a softmax:

* y = softmax(Wch¢is)



Example: Sequence Classification

I’'m so excited about the
winter storm warning.



HEEEN
HEEEN £

EEEEN =
EEEEN 5
O

Example: Sequence Classification

101
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Example: Sequence Classification

Bidirectional Transformer Encoder

©
N

[CL excited p4 about p5 t winter p7

e
3
%)

SO p
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Example: Sequence Classification

sarcasm

~uli

Bidirectional Transformer Encoder

©
N

[CL so p3 excited p4 about p5 t winter p7

%
3
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What differs between this and earlier
neural classifiers?

* |f we want, we can use the computed loss to update not only the
classifier weights, but also the weights for the pretrained language
model itself

« However, substantial changes are rarely necessary!

« Reasonable classification performance is often achieved with only
minimal changes to the language model parameters

* These changes are generally limited to updates over the final few
layers of the model



TZG SO 2IN - 8pJed alfeleN

Pair-Wise
Sequence
Classification

« Subcategory of sequence
classification that focuses
on classifying pairs of
Input sentences

« Useful for:

 Logical entailment
« Paraphrase detection

 Discourse analysis




How does fine-
tuning work for

pair-wise
sequence
classification?

« Similar to pretraining with the NSP
objective
 Pairs of labeled sentences are

presented to the model, separated by
[SEP] and prepended with [CLS]

» During classification, the output [CLS]
vector is multiplied by classification weights
and passed through a softmax to generate
label predictions




Example: Pair-Wise Sequence Classification (Entailment Task)

« Popular NLP task, also referred to as :
» Classify sentence pairs such that: :
« Sentence A Sentence B !
« Sentence A Sentence B I
« The relationship between Sentence A and Sentence B is ),

’—_——\



Example: Pair-Wise Sequence Classification (Entailment Task)

I's a snow day! There
IS snow outside.



Example: Pair-Wise Sequence Classification (Entailment Task)

[CLS] It's a snow day!

It's a snow day! There :
< SO outside. - [SEP] There is snow

L — BWEP]
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Example: Pair-Wise Sequence Classification (Entailment Task)

outside p

i
(2]
HEEEN -
o
HEEEN -
-
3}

e y—

[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]

y
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Example: Pair-Wise Sequence Classification (Entailment Task)

Bidirectional Transformer Encoder

[CL

0
7

]

[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]
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Example: Pair-Wise Sequence Classification (Entailment Task)
Entails

Bidirectional Transformer Encoder

[CLS] p1

[CLS] It's a snow day! [SEP]
There is snow outside. [SEP]
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Sequence Labeling

« Similar to approach used for sequence classification

 However, the output vector for each input token is passed to a
classification head that produces a softmax distribution over the possible
113 classes

* The output tag sequence can be determined by a variety of methods
« Common: Greedy approach accepting the argmax class for each token

» y; = softmax(Wyz;), where k € K is the set of tags for the task

e t; = argmax(y;)
K
 Alternative: Distribution over labels can be passed to a CRF layer,

allowing consideration of global tag-level transitions
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Common
Sequence
Labeling Tasks
 Part-of-speech tagging

« Named entity recognition
« Shallow parsing

114



Example: Sequence Labeling

It is a beautiful winter
day in Chicago.



Example: Sequence Labeling

H N H N H B H B H B H B H B H B
H N H N H B H B H B H B H B H B
H N H N H B H B H B H B H B H B
H N H N H B H B H B H B H B H B
H N H N H B H B H B H B H B H B
It p2 is  p3 a p4 beautiful p5 winter p6 day p7 in p8  Chicago p9
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ing

Sequence Labell

Example
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Example: Sequence Labellng

PRP VBZ DT JJ NN

dh| b ah| ah] ah| b J .|||
¥ & 0 &0 & 0 @ -

t t t t t t t
ENEEE EEEEEEEEEEEEEEEEEEEEEEEEE EEEEE IIIII

Bidirectional Transformer Encoder

2 HHEEN
% HIEEEN
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2
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—
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=
ie)
o
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apred

TZ¢G SO JIN -

CQm pl ication » Subword tokenization doesn't play
with BERT well with tasks requiring word-level

(and related labels
models)....

« How to address this?

 During training, assign the gold
standard label for a word to all its
constituent subwords

 During testing, recover word-level
labels from subwords as part of
the decoding process



Recovering
Word-Level

Labels

» Simplest approach:

 For a given word, use the predicted
label for its first subword as the
label for the entire word

 More complex approaches consider
the distribution of label probabilities
across all subwords for a given word

NNP DT VB NNP

Nat #a #lie ‘ Natalie
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Span-Based
Seguence
Labeling

 Carries attributes of both
sequence classification and
token-level sequence labeling

* Goal: Make decisions using
representations of spans of
tokens

« Common Tasks:
* |dentify spans of interest
 Classify spans

« Determine relations among
spans
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Common
Span-Based
Sequence
Labeling
Applications

Named entity recognition

Question answering

Syntactic parsing

Semantic role labeling

Coreference resolution



S an A » Given an input sequence x comprising
T tokens (xq1,x5, ..., x7), @a spanis a
contiguous sequence of tokens from

Based xitox;suchthatl1<i<j<T

* This results in T(Tz_l) possible spans

* Most span-based models impose an
application-specific length limit L

* Legal spans are those where (j —i) <L

L ab el I n » Let the set of legal spans in x be
represented as S(x)

123
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How do we
represent
spans for

span-based
sequence
labeling?

* Most span representations incorporate

both:
« Span boundary representations
« Summary representations of span content

 These component representations are
often concatenated with one another
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Span Boundary Representations

« Simple approach: Just use the contextual embeddings of the start and
end tokens of the span as the span boundary representations

« However, internally this doesn’t offer a way to distinguish between
125 the start and end tokens

« Words may carry different meaning at the beginning of a span than
at the end!
 More complex approach: Use separate feedforward networks to learn
representations for the beginning and end of the span
» s; = FFNN,(h;)
- e; = FFNN,(h))

TZS SO JIN - apled slfereN



Summary Representations

« Simple approach: Just use the average of the output embeddings for
words within the span as the summary representation

1 )j
o h
126 8ij (j—i)+1“k=0 "k

* More complex approach: Place more representational emphasis on
the head of the span

« Can be done using syntactic parse information (if available) or a
self-attention layer (if not)

* g;; = SelfAttention(h;.;)

TZS SO JIN - apled slfereN



H ow d oes « Learn the weights/parameters for:

f| N e_t un | N g » Task classification heqd
] « Boundary representations
Work In . Summary representation
S p an -  Final classification output:
* span;; = [s;; €;; 8;;]
el baS Ed * y;; = softmax(FFNN(span,;))

sequence
labeling?

slereN

apred

TZ¢G SO JIN -




Example: Span-Based Sequence Labeling

It is a beautiful winter day in Chicago.



Example: Span-Based Sequence Labeling
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Example: Span-Based Sequence Labeling
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Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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Example: Span-Based Sequence Labeling

Bidirectional Transformer Encoder
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Example: Span-Based Sequence Labeling

Self Attention

f

Self Attention

winter p6

Self Attention

|~y

p8 Chicago

p9
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Example: Span-Based Sequence Labeling

Self Attention / Self Attention \ Self Attention

win
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Example: Span-Based Sequence Labeling

FFNN FENN FENN

t t t

Self Attention / Self Attention \ Self Attention

win
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Example: Span-Based Sequence Labeling

Jdh| ne Jah| e Jah| P

4 4 4
FFENN FFNN FENN

t t t

Self Attention / Self Attention \ Self Attention

win
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Advan tag es Of * Only require one label assignment per

span

Span -Bas ed * In comparison, BIO-based methods
require labels for each constituent

Sequence token

| ab el | N g * Naturally accommodate hierarchical

and/or overlapping labels

« BIO-based methods assign a single
label per token



O

We’ve learned a
lot about transfer
learning and
pretrained

language models
...now can we
Implement them?

- @

* https://huggingface.co/docs/transf
ormers/index

 TensorFlow

e https://www.tensorflow.org/text/tut
orials/classify text with bert

* PyTorch

 https://pytorch.org/hub/huggingfac

e pvytorch-transformers/

138
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https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://pytorch.org/hub/huggingface_pytorch-transformers/
https://pytorch.org/hub/huggingface_pytorch-transformers/

Where do
large
language

models
(LLMs) fit
in?

* What is “large”?

* Not clearly defined, but generally speaking,
anything “BERT-sized” (~110 million
parameters) or larger

* Trained on massive quantities of text data
to predict which word(s) should appear,
given a context

e Can theoretically use any architecture that
works for this setting, but in practice,
modern LLMs are Transformer models

UIC CS 521 - Natalie Parde 139



e Can be pretrained with numerous objectives

How are LLMs |
* Masked language modeling

i 2
pretralned " * Next sentence prediction
* Autoregressive generation

 Different pretraining objectives are useful for
different purposes

* Pretraining for masked language modeling
may produce LLMs that are especially well-
suited for classification

* Pretraining for autoregressive generation may
produce LLMs that are especially well-suited
for longer-form generation tasks



What’'s most popular right now?

* The most popular LLMs right now (e.g., GPT-X or LLaMa) are
pretrained for autoregressive generation

* Given the sequence of words that have been generated so far, decide
which word should come next

r—_—— -—— r____§

I Generative I Pretrained | I Transformer |

-T__ ‘~_I>___J \._—T——.‘

G T

o= =



* First came autoregressive
generation, then came masked \

Is this a | n com
anguage modeling, then came
Step baCk? ...aﬁtor%gressive ggeneration

again?

* Autoregressive generation
without instruction tuning is
only useful for limited
purposes (e.g.,
autocomplete)

* Autoregressive generation
+ instruction tuning +
reinforcement learning with
human feedback (+ better
prefixes) is a very recent
development, and much
more useful!
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In fact, these recent developments have
ushered in a new training paradigm.

e Why?
* Fine-tuning pretrained models to perform new tasks works very well in

many cases, but it still
for the target task

* In some cases, we only have a very tiny amount of training data (or none
at all) for our target task!

Rule-Based Era Pretrain and Finetune Era
e Prior to ~1990s e Late 2010s to present

Statistical and (Early) Neural Era Pretrain and Prompt Era
*1990s to 2010s *Early 2020s to present



Introducing: Pretrain (and Optionally Fine-
Tune) and Prompt

e Intuition:

* If we take LLMs that have been pretrained on a wide variety of language
data, we can prompt them to produce the correct labels or output for new
tasks

Here are two training instances:

Data: "Natalie was soooooo happy she had booked a 5 a.m. flight.”
Label: SARCASTIC

Data: “Natalie loved early morning flights because she could get to
her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance. Fill in the correct label:
Data: “Natalie was s00000000000 excited to wait in an early morning
airport security line.” Label:




This new paradigm has seen remarkably .
rapid uptake in the NLP community! 0

# Full, Main Conference
Papers with “Prompt” in Title

ACL 2022 22
EMNLP 2022 41
ACL 2023 36
EMNLP 2023 44
ACL 2024 38

EMNLP 2024 55
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Transformer Block Ouptut
: At the core of most
/ I Drofout recent work are
o o e generative pretrained
Softmax Gelu
'[ ; ; S Transformers (GPTs).
Linear Linear
’ 3
[ LayerNorm ] [ LayerNorm |
L ‘i‘> * Original GPT architecture was
, 1 (oo ) published in 2018:
Transtormer Bock| — https://cdn.openai.com/research-
— I - covers/language-
(e J Ltamd ] [ Mamd ] unsupervised/language_understandi
[ Dropout ] [Drc;mut] [Dro;mut] ng “a“er_“df
¢ focnnax | o] » Transformer decoder model
| = | (eck ) e 12 Transformer blocks
3 [Mi‘:mdi'] H » 12 attention heads per self-

Linear attention layer

[) .
\ [ Lok e Trained on BooksCorpus
e 7000 books

Transformer Block Input
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https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Popular
Large

CERE LG,
Language
Models

» Since the original GPT, these models
have grown increasingly larger!

« GPT-X
e ~0.5+ trillion tokens of
pretraining data (last reported

for GPT-3; speculation for GPT-4
is @ much higher number)

e LLaMa 3

e ~15 trillion tokens of
pretraining data

« How much data is a trillion tokens?
e ~15,000,000 books!
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GPT-35 Turbo

- Open vs. Closed + |
Models

With broag general knowledge ang domain expertise, GPT-4 can foliow compjex
acy.

instructions in
naturaj language and solve difficutt Problems with accur;

Learn about GPT-4
===l3a%out GPT-4

Modei Input Output

apt-4 8003, 1k tokens $0.06 /1« tokens
9pt-4-39K $006 /11 tokens $012/ 1k tokens

GPT-35 Turbo models are ¢apable and Cost-effective,

9PL-3.5-turbo 0125 s the flagship model of this family, Supports a 16K context window and is
optimized for dialog,

9pt-3, 5. turbo—instruct isan Instruct modefang only Supports a 4K context window,

Learn about GPT-35 Turbg »
T APRULGPT35 Turbe

Mode) Input Qutput
gpt»S,S»{urbo-mZﬁ $00005 /1K tokens

$0.0015 /1 tokens

gpt-3, E-turbo—insrruct $0.0015 / 1 tokens $0.0020 / 1K tokens

UIC CS 521 - Natalie Parde

* Many popular high-performing

LLMs are -
* Full model cannot be modified

or directly accessed by
researchers N

* Details about training data
and architecture may be

scarce |
* Accessible via paid API

* Example: GPT-4
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See how Llama is the leading open source model family > Learn more

Latest models

Llama includes multilingual text-only models (1B, 3B), including
quantized versions, text-image models (118, 90B) and Llama 3.3

70B model offering similar performance to the Llama 3.1 4058
model, allowing developers to achieve greater quality and
performance on text-based applications at a fraction of the cost.
|

>  Startbuilding

Multilingual Lightweight and Multimodal Multilingual

Llama 3.1 Llama 3.2 Llama3.3

, ultra-fast model you can

ight, efficient models - 70B: Experience leading performance and

verywhere on mobile and on ion of the cost with our

gship foundation model driving

variety of use cases

4 90B: Multimodal models that are

d can reason on high resolution > Download models

> ' Download models

>  Download models

* However, very recent interest (and helpful
efforts from community members!) have led
to the public release of several open-source

L LM S Open Language Model (OLMo) - the Al2 LLM framework is

. Fu I |y acceSS | b|e a n d mod | f|a bl e intentionally designed to provide access to data, training code,

models, and evaluation code necessary to advance Al through

Download our flagship foundation 405B model > Download models

open research to empower academics and researchers to

® ArCh |teCtu re |S fUI |y expl Ora b |e study the science of language models collectively.
* Freel

b Exa m p|eS. OLMo and framework includes:
S Lla m a: https ://WWW. | |a m a . CO m/ * Full pretraining data: The model is built on Al2's Dolma dataset which features three trillion token

open corpus for language model pretraining, including code that produces the training data.

* Training code and model weights: The OLMo framework includes full model weights for four

" model variants at the 7B scale, each trained to at least 2T tokens. Inference code, training metrics
» .
® O LM O httDS //a I Ie na I O rg/o | l I I O and training logs are all provided.
- T .' 7 =

Evaluation: We've released the evaluation suite used in development, complete with 500+
checkpoints per model, from every 1000 steps during the training process and evaluation code
under the umbrella of the Catwalk project.



https://www.llama.com/
https://allenai.org/olmo

* Open LLM Leaderboard:
https://huggingface.co/spaces/Huggin
FaceH4/open_lIm_leaderboard

* A Survey of Large Language Models

L L M * Paper:
https://arxiv.org/abs/2303.18223

* Repository:
https://github.com/RUCAIBox/LLM
Survey

* Generative models on the Hugging Face
model hub:
https://huggingface.co/models?pipeline

tag=text-generation&sort=trending

Resources
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https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://arxiv.org/abs/2303.18223
https://github.com/RUCAIBox/LLMSurvey
https://github.com/RUCAIBox/LLMSurvey
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
https://huggingface.co/models?pipeline_tag=text-generation&sort=trending

Bidirectional Transformer  yasked language
encoders learn modeling
representations by Next sentence
optimizing for two tasks:  Prediction

Summary:
Transfer

Pretrained language models can be fine-

Learnin 0 with E tuned for a variety of downstream tasks by

Pretrained — ?ndodcllg? classification heads to the end of the

Language

M O d el S an d Sequence classification
These tasks ma equence labelin

L arg e include: d ngn-baseld k;elqugence

L an g u ag e labeling

@ vodels

Large language models are typically

generative pretrained Transformer models
// with an autoregressive language modeling

learning objective
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